ﬁ EasyChair Preprint

Ne 4874

An Auto-Creation Database Persistence in Java

Frank Appiah

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 7, 2021

ARTICLE ON DATA ENGINEERING

An Auto-Creation Database

Persistence in Java.

F. Appiah ,Member, IEEE

Abstract—This study is on automated creation of database system in MySQL database management
system from the toolkit of Java persistence. This table creation is a requirement in proper functioning
of an intelligent communication of a computer system in the provision of a mobile service for
pervasive devices connected by wireless network.

Index Terms—software physics, , table forms, , system, persistence , data communication, wireless
communication.

o F. Appiah is with Kwame Nkrumah University of Science and Technology, Department of Computer Engineering,
Kumasi, Ghana. E-mail: appiahnsiahfrank@¢mail.com

*

1 INTRODUCTION
¢ Generallnfo (class that models the database that
The implementation of the database[1,2,3,4] is by the contains general information in the school)
Persistence framework [17, 18,19,20] (
javax.persistence.*) of Java[9] Toolkit. In this section of
system programming, we will look at the persistence

¢ Student (A class that models the student in the
database such details as index number,last name,

first-name of a student object
functions enabling the database (tables) creation in the ject)

AINRS[21] run-time service. The persistence entity * Smssvrin

classes are as follows: e SmssvrOut

* Authenticator ¢ RegisterCourse (A class that models the student in
 CWApoint (class that models the database the database with such details as the number of
containing students information including their registered courses and their details.

CWA'’s) e Account

e TimeTable (class that models the database that e Admin

contains student information relating to their
timetable)

¢ Trail (class that models the database that contains 2 PERSISTENCE CLASS IMPLEMENTATION

student information relating to their trail courses)

mailto:appiahnsiahfrank@gmail.com

2 ARTICLE ON DATA ENGINEERING

2.1 Authenticator Persistence Entity Class
Implementation

The persistence entity class is implemented by
annotating the Authenticator class as an @Entity and
the name of the table is authenticator indicated by
annotation @Table. The table column is created by
annotating the field of the class by @Column. They are

about four (4) named queries in Authenticator entity
class used to run already prepared queries:

¢ Authenticator.findByPhonenumber
¢ Authenticator.findByPassword

¢ Authenticator.findByld

¢ Authenticator.findByStudentid

@Entity
@Table (name = "authenticator")

@NamedQueries ({@NamedQuery (name =
"Authenticator.findByPhonenumber", query
= "SELECT a FROM Authenticator a WHERE
a.phonenumber = :phonenumber"),
@NamedQuery (name =
"Authenticator.findByPassword", query =
"SELECT a FROM Authenticator a WHERE
a.password = :password"),

@NamedQuery (name =
"Authenticator.findById", query = "SELECT
a FROM Authenticator a WHERE a.id =
:id"), @NamedQuery (name =
"Authenticator.findByStudentid", query =
"SELECT a FROM Authenticator a WHERE

a.studentid = :studentid") })

public class Authenticator implements
Serializable {

private static final long
serialVersionUID = 1L;

@Column (name = "phonenumber", nullable =
false)

private String phonenumber;

@Column (name = "password", nullable =
false)

private String password;
@Id

@Column (name = "id", nullable = false)

private Integer id;

@Column (name = "studentid", nullable =

false)

private String studentid;

}

2.2 CWAPoint Persistence Entity Class
Implementation

The persistence entity class is implemented by
annotating the CWAPoint class as an @Entity and the
name of the table is cwapoint indicated by annotation
@Table. The table columns is created by annotating the
field of the class by @Column. They are about four (4)
named queries in CWAPoint entity class used to run
already prepared queries:

* Cwapoint.findByStudentYear
* Cwapoint.findBySemester

¢ Cwapoint.findByCwa

¢ Cwapoint.findByld

@Entity
@Table (name = "cwapoint")

