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Abstract. Clause recommendation is the problem of recommending a clause to a
legal contract, given the context of the contract in question and the clause type
to which the clause should belong. With not much prior work being done toward
the generation of legal contracts, this problem was proposed as a first step toward
the bigger problem of contract generation. As an open-ended text generation prob-
lem, the distinguishing characteristics of this problem lie in the nature of legal lan-
guage as a sublanguage and the considerable similarity of textual content within the
clauses of a specific type. This similarity aspect in legal clauses drives us to investi-
gate the importance of similar contracts’ representation for recommending clauses.
In our work, we experiment with generating clauses for 15 commonly occurring
clause types in contracts expanding upon the previous work on this problem and
analyzing clause recommendations in varying settings using information derived
from similar contracts.

Keywords. Clause recommendation, Legal contracts, Legal NLP

1. Introduction

Al-driven assistance in drafting legal contracts as a tool can greatly benefit small and
medium-sized enterprises. These enterprises often have limited legal support in contrac-
tual requirements compared to their large-scale counterparts that can afford sophisticated
support from large legal teams. Contracts, being a type of legal document, can be charac-
terized as being composed of a series of individual clauses or provisions, each capturing
the legally binding rights, obligations, and agreements between the involved negotiat-
ing parties. As pointed out in [1], these clauses serve as the fundamental discourse units
while drafting or reviewing contracts and encompass the legal essence of a contract.
The problem of clause recommendation [2] (ClauseRec) was proposed to assist con-
tract drafting by recommending a clause to a contract. It was the first attempt at clause
generation itself with the use of transformer-based techniques in NLP. For clause recom-
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Figure 1. A pipeline for clause recommendation: We have an incomplete, in-draft contract at the input and
the name of a clause type for which we need to recommend a new clause to the contract. We first compute
the representation of the current contract. Since we know the clause type, we also compute a representation
of the clause type based on a library of all the clauses under that type. Based on the representation of the
current contract, we fetch k similar contracts and average them to obtain a similar contract representation. Now,
making use of these three representations, we aggregate them before sending them to our transformer-based
clause decoder to generate or recommend a new clause of the specified clause type to be added to the in-draft
contract.

Clause type

mendation, consider an incomplete contract in the draft to which the drafter of the con-
tract wishes to add a new clause of a specific clause type. Clause recommendation serves
to add such a clause based by taking into account the context of the current contract in
the process. The work also introduced the problem of clause type relevance prediction
to determine the relevance of a clause type to be added to the contract before proceed-
ing with clause generation. However, the problem was modeled as a binary classification
problem to determine whether or not a given clause type is relevant to the current con-
tract. The pipeline for clause recommendation nevertheless makes use of the clause type
information, hence serving the problem of clause type relevance as a secondary problem
- extra to clause recommendation. However, it keeps opening the question of whether or
not the clause type information should be taken from the user (i.e., the contract drafter).

In our work, we study the problem of clause recommendation by experimenting
with several strategies for representing the context for clause generation and showing the
significance of clause type information for clause generation. We improve the pipeline
proposed by [2] by adding similar contract representations to the context. Figure 1 shows
our best-performing pipeline for clause recommendation, which incorporates informa-
tion from similar contracts in addition to the current contract and specified clause type.
The generation is analyzed over 15 commonly different clause types in legal contracts.
With research on legal clause generation currently in its infancy, we conclude by dis-
cussing the potential areas for improvement in clause generation. We open-source our
code to ease future work on this problem?.
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2. Related Work

Previous work in legal contracts has focused on understanding tasks in legal NLP di-
rected towards easier review and analysis of contracts. Identification of entities in con-
tracts is looked upon in [3], [4], the latter introducing a dataset of 179 contracts specific
to lease agreements. The dataset introduced by [4] also provides labeled data for iden-
tifying potentially unfair clauses, a task attempted prior by [5]. [6] identify critical con-
tract clauses using a set of Context-Free Grammar (CFG) rules. The task of semantically
retrieving legal clauses from a library of contracts as a span identification problem was
introduced in [7]. An expert annotation dataset for contract review is provided in [8].
LEDGAR - a dataset for large-scale multilabel classification was introduced in [1]. The
sheer size of this dataset and the variety of clause types covered makes its applicability
much beyond the task for which it was introduced, an example being the current work
for clause generation.

