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Abstract—In this paper, an integral reinforcement learning
(IRL) algorithm is proposed for solving the linear quadratic
tracking (LQT) problem of partial unknown continuous-time
systems that try to chase a polynomial reference signal. By using
IRL technique to solve the algebraic Riccati equation (ARE)
derived from LQT problem, the approximate optimal tracking
controller can be obtained without fully understanding the system
drift dynamics and command generator dynamics. Firstly, the
optimal tracking control problem is formulated. The augmented
vector is defined, and the algebraic Riccati equation is obtained
based on the dynamic programming method. Then, employing
IRL yields the iterative Bellman equation and policy updating
expression, such that an IRL algorithm is finally developed for
finding the approximate optimal tracking control policy, under
which the reference signal with higher-order polynomials and
unknown model parameters can be tracked by a linear system
with partial known model parameters, meanwhile the specific
performance can be minimized. Finally, a simulation example is
given to verify the efficiency of the provided mathod.

Index Terms—Linear quadratic tracking, policy iteration, in-
tegral reinforcement learning.

I. INTRODUCTION

THE optimal tracking problem which is called the linear
quadratic tracking (LQT) is an important problem for

control systems design. The goal of LQT is to design a
controller such that the output signal of the system can
track a specific reference signal optimally by minimizing a
performance indicator. The traditional solution to solve LQT
problem to compute the feedback term by using an algebraic
Riccati equation (ARE) and the feedforward term based on a
noncausal difference equation [1].

Reinforcement learning (RL), as a kind of machine learning
methods, has been widely employed to learn the optimal
controllers of the systems by using complete known dynamics
of systems [2–5]. However, for many practical problems, it
is difficult to obtain the system dynamics. Scholars have
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concentrated on developing RL techniques that derive optimal
controllers for unknown dynamical systems. For continuous-
time (CT) dynamical systems, RL techniques were first em-
ployed by Werbos to seek solutions to the optimal regulator
problem for discrete-time systems [5]. Doya presented RL
framework without a prior discretization of time, state and
control [6]. RL method also used to solve H∞ control prob-
lem, such as the Model-free Q-learning method [7] and the
neural dynamic programming [8]. RL technology also used
to solve the optimal tracking problem of discrete-time (DT)
system and solve the LQT problem of DT systems without
requiring the knowledge of the systems, such as application
of iterative adaptive dynamic programming (ADP) and greedy
heuristic dynamic programming (HDP) iteration algorithm in
nonlinear DT systems [9, 10], a class of nonlinear discrete-
time systems with time delays based on HDP [11], and policy
iteration (PI) for discrete-time linear systems [12]. The existing
LQT results using RL methods usually can work for following
a constant or linear dynamical reference signal [13–20]. But
few scholars used RL algorithms to solve the LQT problem
for CT systems with the objective of tracking an unknown
polynomial reference signal [13].

In this paper, based on RL, an adaptive controller is devel-
oped to solve the LQT problem of unknown CT linear systems.
Firstly, assume that the reference trajectory is generated by
a command generator system which is a custom polynomial
function. By setting the difference between the system tra-
jectory and the reference trajectory, the augmentation system
is established on the basis of the original system, and the
value function of LQT problem is transformed into a quadratic
structure. Then based on the value function, a new Bellman
equation is derived. Secondly, we proposed the IRL algorith-
m to learn the solution to the LQT problem using partial
knowledge about the system dynamics. The convergence of the
proposed algorithm to the optimal control solution is verified
by simulation, and the effectiveness of the proposed method
is proved.

II. CONTINUOUS-TIME LINEAR QUADRATIC TRACKING
PROBLEM FORMULATION

In this section, the infinite LQT problem is formulated for
CT systems.

Consider the CT linear system

ẋ = Ax+Bu

y = Cx
(1)
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where x is a measurable system state vector , u is the control
input, y is the output and A, B, C are matrices with compatible
dimensions. Find an optimal control policy u∗ which makes
the output y track a desired trajectory yr.

The performance index is usually formulated as

J (x, yr) =

∫ ∞
t

[
(Cx− yr)TQ (Cx− yr) + uTRu

]
dτ (2)

where Q > 0 and R > 0 are symmetric matrices.