@NamedQueries ({@NamedQuery (name =

"Cwapoint.findByStudentYear",
"SELECT ¢} FROM
c.studentYear =

query
Cwapoint c WHERE

:studentYear"),
@NamedQuery (name =

"Cwapoint.findBySemester", query =
"SELECT c FROM Cwapoint c WHERE
c.semester = :semester"),

@NamedQuery (name = "Cwapoint.findByCwa",
"SELECT c¢ FROM Cwapoint c WHERE

:cwa"), @NamedQuery (name =
"Cwapoint.findById", query = "SELECT c
FROM Cwapoint ¢ WHERE c.id = :id")})

query =
c.cwa =

public class Cwapoint implements
Serializable {

@Transient

private PropertyChangeSupport
changeSupport = new
PropertyChangeSupport (this) ;

FRANK APPIAH .: AN AuTO-CREATION DATABASE PERSISTENCE

private static final long
serialVersionUID = 1L;

@Column (name = "studentYear", nullable =
false)

private String studentYear;

@Column (name = "semester", nullable =
false)

private String semester;

QColumn (name = "CWA", nullable = false)
private double cwa;

@Id

@Column (name = "ID", nullable = false)

private Integer id;

@JoinColumn (name = "fk studentID",
referencedColumnName = "studentID")
@ManyToOne

private Student fkstudentID;

}

2.3 Trail Persistence Entity Class Implementation

The persistence entity class is implemented by
annotating the Trail class as an @Entity and the name

of the table is trail indicated by annotation @Table. The

table columns is created by annotating the field of the
class by @Column. They are about three(3) named
queries in Trail entity class used to run already
prepared queries:

¢ Trail findByIndexNumber
¢ Trail findByStudentID

¢ Trail .findByCourseTrail

@Entity
@Table (name = "trail")

@NamedQueries ({@NamedQuery (name =
"Trail.findByIndexNumber", query =
"SELECT t FROM Trail t

WHERE t.indexNumber = :indexNumber"),
@NamedQuery (name =

"Trail.findByStudentID", query = "SELECT
t FROM Trail t WHERE t.studentID
:studentID"), @NamedQuery (name =

"Trail.findByCourseTrail", query =
"SELECT t FROM Trail t WHERE
t.courseTrail = :courseTrail") })

public class Trail implements
Serializable {

private static final long
serialVersionUID = 1L;

@Id

@Column (name = "indexNumber", nullable =
false)

private Integer indexNumber;

@Column (name = "studentID", nullable =
false)

private int studentID;

@Column (name = "courseTrail", nullable =
false)

private String courseTrail;

}

2.4 TimeTable Persistence Entity Class
Implementation

The persistence entity class is implemented by
annotating the

TimeTable class as an @Entity and the name of the
table is timetable indicated by annotation @Table. The
table columns is created by annotating the field of the
class by @Column. They are about six (6) named
queries in TimeTable entity class used to run already
prepared queries:

¢ Timetable.findByCourselD

¢ Timetable.findByDay

¢ Timetable.findByInstantTime
* Timetable.findByStudentYear
¢ Timetable.findByVenue

¢ Timetable.findByCourse

4 ArTICLE ON DATA ENGINEERING

@Entity
@Table (name = "timetable")

@NamedQueries ({@NamedQuery (name =

"Timetable.findByCourseID", query =
"SELECT t FROM Timetable t WHERE
t.courselD = :courselID"),

@NamedQuery (name = "Timetable.findByDay",

query = "SELECT t FROM Timetable t WHERE
t.day = :day"), @NamedQuery (name =
"Timetable.findByInstantTime", query =
"SELECT t FROM Timetable t WHERE
t.instantTime = :instantTime"),
@NamedQuery (name =
"Timetable.findByStudentYear", query =
"SELECT t FROM Timetable t WHERE
t.studentYear = :studentYear"),
@NamedQuery (name =
"Timetable.findByVenue", query = "SELECT
t FROM Timetable t WHERE t.venue
:venue"), @NamedQuery (name =
"Timetable.findByCourse", query = "SELECT
t FROM Timetable t WHERE t.course =
:course") })

public class Timetable implements
Serializable {

private static final long
serialVersionUID = 1L;