Since legal language is different from the general open domain language on which
most of the models are pretrained, special attention has been paid to developing models
to give representations specialized to the domain. LegalBERT [9] introduces a family of
BERT-based models for application on downstream legal tasks. [2] train a further pre-
trained version of BERT for use in context building for clause recommendation and show
the superiority of the trained embeddings by showing distinguishable representations
based on the clause type. ALeaseBERT trained in [4] is another task-specific pretrained
model on legal contracts. We make use of LegalBERT representations in our work.

3. Method

The problem of clause recommendation can be modeled as a controlled text generation
problem P(y|context) in which we generate a clause y given some contextual representa-
tion context. The context representation can be modeled by making use of the inputs that
can be made available from an incomplete version of the contract being drafted. Since
a contract is essentially a collection of clauses, the representation of a contract can be
obtained by averaging the representation of each clause in the contract. The average rep-
resentation serves as the contract-specific contextual input. Thus for a contract having
Neiause Clauses, we can use a sequence encoder to get the representation of each clause
before averaging to get the contract representation.

contract — Y iauseEncoder(clause) 0

Nelause

The type of a legal clause is highly indicative of the clause since clauses under a
single type are similar to each other. So, the clause type representation clause_type can be
considered indicative in determining the characteristic text of the clause to be generated.
For calculating this representation, we consider the library of all the clauses, N quse_rype
occurring under the concerned clause type and compute an average of the individual
clause embeddings.

Y ciauseEncoder(clause)

2)

clause type =

Nclausejype



The contract representation can be used to retrieve k most similar contracts
(sim_contracts) from an index of all the contract representations. Each of the retrieved k
contracts can be used to provide additional context in two ways:

(1) full_sim_contr: Using the representations calculated for an entire contract and
averaging over all k contracts

Sfull_sim_contr = (Zsim,contractEsim,contmcts

Y ciauseEncoder(clause) 3)

I)/k

[chauseEsim,contracl
Nclause

(2) clause_sim_contr: Using only the representation of the clauses of clause type ¢
for which we need a clause recommendation. Here, we average the per-contract repre-
sentations calculated for the clauses of the specified type before averaging over the k
contracts.

clause_sim_contr = (Zsim,com‘racrEsim,contracts

chau&eexim,cantract]l{Clause £ t} : EnCOder(clause) )/ k 4)
chauseExim,C()nlract]1 {Clause € t}

By making use of these representations, we compute the context vector in the fol-
lowing ways:

1. ONLY_CONTR: Using only the contract representation tries to predict the clause
in a clause type agnostic setting, i.e., the model has no information of which
particular clause type it has to recommend a clause, making the task more difficult
since the model has to predict the topic as well as the underlying content, and thus
results in much poorer performance as compared to clause type aware outputs.

context = contract 5

2. CONTR_TYPE: This was the methodology adopted in ClauseRec and that takes
into account both - contract as well as clause_type representations.

context = (contract + clause type) /2 (6)
3. CONTR_FULLSIM: In this experiment performed in a clause type agnostic set-
ting, we complement the contract representation with the full_sim_contr to see
the effect of similar contract representation when the clause type is not known.
context = [contract ; full_sim_contr] @)
Here, [.; .] indicates concatenation of the vectors.

4. CONTR_TYPE_FULLSIM: The original ClauseRec representation is augmented
with full _sim _contr.

context = [(contract + clause type) /2 ; full sim_contr] (3)



5. CONTR_TYPE_CLAUSESIM: Since we are aware of the clause type of clause
to generate, clause_sim_contr is used of to see if more specific information can
help generate better clauses.

context = [(contract + clause_type) /2 ; clause_sim_contr) )

Once we have the strategy for computing the context vector, a language model with
trainable parameters 0 is trained to condition on this representation by minimizing the
negative log-likelihood loss between the predicted and the expected output tokens.

lyen = —log[p(y|context,0)] (10)

4. Experimentation

This section explains our filtering and re-purposing of the LEDGAR dataset, experiments
with encoder models, different values of k for similar contract retrieval, and metrics
chosen for evaluation.

