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1 Introduction 

 

 

The Hahn-Banach theorem is presented, with great generality, together with an 

important separation theorem. Then these results are particularized: first for normed 

spaces and then for a subclass of these spaces: the Hilbert spaces. 

The richness of these results is emphasized in the last section where it is shown that 

they permit to obtain very important results in the applications: the Kuhn-Tucker 

theorem, in finite and infinite dimensions, the convex programming main results, so 

important in operations research, finance, management and economics. More works 

around this subject are, for example, [4 − 16].  

 

2 The Hahn-Banach Theorem 

 

Definition 2.1 

Consider a vector space L and its subspace 𝐿0. Suppose that in 𝐿0 it is defined a linear 

functional 𝑓0. A linear functional f defined in the whole space L is an extension of the 

functional 𝑓0 if and only if  𝑓(𝑥) = 𝑓
0
(𝑥),

∀

𝑥 ∈ 𝐿0
. ∎ 
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Theorem 2.1 (Hahn-Banach)   

 Be p a positively homogeneous convex functional, defined in a real vector space L, and 

𝐿0 an L subspace. If 𝑓0 is a linear functional defined in   𝐿0, fulfilling the condition 

                                           𝑓0(𝑥) ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿0
   (2.1), 

there is an extension f of 𝑓0 defined in L, linear, and such that f(x)≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿
. 

 Demonstration: 

Begin demonstrating that if 𝐿0 ≠ 𝐿,  there is an extension of  𝑓0 ,  𝑓′  defined in a 

subspace 𝐿′ , such that 𝐿 ⊂ 𝐿′, in order to fulfill the condition (2.1). 

Be  𝑧 ∈ 𝐿 − 𝐿0  ; if 𝐿′  is the subspace generated by 𝐿0  and z, each point of 𝐿′  is 

expressed in the form  𝑡𝑧 + 𝑥 , being  𝑥 ∈ 𝐿0 . If 𝑓′  is an extension (linear) of the 

functional 𝑓0 to 𝐿′, it will happen that 𝑓′(𝑡𝑧 + 𝑥) = 𝑡𝑓′(𝑧) + 𝑓0(𝑥) or, making 𝑓′(𝑧) =

𝑐, 𝑓′(𝑡𝑧 + 𝑥) = 𝑡𝑐 + 𝑓0(𝑥). Now choose c, fulfilling the condition (2.1) in 𝐿′ , that is: in 

order that the inequality 𝑓0(𝑥) + 𝑡𝑐 ≤ 𝑝(𝑥 + 𝑡𝑧), for any 𝑥 ∈ 𝐿0 and any real number t, 

is accomplished. For 𝑡 > 0 this inequality is equivalent to the condition 𝑓0 (
𝑥

𝑡
) + 𝑐 ≤

𝑝 (
𝑥

𝑡
+ 𝑧) or 

𝑐 ≤  𝑝 (
𝑥

𝑡
+ 𝑧) − 𝑓0 (

𝑥

𝑡
)         (2.2). 

For 𝑡 < 0 it is equivalent to the condition 𝑓0 (
𝑥

𝑡
) + 𝑐 ≥ −𝑝 (−

𝑥

𝑡
− 𝑧), or 

𝑐 ≥ − 𝑝 (−
𝑥

𝑡
− 𝑧) − 𝑓0 (

𝑥

𝑡
)        (2.3). 

Now it will be demonstrated that there is always c satisfying simultaneously the 

conditions (2.2) and (2.3). 

 Considering any 𝑦 ′and 𝑦 ′′belonging to 𝐿0, 

                 −𝑓0(𝑦′′) + 𝑝(𝑦′′ + 𝑧) ≥ −𝑓0(𝑦′) − 𝑝(−𝑦′ − 𝑧)             (2.4),  

as 𝑓0(𝑦′′) − 𝑓0(𝑦′) ≤ 𝑝(𝑦′′ − 𝑦′) = 𝑝((𝑦′′ + 𝑧) − (𝑦′ + 𝑧)) ≤ 𝑝(𝑦′′ + 𝑧) +

𝑝(−𝑦′ − 𝑧).  Be 𝑐′′ =  inf
𝑦′′

(−𝑓0(𝑦′′) + 𝑝(𝑦′′ + 𝑧))  and  𝑐′ =  sup
𝑦′

(−𝑓0(𝑦′) −

𝑝(−𝑦′ − 𝑧)). As 𝑦′and 𝑦′′ are arbitrary, it results from (2.4) that 𝑐′′ ≥ 𝑐′. Choosing c in 