@Id

@Column (name = "courseID", nullable =
false)

private String courselD;

@Column (name = "day", nullable = false)
private String day;

@Column (name = "instantTime", nullable =
false)

@Temporal (TemporalType.TIME)

private Date instantTime;

@Column (name = "studentYear", nullable =
false)

private int studentYear;

@Column (name = "venue", nullable = false)
private String venue;

@Column (name = "course", nullable =

false)

private String course;

@OneToMany (mappedBy = "courseID")

private
Collection<Registercourse>
registercourseCollection;

}

2.5 Generallnfo Persistence Entity Class
Implementation

The persistence entity class is implemented by
annotating the Generallnfo class as an @Entity and the
name of the table is generalinfo indicated by
annotation @Table. The table columns is created by
annotating the field of the class by @Column. They are
about two (2) named queries in Generallnfo entity
class used to run already prepared queries:

¢ Generalinfo.findByInfoType
¢ Generalinfo.findBy | InfoDate

QEntity
@Table (name = "generalinfo")

@NamedQueries ({@NamedQuery (name =
"Generalinfo.findByInfoType",
"SELECT g FROM
g.infoType =

query =
WHERE
:infoType"),
@NamedQuery (name =

Generalinfo g

"Generalinfo.findByInfoDate", query
"SELECT g FROM Generalinfo g WHERE
g.infoDate = :infoDate") })

public class Generalinfo implements
Serializable {

private static final long

serialVersionUID = 1L;

@Lob

@Column (name = nullable =

false)

"infoDetails",

private String infoDetails;

@Id

@Column (name = nullable =

false)

"infoType",

private String infoType;

Page 137

FRANK APPIAH .: AN AuTO-CREATION DATABASE PERSISTENCE

@Column (name = "infoDate")
@Temporal (TemporalType.TIMESTAMP)
private Date infoDate;

}

2.6 Student Persistence Entity Class
Implementation

The persistence entity class is implemented by
annotating the Student class as an @Entity and the
name of the table is student indicated by annotation
@Table. The table columns is created by annotating the
field of the class by @Column. They are about seven (7)
named queries in student entity class used to run
already prepared queries:

¢ Student.findByStudentID

¢ Student.findByFirstName

e Student.findByCourse

e Student.findByLastName

¢ Student.findByStudentYear
¢ Student.findByIndexNumber
¢ Student.findByMiddleName

@Entity
@Table (name = "student")

@NamedQueries ({@NamedQuery (name =

"Student.findByStudentID", query =
"SELECT s FROM Student s WHERE
s.studentID = :studentID"),
@NamedQuery (name =
"Student.findByFirstName", query =
"SELECT s FROM Student S WHERE
s.firstName = :firstName"),
@NamedQuery (name =
"Student.findByCourse", query = "SELECT s
FROM Student S WHERE s.course =
:course"), @NamedQuery (name =
"Student.findByLastName", query = "SELECT
s FROM Student s WHERE s.lastName =
:lastName"), @NamedQuery (name =
"Student.findByStudentYear", query =
"SELECT s FROM Student s WHERE
s.studentYear = :studentYear"),

@NamedQuery (name =

"Student.findByIndexNumber", query =
"SELECT s FROM Student s WHERE
S .indexNumber = : indexNumber"),
@NamedQuery (name =
"Student.findByMiddleName",
"SELECT s FROM Student s
s.middleName = :middleName") })

query =
WHERE

public class Student implements
Serializable {

private static final long

serialVersionUID = 1L;
@Id

nullable

@Column (name =
false)

"studentID",

private Integer studentID;

@Column (name = "firstName", nullable

false)

private String firstName;

@Column (name = nullable =

false)

"course",

private String course;

@Column (name = nullable =

false)

"lastName",

private String lastName;

nullable

@Column (name = "studentYear",

false)
private String studentYear;

nullable

@Column (name =
false)

"indexNumber",

private int indexNumber;