Dataset. We re-purpose the LEDGAR [1] dataset for multilabel clause type identi-
fication for our task. The dataset in its cleaned version consists of 60,540 contracts hav-
ing 846,274 clauses from 12,608 different types. We filter the dataset first to eliminate
all contracts with less than five clauses present, resulting in 34,442 contracts, following
which we select the top 15 clause types for analyzing the generation. The selected clause
types, along with their clause counts and length information, can be seen in Table 1.

Clause type #clauses | mean length | std length
governing laws 15291 103.00 104.80
amendments 12571 127.19 119.26
entire agreements 11023 98.01 64.50
counterparts 10415 80.47 55.49
notices 9726 148.20 105.62
waivers 8945 133.93 107.43
severability 8776 107.72 61.93
expenses 8365 138.66 119.72
successors 8184 116.60 87.98
survival 6102 89.14 84.58
assigns 6099 106.94 82.61
assignments 5976 127.23 95.94
representations 5373 136.16 102.57
warranties 5320 138.06 138.13
taxes 5184 164.87 126.78

Table 1. Distribution of the selected clause types from LEDGAR.

Encoders. Considering the domain-specific nature of English in legal contracts, di-
rectly using transformer encoder models pretrained on generic corpora would not yield
good results, as remarked in [2]. We experimented across three models - LegalBERT
[9] trained on diverse legal texts (LegalBERT-all), LegalBERT trained only on US con-



tracts from EDGAR (LegalBERT-contracts), and a further pretrained version of BERT
[10] on our task-specific data using masked language modeling objective (BERT-mlm).
The further pretrained BERT model was pretrained for two epochs on the clauses in
LEDGAR data. Unlike the previous work, we did not pretrain a ContractBERT model
due to computational limitations and focused on using existing large pretrained models
available. base versions of all the BERT-based models were used in the experiments
performed. To determine the best encoder model for representation, we trained using the
representations from these three models on CONTR_TYPE, CONTR_TYPE_FULLSIM
and CONTR_TYPE _CLAUSESIM strategies, the results of which are shown in Table 2.

Strategy
Encoder CONTR_TYPE CONTR._TYPE _FULLSIM | CONTR_CLAUSESIM
ROUGE-L | BLEU | ROUGE-L BLEU ROUGE-L BLEU
BERT-mlm 38.39 22.46 38.50 22.33 38.33 21.49
LegalBERT-contracts 38.31 21.53 38.89 22.01 37.45 20.63
LegalBERT-all 38.75 22.96 39.28 22.69 38.85 23.33

Table 2. Performance of encoder models on 3 strategies: CONTR_TYPE, CONTR_TYPE_FULLSIM,
CONTR_CLAUSESIM.

LegalBERT trained on diverse legal corpora was consistently observed to outper-
form the other two models and was chosen as the base encoder for all subsequent exper-
iments.

Indexing. An HNSW [11] index of the precomputed contract representations was
built using FAISS [12] indexing library, and a similarity search was performed using L2
distance. Care was taken to eliminate the contract for which the recommended clause is
not in retrieved contracts, and the similar contract representation was averaged on the
rest. Because of this consideration, the minimum value of k£ was kept as 2.

Model. A transformer decoder [13] with three layers was trained from scratch across
all the experiments, following the setting in ClauseRec. A wordpiece tokenizer was
trained on output clauses with a vocabulary size of 8192 tokens. For the final experi-
ments, all the decoder models were trained for 50 epochs using AdamW [14] optimiza-
tion with a learning rate schedule having 25% warmup up to 6e-5 followed by linear
decay. A batch size of 24 with accumulated gradients over three steps was used. Each of
the experiments was performed using 2 RTX 2080 Ti GPUs.

Computing the input representations to the decoder was computationally heavy at
training time, even without flowing gradients through the encoders for backpropagation.
One epoch took approximately 17 hours on a single GPU, most of which was spent
calculating the input representation. This prohibitively high time severely restricted the
number of experiments that could be performed on our computational resources. Hence,
to fasten the decoder training process, we serialized all the representations to be used
prior to the experiment, which reduced the per-epoch per-GPU duration to less than 30
min.