order that 𝑐′′ ≥ 𝑐 ≥ 𝑐′,  it is defined the functional  𝑓′  on  𝐿′  through the 

formula  𝑓′(𝑡𝑧 + 𝑥) = 𝑡𝑐 +  𝑓0(𝑥). This functional satisfies the condition (2.1). So any 

functional 𝑓0 defined in a subspace 𝐿0 ⊂ 𝐿 and subject in 𝐿0 to the condition (2.1), may 

be extended to a subspace  𝐿′ . The extension 𝑓′  satisfies the condition𝑓′(𝑥) ≤ 𝑝(𝑥),



∀
𝑥 ∈ 𝐿′. If L has an algebraic numerable base (𝑥1, 𝑥2, … , 𝑥𝑛, … ) the functional in L is 

built by finite induction, considering the increasing sequence of subspaces 𝐿(1) =

(𝐿0, 𝑥1), 𝐿(2) = (𝐿(1), 𝑥2), … designating (𝐿(𝑘), 𝑥𝑘+1) the L subspace generated by 𝐿(𝑘) 

and  𝑥𝑘+1. In the general case, that is, when L has not an algebraic numerable base, it is 

mandatory to use a transfinite induction process, for instance the Haudsdorf maximal 

chain theorem. 

 So call ℱ the set of the whole pairs(𝐿′, 𝑓′), at which 𝐿′ is an L subspace that contains 𝐿0 

and 𝑓′ is an extension of  𝑓0 to 𝐿′ that fulfills (2.1). Order partially ℱso that (𝐿′, 𝑓′) ≤

(𝐿′′, 𝑓′′) if and only if 𝐿′ ⊂ 𝐿′′and 𝑓|𝐿′
′′ = 𝑓′. By the Haudsdorf maximal chain theorem, 

there is a chain, that is: a subset of ℱ  totally ordered, maximal, that is: not strictly 

contained in another chain. Call it Ω. Be Φ  the family of the whole 𝐿′  such that 

(𝐿′, 𝑓′) ∈ Ω. Φ is totally ordered by the sets inclusion; so, the union Τ of the whole 

elements of Φ is a L subspace. If 𝑥 ∈  Τ then 𝑥 ∈ 𝐿′ for some  𝐿′ ∈  Φ ; define �̃�(𝑥) =

𝑓′(𝑥), where 𝑓′is the extension of 𝑓0 that is in the pair (𝐿′, 𝑓′)- the definition of 𝑓 is 

obviously coherent. It is easy to check that Τ = 𝐿 and that 𝑓 = 𝑓′ satisfies the condition 

(2.1).∎ 

Then it will be presented the Hahn-Banach theorem complex case, the Hahn 

contribution to the theorem.  

Theorem 2.2 (Hahn-Banach)  

Be p an homogeneous convex functional defined in a vector space L and 𝑓0 a linear 

functional, defined in a subspace 𝐿0 ⊂ 𝐿, satisfying the condition|𝑓0(𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈

𝐿0. Then, there is a linear functional f defined in L, satisfying the conditions 

|𝑓(𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿; 𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈ 𝐿0. 

Demonstration: 

Call 𝐿𝑅 and 𝐿0𝑅 the real vector spaces underlying, respectively, the spaces L and 𝐿0 . 

Clearly, p is an homogeneous convex functional in 𝐿𝑅 and  𝑓0𝑅 (𝑥) = 𝑅𝑒𝑓0(𝑥) a real 

linear functional in 𝐿0𝑅 fulfilling the condition |𝑓0𝑅 (𝑥)| ≤ 𝑝(𝑥) and so, 𝑓0𝑅 (𝑥) ≤ 𝑝(𝑥). 