@Column (name = "middleName")

private String middleName;
@OneToMany (mappedBy = "fkstudentID")

private Collection<Cwapoint>
cwapointCollection;

@OneToMany (cascade =
CascadeType.ALL, mappedBy = "studentid")

private Collection<Account>
accountCollection;

@OneToMany (mappedBy = "studentID")

private
Collection<Registercourse>
registercourseCollection;

}

6 ARTICLE ON DATA ENGINEERING

2.7 Smssvrin Persistence Entity Class
Implementation

The persistence entity class is implemented by
annotating the Smssvrln class as an @Entity and the
name of the table is smssvr_in indicated by annotation
@Table. The table columns is created by annotating the
field of the class by @Column. They are about nine (9)
named queries in Smssvrln entity class used to run

already prepared queries:

* Smssvrln.findByld

¢ SmssvrIn.findByProcess

® SmssvrIn.findByOriginator

® Smssvrin.findByType

* Smssvrin.findByEncoding

* Smssvrin.findByMessageDate
¢ Smssvrin.findByReceivedDate

* SmssvrIn.findByText

@Entity
@Table (name = "smssvr in")

@NamedQueries ({@NamedQuery (name =

"SmssvrIn.findById", query = "SELECT s
FROM SmssvrIn s WHERE s.id = :id"),
@NamedQuery (name =
"SmssvrIn.findByProcess", query = "SELECT

s FROM SmssvrIn s WHERE s.process =
:process"),
"SmssvrIn.findByOriginator", query =
"SELECT s FROM SmssvrIn s WHERE
s.originator = :originator"),

@NamedQuery (name = "SmssvrIn.findByType",
query = "SELECT s FROM SmssvrIn s WHERE
s.type = :type"),
"SmssvrIn.findByEncoding", dquery =
"SELECT s FROM SmssvrIn s WHERE
s.encoding = :encoding"),

@NamedQuery (name =

@NamedQuery (name =

@NamedQuery (name =

"SmssvrIn.findByMessageDate", query
"SELECT s FROM SmssvrIn s WHERE
s.messageDate =
@NamedQuery (name =
"SmssvrIn.findByReceiveDate", query
"SELECT s FROM SmssvrIn s WHERE

:messageDbate"),

S.receiveDate = :receiveDate"),
@NamedQuery (name = "SmssvrIn.findByText",
"SELECT s FROM SmssvrIn s WHERE
ttext"),
"SmssvrIn.findByGatewayId", query =
"SELECT s FROM SmssvrIn s WHERE

s.gatewayId = :gatewayId")})

query =

s.text = @NamedQuery (name =

public class SmssvrIn implements
Serializable {

@Transien

private PropertyChangeSupport
changeSupport = new
PropertyChangeSupport (this) ;

private static final long
serialVersionUID = 1L;

@Id

@Column (name = "id", nullable = false)
private Long id;

@Column (name = "process")

private Integer process;
@Column (name = "originator")
private String originator;
@Column (name = "type")
private Character type;
@Column (name = "encoding")
private Character encoding;
@Column (name = "message date")
@Temporal (TemporalType.TIMESTAMP)
private Date messageDate;

@Column (name = "receive date")
@Temporal (TemporalType.TIMESTAMP)
private Date receiveDate;

@Column (name = "text")

private String text;

@Column (name = "gateway id")

private String gatewayId;
}

2.8 SmssvrOut Persistence Entity Class
Implementation

The persistence entity class is implemented by

FRANK APPIAH .: AN AuTO-CREATION DATABASE PERSISTENCE

annotating the SmssvrOut class as an @Entity and the
name of the table is smss-vr_out indicated by
annotation @Table. The table columns is created by

annotating the field of the class by @Column. They are

about seven (7) named queries in SmssvrOut entity
class used to run already prepared queries:

* SmssvrOut.findByld

* SmssvrOut.findByRecipient

* SmssvrOut.findByText

* SmssvrOut.findByCreateDate
¢ SmssvrOut.findByOriginator

* SmssvrOut.findByEncoding

® SmssvrOut.findByStatusReport

@Entity
@Table (name = "smssvr out")