Metrics. Commonly used text generation metrics ROUGE [15] and BLEU [16] were
used to evaluate the system’s performance. ROUGE, a recall-oriented metric, can be used
to indicate how many of the necessary legal phrases are generated in clauses while BLEU
is indicative of the precision of the phrases. Human evaluation was not performed due to
practical constraints in obtaining domain-specific experts for clause comprehension.



5. Results

Clause type ROUGE BLEU
Strategy
/ Overall ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU-1 | BLEU-2 | BLEU
governing laws 38.44 18.89 30.55 14.84 11.46 10.22
ONLY_CONTR amendments 33.25 13.78 24.35 15.78 12.45 12.18
entire agreements 34.26 13.68 25.13 10.88 10.12 9.60
Overall 34.94 15.08 25.52 13.49 12.23 11.32
governing laws 52.92 37.78 46.38 47.90 33.04 31.32
CONTR.TYPE amendments 37.98 20.38 31.72 14.16 8.43 8.01
entire agreements 48.48 28.49 40.78 26.28 15.02 13.53
Overall 47.93 29.20 38.75 39.01 24.26 22.96
governing laws 40.57 22.11 33.48 27.45 15.24 14.70
CONTR amendments 28.62 7.85 19.23 20.13 6.58 5.61
-FULLSIM entire agreements 23.78 5.25 16.12 10.97 241 1.25
Overall 31.45 12.43 23.30 21.06 8.60 8.14
governing laws 54.27 38.07 47.00 50.60 34.27 32.37
CONTR_TYPE amendments 41.35 23.86 34.74 20.72 13.19 12.78
-FULLSIM entire agreements 49.21 29.68 41.57 24.85 15.14 13.94
Overall 48.38 29.72 39.26 39.04 24.39 23.05
governing laws 52.66 36.62 45.89 47.84 33.24 31.66
CONTR_TYPE amendments 40.54 21.42 32.12 24.37 14.63 14.16
-CLAUSESIM | entire agreements 49.79 30.17 42.00 28.21 17.58 16.26
Overall 47.75 29.30 38.85 39.12 24.60 23.33

Table 3. Clause recommendation results across all the strategies tried out shown for top 3 clause types (based
on no. of clauses) and overall metrics calculated on all the types.

To understand the number of retrieved similar contracts needed to build a suitable
context, the experiments were conducted by varying values of k from 2 to 12 in steps
of 2 for CONTR_TYPE_FULLSIM strategy. Not much variance in the text generations
scores was observed, with the BLEU and ROUGE staying more or less around the same
values. The value of k was fixed to 6 for subsequent experiments.

Table 3 shows the metrics across all the strategies for the top 3 clause types (based
on the no. of clauses in the dataset) and the overall scores computed for clauses for all
the 15 clause types. Metrics for individual clause types have not been added due to space
constraints.

From the results, it can be easily observed that similar contracts with clause type
and input contract provide the best contextual representation among the strategies tried.
However, the strategy excluding similar contract representation performs competitively
with the former. In a clause-type agnostic setting, the problem becomes much more dif-
ficult with modest ROUGE scores and dismal BLEU scores indicating a high amount
of hallucinated, irrelevant content. Unlike clause type aware setting, the augmentation
of similar contract information does not help, with an observed degradation in model
output.




6. Analysis

We conduct analysis based on the generation of clauses from the best performing
CONTR_TYPE_FULLSIM strategy.

The performance of clause generation across all the 15 clause types on BLEU and
ROUGE-L scores can be seen in Figure 2. The clause types successors and counterparts
have the highest BLEU and ROUGE-L scores, respectively. It can be observed that the
clause types with generally higher BLEU (governing laws, counterparts, successors)
scores follow suit in ROUGE-L scores, and those performing poorly in terms of BLEU
(amendments, representations, warranties, taxes) have poor ROUGE-L scores.