Then, owing to Theorem 2.1, there is a real linear functional 𝑓𝑅, defined in the whole 𝐿𝑅 

space, that satisfies the conditions  𝑓𝑅(𝑥) ≤  𝑝(𝑥), 𝑥 ∈ 𝐿𝑅;  𝑓𝑅(𝑥) = 𝑓0𝑅 (𝑥), 𝑥 ∈ 𝐿0𝑅 . 

But, −𝑓𝑅(𝑥) = 𝑓𝑅(−𝑥) ≤ 𝑝(−𝑥) = 𝑝(𝑥), and 

                                      |𝑓𝑅 (𝑥)| ≤ 𝑝(𝑥), 𝑥 ∈ 𝐿𝑅                   (2.5). 

Define in L the functional f making 𝑓(𝑥) = 𝑓𝑅 (𝑥) − 𝑖𝑓𝑅 (𝑖𝑥).  It is immediate to 

conclude that f is a complex linear functional in L such that  𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈

𝐿0; 𝑅𝑒𝑓(𝑥) = 𝑓𝑅 (𝑥), 𝑥 ∈ 𝐿. 

             It is only missing to demonstrate that |𝑓(𝑥)| ≤ 𝑝(𝑥),
∀

𝑥 ∈ 𝐿
. 



Proceed by absurd: suppose that there is 𝑥0 ∈ 𝐿 such that |𝑓(𝑥0)| > 𝑝(𝑥0). So, 𝑓(𝑥0) =

𝜌𝑒𝑖𝜑, 𝜌 > 0,  and making  𝑦0 = 𝑒−𝑖𝜑𝑥0 , it would happen that 𝑓𝑅 (𝑦0) =

𝑅𝑒[𝑒−𝑖𝜑𝑓(𝑥0  )] = 𝜌 > 𝑝(𝑥0) = 𝑝(𝑦0) that is conflicting to (2.5).∎  

  

 

3 Vector Spaces Convex Parts Separation  

 

The next theorem, a very useful consequence of the Hahn-Banach theorem, is about 

vector space convex parts separation. Beginning with 

 

Definition 3.1 

Be M and N two subsets of a real vector space L. A linear functional f defined in L 

separates M and N if and only if there is a number c such that 𝑓(𝑥) ≥ 𝑐, for 𝑥 ∈

𝑀 and 𝑓(𝑥) ≤ 𝑐, for 𝑥 ∈ 𝑁  that is, if inf
𝑥∈𝑀

𝑓(𝑥) ≥ sup
𝑥∈𝑁

𝑓(𝑥).  A functional f separates 

strictly the sets M and N if and only if inf
𝑥∈𝑀

𝑓(𝑥) > sup
𝑥∈𝑁

𝑓(𝑥) . ∎ 

Theorem 3.1 (Separation) 

Suppose that M and N are two convex subsets of a vector space L such that the kernel of 

at least one of them, for instance M, is non-empty and does not intersect the other set; 

so, there is a linear functional non-null on L that separates M and N. 

Demonstration: 

Less than on translation, it is supposable that the point 0 belongs to the kernel of M, 

which is designated �̇�.  So, given 𝑦0 ∈ 𝑁, −𝑦0 belongs to the kernel of  𝑀 − 𝑁 and 0 to 

the kernel of 𝑀 − 𝑁 + 𝑦0. As �̇� ∩ 𝑁 = ∅, by hypothesis, 0 does not belong to the 

kernel of  𝑀 − 𝑁 and 𝑦0 does not belong to the one of 𝑀 − 𝑁 + 𝑦0. Put 𝐾 =  𝑀 − 𝑁 +

𝑦0 and be p the Minkovsky functional of 𝐾.̇  So 𝑝(𝑦0) ≥ 1, since 𝑦0 ∉ 𝐾.̇  Define, now, 

the linear functional 𝑓0(𝛼𝑦0) = 𝛼𝑝(𝑦0).  Note that 𝑓0  is defined in a space with 

dimension1, constituted by elements 𝛼𝑦0, and it is such that 𝑓0(𝛼𝑦0) ≤ 𝑝(𝛼𝑦0). In fact, 

𝑝(𝛼𝑦0) =  𝛼𝑝(𝑦0), when  𝛼 ≥ 0 and 𝑓0(𝛼𝑦0) = 𝛼𝑓0(𝑦0) < 0 < 𝑝(𝛼𝑦0),  when 𝛼 > 0. 