@NamedQueries ({@NamedQuery (name =

"SmssvrOut.findById", query = "SELECT s
FROM SmssvrOut s WHERE s.id = :id"),
@NamedQuery (name =
"SmssvrOut.findByRecipient", query =

"SELECT s FROM SmssvrOut s WHERE
s.recipient = :recipient"),

@NamedQuery (name =
"SmssvrOut.findByText", query = "SELECT s
FROM SmssvrOut s WHERE s.text = :text"),
@NamedQuery (name =
"SmssvrOut.findByCreateDate", query =
"SELECT s FROM SmssvrOut s WHERE
s.createDate = :createDate"),

@NamedQuery (name =
"SmssvrOut.findByOriginator", query =
"SELECT s FROM SmssvrOut s WHERE
s.originator = :originator"),
@NamedQuery (name =
"SmssvrOut.findByEncoding", query =
"SELECT s FROM SmssvrOut s WHERE
s.encoding = :encoding"),
@NamedQuery (name =
"SmssvrOut.findByStatusReport",
"SELECT s FROM SmssvrOut s WHERE
s.statusReport = :statusReport"),
@NamedQuery (name =
"SmssvrOut.findByFlashSms", query =
"SELECT s FROM SmssvrOut s WHERE

query =

s.flashSms = :flashSms"),

@NamedQuery (name =
"SmssvrOut.findBySrcPort", query =
"SELECT s FROM SmssvrOut s WHERE
s.srcPort = :srcPort"), @NamedQuery (name

= "SmssvrOut.findByDstPort", query =

"SELECT s FROM SmssvrOut s WHERE
s.dstPort = :dstPort"), @NamedQuery (name
= "SmssvrOut.findBySentDate", query =
"SELECT s FROM SmssvrOut s WHERE
s.sentDate = :sentDate"),

@NamedQuery (name =
"SmssvrOut.findByRefNo", query = "SELECT
s FROM SmssvrOut s WHERE s.refNo =
:refNo"),
"SmssvrOut.findByPriority", query =
"SELECT s FROM SmssvrOut s WHERE
s.priority = :priority"),

@NamedQuery (name =

@NamedQuery (name =
"SmssvrOut.findByErrors", query = "SELECT
s FROM SmssvrOut s WHERE s.errors =

:errors"), @NamedQuery (name =

"SmssvrOut.findByGatewayId", query =
"SELECT s FROM SmssvrOut s WHERE
s.gatewayId = :gatewayId"),

@NamedQuery (name =
"SmssvrOut.findByStatus", query = "SELECT
s FROM SmssvrOut s WHERE s.status =
:status") })

public class SmssvrOut implements
Serializable {

private static final long
serialVersionUID = 1L;

@Id

@Column (name = "id", nullable = false)
private Long id;

@Column (name = "recipient")
private String recipient;

@Column (name = "text")

private String text;

@Column (name = "create date")
@Temporal (TemporalType.TIMESTAMP)
private Date createDate;

@Column (name = "originator")
private String originator;
@Column (name = "encoding")

private Character encoding;

8 ARTICLE ON DATA ENGINEERING

@Column (name = "status report") @Entity
private Integer statusReport; @Table (name = "registercourse")
@Column (name = "flash sms") @NamedQueries ({@NamedQuery (name =

"Registercourse.findById", query =

"SELECT r FROM Registercourse r WHERE
@Column (name = "src port") r.id = :id")})

private Integer flashSms;

private Integer srcPort; public class Registercourse implements

@Column (name = "dst port") Serializable {

private Integer dstPort; private static final long
serialVersionUID = 1L;

@Column (name = "sent date")
@Id

@Temporal (TemporalType.TIMESTAMP)
@Column (name = "ID", nullable = false)

private Date sentDate;
private Integer id;