III. DERIVATION OF SOLVING LQT PROBLEM

In this section, we propose a solution to the LQT problem.
Suppose the reference trajectory is generated by a command
generator system which is a customized polynomial function.
By setting the difference between the system trajectory and
the reference trajectory, the augmentation system is established
on the basis of the original system, and the value function of
LQT problem is transformed into a quadratic structure. Using
the quadratic structure of the value function, a novel Bellman
equation is derived for the LQT problem.
Assumption 1: reference trajectory is generated by a polyno-
mial function

yr = a0 + a1t+ a2t
2 + · · · ·+ad−1td−1 (3)

where a0, a1, a2 ...., ad−1 are matrices with appropriate
dimensions. Let e = y − yr, suppose q̇1 = e , q̇2 = q1 ....
, q̇d = qd−1 then

qd
(d) = e (4)

Define the new augmented system state as

ż (t) = [ẋ (t) q̇1 · · · q̇d] (5)

z (t) = [x (t) q1 · · · qd] (6)

Putting (1) and (2) together to construct the augmented
system as

ż (t) = Azz (t) +Bzu (t) +Myr (7)

where

Az =


A 0 · · · 0
C 0 0
· · ·
· · ·
· · ·
0 · · · 1 0

 (8)

Bz = [B 0 · · · 0] (9)

M = [0 − 1 0 · · · 0] (10)

Define the performance index

J∗ = min
u(t)

z(t)
T
Qz (t) + u(t)

T
Ru (t)

s.t ż (t) = Azz (t) +Bzu (t)
(11)

Then define the value function

V (z (t)) =

∞∫
t

[
zT (τ)Qz (τ) + uT (τ)Ru (τ)

]
dτ (12)

For the optimal tracking problem, the goal is to find the
control policy u (t) depending on z (t). Consider the control
policy

u (t) = Kz (t) (13)

The value function (12) with control policy (13) can be
written as the quadratic form

V (z (t)) = zT (t)Pz (t) (14)

where P > 0 is symmetric matrices
Define the Hamiltionian

H

(
z (t) ,

∂v

∂t
, u

)
= V̇ + zT (t)Qz (t) + uT (t)Ru (t) (15)

According to Hamilton function (15) and augmented system
(7), the augmented LQT Bellman equation is given as

0 = ż(t)
T
Pz (t) + z(t)

T
P ż (t) + zTQz + uTRu (16)

The optimal control solution for the LQT problem is given
by

u∗ = Kz (t) (17)

where
K = −R−1BT

z Pz (t) (18)

and P satisfies the LQT Riccati equation (ARE)

0 = Az
TP + PAz − PBzR

−1Bz
TP +Q (19)

Remark 1: Based on [21], the control policy (18) can render
the output of system (1) to follow the reference trajectory (3).

IV. INTEGRAL REINFORCEMENT LEARNING FOR SOLVING
THE LQT

In this section, we first use an offline PI Algorithm to solve
the LQT problem. Then, employing integral reinforcement
learning yields the iterative Bellman equation and policy
updating expression, such that an IRL algorithm is finally
developed for finding the approximate optimal tracking control
policy of the LQT problem using partial knowledge about the
system dynamics.

A. Offline Policy Iteration Algorithm for Solving The LQT
ARE

Algorithm 1 Offline policy iteration for solving the LQT
problem
1. Initiation: given u0 = K0z (t), which is admissible;
2. Policy evaluation: Find P i using the LQT Lyapunov equa-

tion(
Az +BzK

i
)T
P i+P i

(
Az +BzK

i
)
+
(
Ki
)T
R
(
Ki
)
+Q = 0

3. Policy updating: update the control gain using

Ki+1 = −R−1BT
z P

i
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B. IRL Algorithm For Solving LQT Problem

Suppose time interval T > 0 to obtain the IRL Bellman
equation, the value function (13) satisfies

V (z(t)) =

∫ t+T

t

(zT (τ)Qz(τ) + (u(τ))
T
Ru(τ))dτ

+ V (z(t+ T ))

(20)

The LQT IRL Bellman equation can be obtained by using (14)
in (20)

zT (t)Pzt(t) =

∫ t+T

t

(zT (τ)Qz(τ) + (u(τ))
T
Ru(τ))dτ

+ zT (t+ T )Pz(t+ T )
(21)