Under these conditions, after the Hahn-Banach theorem, it is possible to state the 

existence of linear functional f , defined in L, that extends 𝑓0, and such that 𝑓(𝑦) ≤

𝑝(𝑦),
∀

𝑦 ∈ 𝐿
. Then it results 𝑓(𝑦) ≤ 1,

∀
𝑦 ∈ 𝐾

   and   𝑓(𝑦0) ≥ 1. In consequence: 

 -f separates the sets K and {𝑦0}, that is 

 - f separates the sets M-N and {𝑦0}, that is 

 -f separates the sets M and N.∎ 

 



4 The Hahn-Banach Theorem for Normed Spaces 

Definition 4.1 

Consider a continuous linear functional f in a normed space E. It is called f norm, and 

designated  ‖𝑓‖ :  ‖𝑓‖ = sup
||𝑥||≤1

|𝑓(𝑥)|  that is: the supreme of the values assumed by 

|𝑓(𝑥)| in the E unitary ball.∎  

 Observation: 

 -The continuous linear functionals class, with the norm above defined, is a normed 

vector space, called the E dual space, designated 𝐸′. 

The Theorem 2.1 in normed spaces is: 

Theorem 4.1 (Hahn-Banach) 

Call L a subspace of a real normed space E. And 𝑓0 a bounded linear functional in L. So, 

there is a linear functional defined in E, extension of 𝑓0, such that ‖𝑓0‖𝐿, = ‖𝑓‖𝐸, . 

Demonstration: 

It is enough to think in the functional 𝐾 satisfying 𝐾‖𝑥‖ = ‖𝑓0‖𝐿,. As it is convex and 

positively homogeneous, it is possible to put 𝑝(𝑥) = 𝐾‖𝑥‖ and to apply Theorem 2.1.∎ 

Observation: 

 -To see an interesting geometric interpretation of this theorem, consider the equation 

‖𝑓0(𝑥)‖ = 1 . It defines, in L, an hiperplane at distance   
1

‖𝑓0‖
 of 0. Considering the 

𝑓0extension f, with norm conservation, it is obtained an hiperplane in E, that contains 

the hiperplane considered behind in L, at the same distance from the origin. 

The Theorem 2.2 in normed spaces is: 

Theorem 4.2 (Hahn-Banach) 

 Be E a complex normed space and 𝑓0  a bounded linear functional defined in a 

subspace 𝐿 ⊂ 𝐸 . So, there is a bounded linear functional f, defined in E, such that 

𝑓(𝑥) = 𝑓0(𝑥), 𝑥 ∈ 𝐿; ‖𝑓‖𝐸, = ‖𝑓0‖𝐿, . ∎ 

Two separation theorems, important consequences of the Hahn-Banach theorem, 

applied to the normed vector spaces, are so presented: 

Theorem 4.3 (Separation) 

Consider two convex sets A and B in a normed space E. If one of them, for instance A, 

has at least on interior point and (𝑖𝑛𝑡𝐴) ∩ 𝐵 = ∅, there is a continuous linear functional 

non-null that separates the sets A and B.∎ 



 Theorem 4.4 (Separation) 

Consider a closed convex set A, in a normed space E, and a point 𝑥0 ∈ 𝐸, not belonging 

to A. So, there is a continuous linear functional, non-null, that separates strictly {𝑥0} and 

A.∎  

5 Separation Theorems in Hilbert Spaces 

The separation theorems, seen in the former section, are effective in Hilbert spaces. But, 

due to the Riesz representation theorem, surely the most famous representation theorem: 

Theorem 5.1 (Riesz representation) 