@Column (name = "ref no")
, . @QJoinColumn (name = "courseID",
private String refNo;
referencedColumnName = "courseID")
Column (name = "priority"
¢ (P v") @ManyToOne

ivate Stri lority; . .
private tihg priofity private Timetable courselD;

1 =" " llable =

ici uTn(name errors”, nullable @QJoinColumn (name = "studentID",

arse referencedColumnName = "studentID")
ivate int ;

private int errors @ManyToOne

Col = "gat id" llable =)

i Cl> ul)nn(name gateway_id’, nuiiab.e private Student studentID;

alse

private String gatewayId; }

@Column (name = "status")

private Character status;

} 2.10 Account Persistence Entity Class
Implementation

The persistence entity class is implemented by
2.9 RegisterCourse Persistence Entity Class annotating the Account class as an @Entity and the
Implementation name of the table is account indicated by annotation
@Table. The table columns is created by annotating the
field of the class by @Column. They are about six (6)
named queries in Account entity class used to run

The persistence entity class is implemented by already prepared queries:

annotating the RegisterCourse class as an @Entity and
the name of the table is registercourse indicated by
annotation @Table. The table columns is created by
annotating the field of the class by @Column. They are ~ * Account.findByBalance
about one (1) named queries in RegisterCourse entity e Account.findByDraftcode

¢ Account.findByAmtpaid

class used to run already prepared queries: e Account findByRegcode
¢ Account.findByld

Regi findByl
* Registercourse.findByld * Account.findByRegistered

FRANK APPIAH .: AN AuTO-CREATION DATABASE PERSISTENCE 9

@JoinColumn (name = "studentid",
referencedColumnName = "studentID")
. @ManyToOne
@Entity
private Student studentid;
@Table (name = "account")

}

@NamedQueries ({@NamedQuery (name =
"Account. findByAmtpaid", query = "SELECT
a FROM Account a WHERE a.amtpaid
ramtpaid"), @NamedQuery (name =
"Account.findByBalance", query = "SELECT
a FROM Account a WHERE a.balance
:balance"), @NamedQuery (name =

2.11 Admin Persistence Entity Class

/ Implementation
"Account.findByDraftcode", query = P

"SELECT a FROM Account a WHERE

a.draftcode = :draftcode"), The persistence entity class is implemented by
@NamedQuery (name = annotating the Admin class as an @Entity and the
"Account.findByRegcode", query = "SELECT name of the table is admin indicated by annotation

a FROM Account a WHERE a.regcode = @Table. The table columns is created by annotating the
:regcode"), @NamedQuery (name = field of the class by @Column. They are about two (2)
"Account.findByRegistered", query = named queries in Admin entity class used to run
"SELECT a FROM Account a WHERE already prepared queries;

a.registered = :registered"),

@NamedQuery (name = "Account.findById",

query = "SELECT a FROM Account a WHERE ¢ Admin.findByUsername

a.id = :id")}) ¢ Admin.findByPassword

public class Account implements

Serializable {
,) , @Entity

private static final long

serialVersionUID = 1L; @Table (name = "admin")

@Column (name = "amtpaid", nullable = @NamedQueries ({@NamedQuery (name =

false) "Admin.findByUsername", query = "SELECT a

))) FROM Admin a WHERE a.username =

private int amtpaid;
:username"), @NamedQuery (name =

@Column (name = "balance", nullable = "Admin.findByPassword", query = "SELECT a

false) FROM Admin a WHERE a.password =

private int balance; :password") })

@Column (name = "draftcode", nullable = public class Admin implements

false) Serializable {

private String draftcode; private static final long
serialVersionUID = 1L;

@Column (name = "regcode", nullable =

false) eId

private String regcode; @Column (name = "username", nullable =
false)

@Column (name = "registered")

)] private String username;
private Character registered;

@Column (name = "password", nullable
erd false)

j— "wa " —
@Column (name = "id", nullable = false) private String password;

private Integer id; }

10 ARTICLE ON DATA ENGINEERING

3 CONCLUSION

This work is a showpiece of the author's study in PhD
thesis chapter. This shows how to create database
management[8] application in Java with its persistence
toolkit. This considered about 11 entity classes in total
in developing a mobile-2-computer (M2C) system
[5,6,7]. This system[10] responds to students in
accessing school activities on their mobile phones over
wireless network.