Algorithm 2 Online IRL algorithm for solving the LQT
problem
1. Initiation: Given initial admissible control gain Ki, and let
i = 0, where i denotes iteration index, we have u0 =
K0z(t);

2. Policy evaluation: Given a control policy ui, find P i using
the Bellman equation

zT (t)P iz(t) =

∫ t+T

t

(zT (τ)Qz(τ) + (ui(τ))
T
Rui(τ))dτ

+ zT (t+ T )P iz (t+ T )

3. Policy updating: update the control gain using

ui+1 = −R−1BT
z P

iz (t)

4. Stop when ||P i+1−P i|| ≤ ε with a small constant ε (ε >
0).

V. SIMULATION RESULTS

In this section, a simulation example is given to verify the
effective of Algorithm 2 for solving the LQT problem.

Consider the continuous-time linear system:

ẋ(t) =

[
0.5 1.5
2.0 −2

]
x(t) +

[
5
1

]
u(t)

y(t) =
[
1 0

]
x(t)

(22)

and suppose that the state trajectory is generated by a poly-
nomial function

yr = a0 (23)

with a0 = 10. The performance index is given as (2), choose
Q = [5 0 5; 0 0 0; 5 0 5] and R = 1. The solution can be
obtained in terms of the LQT ARE (19) using the command
’dare’ in Matlab, i.e.

P ∗ =

0..5034 0.0529 0.4441
0.0529 0.0195 0.0154
0.4441 0.0154 0.4931

 (24)

and the optimal control gain K* can be obtained by using (18)

K∗ =
[
−2.5697 −0.2841 −2.2361

]
(25)

Implementing Algorithm 2 to solve the LQT problem of the
system. Fig. 1 shows the convergence evolutions of the optimal
P matrix. Also, Fig. 2 depicts the convergence evolutions of
the optimal control gain. From Figs. 1 and 2, it is clear that
the value function matrix and the control gain converge to
their optimal values after four iterations. Fig. 3 shows that the
output finally tracks the state trajectory of the system.
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Fig. 1. Convergence of the P matrix to its optimal value when d=1
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Fig. 2. Convergence of the controller gain to its optimal value when d=1
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Fig. 3. System output versus reference trajectory when d=1
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When d = 2, assume that the desired trajectory is generated
by the command generator system

yr = a0 + a1t (26)

with a0 = 1, a1 = 2. The performance index is given as (2),
choose Q = [5 0 0 5; 0 0 0 0; 0 0 0 0; 5 0 0 5] and R = 1.
The solution can be obtained in terms of the LQT ARE (19)
using the command ’dare’ in Matlab, i.e.

P ∗ =


0.4764 0.0525 0.1199 0.4438
0.0525 0.0195 0.0123 0.0173
0.1199 0.0123 0.9605 0.1870
0.4438 0.0173 0.1870 1.3674

 (27)

and the optimal control gain K* can be obtained by using (18)

K∗ =
[
−2.4344 −0.2823 −0.6115 −2.2361

]
(28)

Implementing Algorithm 2 to solve the LQT problem of the
system. Fig. 4 shows the convergence evolutions of the optimal
P matrix. Also, Fig. 5 depicts the convergence evolutions of
the optimal control gain. From Figs. 4 and 5, it is clear that the
value function matrix and the control gain converge to their
optimal values. Fig. 6 shows that the output finally tracks the
state trajectory of the system.
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Fig. 4. Convergence of the P matrix to its optimal value when d=2
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Fig. 5. Convergence of the controller gain to its optimal value when d=2

0 5 10 15 20 25
−10

0

10

20

30

40

50

Time step

S
ys

te
m

 o
ut

pu
t

 

 

output
reference trajectory

Fig. 6. System output versus reference trajectory when d=2

VI. CONCLUSION

An IRL algorithm is proposed to solve the LQT problem
for partially-unknown CT linear systems with the objective of
tracking a polynomial reference signal. On the basis of the
value function which has quadratic form in terms of the state
and the reference trajectory, a LQT ARE was obtained and a
PI based IRL algorithm is developed to solve the LQT ARE
online without requiring full knowledge of system dynamics
and with no need of model parameters of reference signal. The
simulation results have shown that the proposed formulation
for the LQT problem gives a satisfactory tracking performance.
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