In a Hilbert space 𝐻, every continuous linear functional 𝑓(∙) may be represented in the 

form 𝑓(𝑥) = [𝑥, �̃�] where �̃� =
𝑓(𝑞)̅̅ ̅̅ ̅̅

[𝑞,𝑞]
𝑞. ∎ 

they may be formulated in the following way (from now on, only real Hilbert spaces 

will be considered): 

Theorem 5.2 (Separation) 

Consider two convex sets A and B in a Hilbert space H. If one of them, for instance A, 

has at least one interior point and (𝑖𝑛𝑡𝐴) ∩ 𝐵 = ∅, there is a non-null vector v such that 

sup
𝑥∈𝐴

[𝑣, 𝑥] ≤ inf
𝑦∈𝐵

[𝑣, 𝑦] . ∎ 

Theorem 5.3 (Separation) 

Consider a closed convex set A, in a Hilbert space H, and a point 𝑥0 ∈ 𝐻, not belonging 

to A. So, there is a non-null vector v, such that [𝑣, 𝑥0] < inf
𝑥∈𝐴

[𝑣, 𝑥]. ∎ 

Another separation theorem: 

Theorem 5.4 (Separation) 

Two closed convex subsets A and B, in a Hilbert space, at finite distance, that is: such 

that: inf
𝑥∈𝐴,𝑦∈𝐵

‖𝑥 − 𝑦‖ = 𝑑 > 0 may be strictly separated: inf
𝑥∈𝐴

[𝑣, 𝑥] > sup
𝑦∈𝐵

[𝑣, 𝑦] . ∎ 

 It is also possible to establish that: 

Theorem 5.5 (Separation) 

Being H a finite dimension Hilbert space, if A and B are disjoint and non-empty convex 

sets they always may be separated.∎ 

 

6 Convex Programming 



A class of convex programming problems, at which it is intended to minimize convex 

functionals subject to convex inequalities, is outlined now.  Begin presenting a basic 

result that characterizes the minimum point of a convex functional subject to convex 

inequalities. Note that it is not necessary to impose any continuity conditions. Only 

geometric conditions are important. 

 Theorem 6.1 (Kuhn-Tucker) 

 Be f(x), 𝑓𝑖(𝑥), 𝑖 = 1, … , 𝑛, convex functionals defined in a convex subset C of a Hilbert 

space. Consider the problem min
𝑥∈𝐶

𝑓(𝑥) , 𝑠𝑢𝑏. : 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, … Be 𝑥0 a point where 

the minimum, supposed finite, is reached. Suppose also that for each vector u in 𝐸𝑛, 

Euclidean space with dimension n, non-null and such that 𝑢𝑘 ≥ 0, there is a point x in C 

such that ∑ 𝑢𝑘𝑓𝑘(𝑥) < 0,1 designating 𝑢𝑘 the components of u. So, 

i) There is a vector v, with non-negative components {𝑣𝑘}, such that  

min
𝑥∈𝐶

{𝑓(𝑥) + ∑ 𝑣𝑘𝑓𝑘(𝑥)

𝑛

1

} = 𝑓(𝑥0) + ∑ 𝑣𝑘𝑓𝑘(𝑥0) = 𝑓(𝑥0)              (6.1)

𝑛

1

, 

 

ii) For every vector u in 𝐸𝑛 with non-negative components, that is: belonging to 

the positive cone of 𝐸𝑛 , 

𝑓(𝑥) + ∑ 𝑣𝑘𝑓𝑘(𝑥)

𝑛

1

≥ 𝑓(𝑥0) + ∑ 𝑣𝑘𝑓𝑘(𝑥0) ≥ 𝑓(𝑥0) + ∑ 𝑢𝑘𝑓𝑘(𝑥0)   

𝑛

1

(6.2).

𝑛

1

∎ 

 Corollary 6.1 (Lagrange duality) 

 In the conditions of Theorem 6.1 𝑓(𝑥0) = sup
𝑢≥0

inf
𝑥∈𝐶

𝑓(𝑥) + ∑ 𝑢𝑘𝑓𝑘(𝑥). ∎   𝑛
1  

 Observation: 

 -This corollary is useful supplying a process to determine the problem optimal solution, 

 -If the whole 𝑣𝑘 in expression (6.2) are positive, 𝑥0 is a point that belongs to the border 

of the convex set defined by the inequalities, 

-If the whole 𝑣𝑘 are zero, the inequalities do not influence the problem, that is: the 

minimum is equal to the one of the restrictions free problem. 