REFERENCES

[1] Silberschatz, A., Korth, H. F., & Sudarshan, S.
(1997). Database system concepts (Vol. 5). New
York: McGraw-Hill.

[2] Lamb, C., Landis, G., Orenstein, J., & Weinreb, D.
(1991). The ObjectStore database system.
Communications of the ACM, 34(10), 50-63.

[3] Garcia-Molina, H., Ullman,]J. D., & Widom, J.
(2000). Database system implementation (Vol. 672).
Upper Saddle River, NJ:: Prentice Hall.

[4] Atkinson, M., Dewitt, D., Maier, D., Bancilhon, F.,
Dittrich, K., & Zdonik, S. (1990). The
object-oriented database system manifesto. In
Deductive and object-oriented databases (pp.
223-240). North-Holland.

[5] Labrou, Y. & Agre, J. R. (2009). U.S. Patent No.
7,606,560. Washington, DC: U.S. Patent and
Trademark Office.

[6] Song, C.]., Kim, S. P., Seo, M. D, Lee, K. G., & Jin,
Y. J. (2012). US. Patent Application No.
13/196,357.

[7] Tadayon, S., & Halavi, M. (2012). U.S. Patent No.
8,315,617. Washington, DC: U.S. Patent and
Trademark Office.

[8] Starkey, J. A. (2012). U.S. Patent No. 8,224,860.
Washington, DC: U.S. Patent and Trademark
Office.

[9] Arnold, K., Gosling, J., Holmes, D., & Holmes, D.
(2000). The Java programming language (Vol. 2).
Reading: Addison-wesley.

[10] Rogers, E. M. (1986). Communication technology.
Simon and Schuster.

[11]Lee, E. A., & Messerschmitt, D. G. (2012). Digital

communication. Springer Science & Business
Media.
[12] Tuohino, M., Poikselka, M., Mayer, G. &

Westman, 1. (2005). U.S. Patent Application No.
10/932,253.

[13] Gabor, D. (1950). CIII. Communication theory and
physics. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science,
41(322), 1161-1187.

[14] Littlejohn, S. W., & Foss, K. A. (2010). Theories of
human communication. Waveland press.

[15] Tomasello, M. (2010). Origins of human
communication. MIT press.

[16]Shannon, C. E. (1949). Communication in the
presence of noise. Proceedings of the IRE, 37(1),
10-21.

[17]Bock, H. (2012). Java persistence api. In The
Definitive Guide to NetBeans™ Platform 7 (pp.
315-320). Apress.

[18] Yang, D. (2010). Java persistence with JPA.
Outskirts Press.

[19] Goncalves, A. (2013). Java persistence APIL In
Beginning Java EE 7 (pp. 103-124). Apress,
Berkeley, CA.

[20] Miiller, B., & Wehr, H. (2012). Java Persistence API
2: Hibernate, EclipseLink, OpenJPA und
Erweiterungen. Carl Hanser Verlag GmbH Co KG.

[21]Appiah, FK (2017). Automatic Information
Retrieval System: Intelligent ~ Computer
Communication.

Dr. Frank Appiah. He is a
holder of Bsc(Hon) from
Kwame Nkrumah University
of Science and Technology in
2018, Msc in Advanced
Software Engineering from
King's college London in
2010 and PhD in computer
science and engineering from
both KCL (2012/2014) and
KNUST (2014) respectively.
Frank Appiah has professional certificates in
Management and engineering since 2011. He
developed StreamEPS - Stream Event Processing
System in 2011 which is hosted at Github. This work
is a PhD thesis at KNUST, Department of Computer
Engineering, Kumasi, Ghana. This work is awarded
course leadership programme by Kwame Nkrumah
University of Science and Technology.