Metric scores across the 15 clause types

Metric
N BLEU
BN ROUGE-L

Clause type
Figure 2. Variation of BLEU and ROUGE score across all 15 clause types considered using the
CONTR_TYPE_FULLSIM

In Figure 3, we plot the TSNE representations of the actual and generated clauses
for a subset of 1000 randomly sampled clauses from our test set. We use Legal BERT-all
for encoding the clauses, followed by dimensionality reduction to obtain the plot. The
plot showcases the semantic closeness of the actual and generated clauses based on the
closeness of the two distributions.
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Figure 3. TSNE plot comparing the representations obtained for clause generated by the
CONTR_TYPE_FULLSIM strategy against actual clauses



We show examples of a few generated clauses by the model in Figure 4. Based on the
comparison with their expected counterparts, we can appreciate the ability of the model
to generate characteristic clause content based on the type of clause. The exactness of
the clause is not guaranteed here, as the model may generate semantically equivalent
content deemed to be an equally valid clause, such as “this release” v/s “this agreement.”
Tailoring clauses to bear exact phrasal content can entail incorporating keyword-level
information as future work.

entire agreements counterparts
these terms and conditions, the notice, the terms of the plan N
and any applicable, superseding terms of the grantees this release may be signed in counterparts. each counterpart
actual employment agreement constitute the entire agreement will be deemed to be an original, but together all such
between the parties, and supersede all prior agreements and counterparts will be deemed a single agreement.
understandings, relating to the subject matter hereof. Y,
this agreement, together with the plan, contains the entire
agreement between the parties hereto with respect to the this agreement may be executed in counterparts, each of which
subject matter contained herein, and supersedes all prior shall be deemed an original, but all of which together shall
agreements or prior understandings, whether written or oral, constitute one and the same instrument.

between the parties relating to such subject matter.

notices

4 any notice to be given under the terms of this award agreement shall be in writing and addressed to the corporation at its principal office to the attention N
of the secretary, and to the participant at the participants last address reflected on the corporations payroll records. any notice shall be delivered in
person or shall be enclosed in a properly sealed envelope, addressed as aforesaid, registered or certified, and deposited ( postage and registry or
actual certification fee prepaid ) in a post office or branch post office regularly maintained by the united states government. any such notice shall be given only
when received, but if the participant is no longer an eligible person, shall be deemed to have been duly given five business days after the date mailed in
accordance with the foregoing provisions of this section 11. J

any notice to be given under the terms of this agreement to the company shall be addressed to the company in care of the secretary of the company at

the companys principal office, and any notice to be given to participant shall be addressed to participant at the participants last address reflected on the

companys records. by a notice given pursuant to this section 3. 5, either party may hereafter designate a different address for notices to be given to that

party. any notice shall be deemed duly given when sent via email or when sent by certified mail ( return receipt requested ) and deposited ( with postage
prepaid ) in a post office or branch post office regularly maintained by the united states postal service.

Figure 4. Examples of generated clauses in comparison to their expected (actual) counterparts using the
CONTR_TYPE_FULLSIM strategy

One issue we would like to point out in the current generation is the tendency of the
model to typically generate verbose clauses, which might have resulted from optimiza-
tion on the training objective to include as many valid phrases as possible in a clause. As
seen in Table 4, the mean and median lengths of generated clauses are far more than the
actual clauses. The Pearson correlation coefficient between the two length distributions
turned out to be 0.36, indicating a weak correlation. Reducing such extraneous content
in generated clauses will work towards finer clause generation.

‘ mean ‘ std ‘ median
actual 88.05 88.54 54.0
generated | 108.02 | 84.14 84.0

Table 4. Statistics of generated and actual clause lengths

7. Conclusion & Future scope

In this work, we explored the problem of clause recommendation by experimenting with
several strategies for modeling the contextual input for recommendation and observed
the effectiveness of similar contract representation in a clause-type aware setting. While
decent results are obtained in this paradigm, the clause type agnostic setting remains a
complex problem to solve and is more relevant for scaling clause recommendation to a
broader set of clauses. With the considerably large size of contractual documents, fu-



ture work can explore tackling the cold start problem in clause recommendation (i.e.,
recommending clause without prior contract state as context) and allowing for disentan-
gling and customization of named entities in recommended clauses. Future work can also
achieve robustness by handling a more diverse range and a larger number of clause types
compared to the 15 clause topics we focus on.
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