Considering non-finite inequalities:  

Theorem 6.2 (Kuhn-Tucker in infinite dimension) 

Be C a convex subset of a Hilbert space H and f (x) a real convex functional defined in 

C. Be I a Hilbert space with a closed convex cone 𝓅, with non-empty interior, and F(x) 

a convex transformation from H to I (convex in relation to the order introduced by cone 



𝓅 : if 𝑥, 𝑦 ∈ 𝓅, 𝑥 ≥ 𝑦 𝑖𝑓 𝑥 − 𝑦 ∈ 𝓅). Be 𝑥0  a f (x) minimizing in C subjected to the 

inequality 𝐹(𝑥) ≤ 0.Consider 𝓅∗ = {𝑥: [𝑥, 𝑝] ≥ 0,
∀

𝑥 ∈ 𝓅} (dual cone). Admit that given 

any 𝑢 ∈ 𝓅∗ it is possible to determine x in C such that [𝑢, 𝐹(𝑥)] < 0. So, there is an 

element v in the dual cone  𝓅∗ , such that for x in C 𝑓(𝑥) + [𝑣, 𝐹(𝑥)] ≥ 𝑓(𝑥0) +

[𝑣, 𝐹(𝑥0)] ≥ 𝑓(𝑥0) + [𝑢, 𝐹(𝑥0)], being u any element of 𝓅∗. ∎ 

Corollary 6.2 (Lagrange duality in infinite dimension) 

 𝑓(𝑥0) = sup
𝑣∈𝓅∗

inf
𝑥∈𝐶

( 𝑓(𝑥) + [𝑣, 𝐹(𝑥)]) in the conditions of Theorem 6.2.∎ 

7 Conclusions 

The Hahn-Banach theorem was presented with great generality, real and complex 

version, followed consequently by an important separation theorem.  

These results were specified for normed spaces and then for a subclass of these spaces: 

the Hilbert spaces. That is: they were rephrased for Hilbert spaces using the Riesz 

representation theorem. 

Examples of the presented results fruitfulness are patent in the former section, where it 

is shown that they permit to obtain important results, for the applications, as the Kuhn-

Tucker theorem in finite and infinite dimension. Now the basic mathematical structures 

considered were real Hilbert spaces. The problems studied were convex optimization 

problems in which, as it is well known, the separation theorems are a key tool. 

 The Kuhn-Tucker theorem is the convex programming main result so important in 

operations research, finance, management and economics. For instance, it is remarkable, 

among others, its application in portfolios optimization through quadratic programming. 

Really, due the particular form assumed by the Kuhn-Tucker conditions, the quadratic 

programming problems may be solved with the simplex algorithm. This is the so called 

Frank and Wolfe method, see [5]. 

 

References 

 

[1] Aubin, J. P.: Applied Functional Analysis. John Wiley & Sons Inc., New York, 

1979. 

[2] Balakrishnan, A. V.: Applied Functional Analysis. Springer-Verlag New York 

Inc., New York, 1981. 

[3] Brézis, H. : Analyse Fonctionelle (Théorie et Applications). Masson, Paris, 

1983. 

[4] Ferreira, M. A. M.: Aplicação dos Teoremas de Separação na Programação 

Convexa em Espaços de Hilbert. Revista de Gestão, I (2), pp 41-44, 1986. 

[5] Ferreira, M. A. M. and Amaral, I.:Programação Matemática. Edições Sílabo, 

Lisboa, 1995. 



[6] Ferreira, M. A. M., Andrade, M. and Matos, M. C.: Separation Theorems in 

Hilbert Spaces Convex Programming. Journal of Mathematics and Technology, 1 

(5), pp 20-27, 2010. 

[7] Ferreira, M. A. M. and Andrade, M.: Management Optimization Problems. 

International Journal of Academic Research, Vol. 3 (2, Part III), pp 647-654, 2011. 

[8] Ferreira, M. A. M. and Andrade, M.: Hahn-Banach Theorem for Normed 

Spaces. International Journal of Academic Research, 3 (4, Part I), pp 13-16, 2011a. 

[9] Ferreira, M. A. M. and Andrade, M.: Riesz Representation Theorem in Hilbert 

Spaces Separation Theorems. International Journal of Academic Research, 3 (6, II 

Part), pp 302-304, 2011b. 

[10] Ferreira, M. A. M. and Andrade, M.: Separation of a Vector Space Convex 

Parts. International Journal of Academic Research, 4 (2), pp 5-8, 2012. 

[11] Ferreira, M. A. M. and Filipe, J. A.: Convex Sets Strict Separation in Hilbert 

Spaces. Applied Mathematical Sciences, 8 (61-64), 3155-3160, 2014. 

http://dx.doi.org/10.12988/ams.2014.44257 

[12] Ferreira, M. A. M. and Matos, M. C. P.:Convex Sets Strict Separation in the 

Minimax Theorem. Applied Mathematical Sciences, 8 (33-36), 1781-1787, 2014. 

http://dx.doi.org/10.12988/ams.2014.4271 

[13] Ferreira, M. A. M., Andrade, M. and Filipe, J. A.: Kuhn-Tucker’s Theorem for 

inequalities in Infinite Dimension. Journal of Mathematics and Technology, 3 (1), 

pp 57-60, 2012. 

[14] Ferreira, M. A. M., Andrade, M. and Filipe, J. A.: Weak Convergence in 

Hilbert Spaces. International Journal of Academic Research, 4 (4), pp 34-36, 2012. 

[15]Ferreira, M. A. M., Andrade, M. and Filipe, J. A.: The Concept of Weak 

Convergence in Hilbert Spaces.12th Conference on Applied Mathematics, 

APLIMAT 2013, Proceedings. 12th Conference on Applied Mathematics, 

APLIMAT 2013; Bratislava; Slovakia; 5 February 2013 through 7 February 2013. 

[16] Ferreira, M. A. M., Andrade, M, Matos, M. C., Filipe, J. A. and Coelho, M.: 

Minimax Theorem and Nash Equilibrium. International Journal of Latest Trends in 

Finance & Economic Sciences, 2(1), pp 36-40, 2012. 

[17] Kakutani, S.: A Generalization of Brouwer’s Fixed Point Theorem. Duke 

Mathematics Journal, 8, 1941. 

[18] Kantorovich, L. V. and Akilov, G. P.: Functional Analysis. Pergamon Press, 

Oxford, 1982. 

[19] Kolmogorov, A. N. and Fomin, S. V.: Elementos da Teoria das Funções e de 

Análise Funcional. Editora Mir, 1982. 

[20] Matos, M. C. and Ferreira, M. A. M.: Game Representation -Code Form. 

Lecture Notes in Economics and Mathematical Systems; 567, pp 321-334, 2006. 

[21] Matos, M. C., Ferreira, M. A. M. and Andrade, M.: Code Form Game. 

International Journal of Academic Research, 2(1), pp 135-141, 2010. 

[22] Matos, M. C., Ferreira, M. A. M., Filipe, J. A. and Coelho, M.: Prisonner`s 

Dilemma: Cooperation or Treason?. PJQM-Portuguese Journal of Quantitative 

Methods, Vol. 1(1),  pp 43-52, 2010. 

[23] Nash, J.: Non-Cooperative Games. Annals of Mathematics, 54, 1951. 

[24] Neumann, J. von and Morgenstern, O.: Theory of Games and Economic 

Behavior. Princeton University Press, Princeton, New Jersey, 1947. 

[25] Neumann, J. von and Morgenstern, O.: Theory of Games and Economic 

Behavior. John Wiley & Sons Inc., New York, 1967. 

[26] Royden, H. L.: Real Analysis. Mac Milan Publishing Co. Inc, New York, 1968. 

 

http://dx.doi.org/10.12988/ams.2014.44257

