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Abstract
In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its
zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it
to be the most important unsolved problem in pure mathematics. It is one of the seven Millennium
Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first
correct solution. We prove the Riemann hypothesis using the Complexity Theory. Number theory
is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued
functions. The Goldbach’s conjecture is one of the most important and unsolved problems in
number theory. Nowadays, it is one of the open problems of Hilbert and Landau. We show the
Goldbach’s conjecture is true using the Complexity Theory as well. An important complexity class
is 1NSPACE(S(n)) for some S(n). These mathematical proofs are based on if some unary language
belongs to 1NSPACE(S(log n)), then the binary version of that language belongs to 1NSPACE(S(n))
and vice versa.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Regular languages; Theory of computation → Problems, reductions and completeness
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1 Introduction

1.1 The Riemann Hypothesis
In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part 1

2 . Many
consider it to be the most important unsolved problem in pure mathematics [16]. It is of
great interest in number theory because it implies results about the distribution of prime
numbers [16]. It was proposed by Bernhard Riemann (1859), after whom it is named [16].
In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis, the
inequality:∑

d|n

d < eγ × n× log logn

holds for all sufficiently large n, where γ ≈ 0.57721 is the Euler’s constant and d|n means that
the natural number d divides n [11]. The largest known value that violates the inequality
is n = 5040. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and
only if the Riemann hypothesis is true [11]. Using this inequality, we prove the Riemann
hypothesis is true.

1.2 The Goldbach’s conjecture
The Goldbach’s original conjecture, written on 7 June 1742 in a letter to Leonhard Euler,
states: “... at least it seems that every number that is greater than 2 is the sum of three
primes” [6]. This is known as the ternary Goldbach conjecture. We call a prime as a natural
number that is greater than 1 and has exactly two divisors, 1 and the number itself [18].
However, the mathematician Christian Goldbach considered 1 as a prime number. Euler

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com


2 The Complexity of Mathematics

replied in a letter dated 30 June 1742 the following statement: “Every even integer greater
than 2 can be written as the sum of two primes” [6]. This is known as the strong Goldbach
conjecture.

Using Vinogradov’s method, Chudakov, Van der Corput, and Estermann showed that
almost all even numbers can be written as the sum of two primes (in the sense that the
fraction of even numbers which can be so written tends towards 1) [1]. In 1973, Chen showed
that every sufficiently large even number can be written as the sum of some prime number
and a semi-prime [4]. The strong Goldbach conjecture implies the conjecture that all odd
numbers greater than 7 are the sum of three odd primes, which is known today as the
weak Goldbach conjecture [6]. In 2012 and 2013, Peruvian mathematician Harald Helfgott
published a pair of papers claiming to improve major and minor arc estimates sufficiently
to unconditionally prove the weak Goldbach conjecture [9], [10]. In this work, we prove the
strong Goldbach’s conjecture is true.

2 Theory and Methods

We use o-notation to denote an upper bound that is not asymptotically tight. We formally
define o(g(n)) as the set

o(g(n)) = {f(n) : for any positive constant c > 0, there exists a constant

n0 > 0 such that 0 ≤ f(n) < c× g(n) for all n ≥ n0}.

For example, 2 × n = o(n2), but 2 × n2 6= o(n2) [5]. In theoretical computer science and
formal language theory, a regular language is a formal language that can be expressed using
a regular expression [3]. The complexity class that contains all the regular languages is REG.
The two-way Turing machines may move their head on the input tape into two-way (left and
right directions) while the one-way Turing machines are not allowed to move the head on
the input tape to the left [13]. The complexity class 1NSPACE(f(n)) is the set of decision
problems that can be solved by a nondeterministic one-way Turing machine M , using space
f(n), where n is the length of the input [13].

3 Results

3.1 The Complexity of PRIMES

The checking whether a number is prime can be decided in polynomial time by a deterministic
Turing machine [2]. This problem is known as PRIMES [2].

I Theorem 1. PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(logn).

Proof. If we assume that PRIMES ∈ 1NSPACE(o(logn)), then the unary version should
be regular. Certainly, the standard space translation between the unary and binary lan-
guages actually works for nondeterministic machines with small space [7]. This means
that if some language belongs to 1NSPACE(S(n)), then the unary version of that language
belongs to 1NSPACE(S(logn)) [7]. In this way, when PRIMES ∈ 1NSPACE(o(logn)),
then the unary version should be in 1NSPACE(o(log logn)) and we know that REG =
1NSPACE(o(log logn)) [13], [7]. Since we know that the unary version of PRIMES is non-
regular [12], then we obtain that PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(logn). J
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3.2 The Riemann hypothesis
I Definition 2. We define the Robin’s language LR as follows:

LR = {0n#0m1#0m2 : n ∈ N ∧ n > 5040 ∧m1 = (σ(n)− n) ∧m2 = deγ × n× log logne}

where # is the blank symbol and σ(n) =
∑
d|n d [11].

I Theorem 3. If the Riemann hypothesis is true, then the Robin’s language LR is non-regular.

Proof. We can easily prove this using the Pumping lemma for regular languages [15]. J

I Definition 4. We define the verification Robin’s language LV R as follows:

LV R = {(n,m1,m2) : such that 0n#0m1#0m2 ∈ LR}.

I Lemma 5. The Robin’s language LR is the unary representation of the verification Robin’s
language LV R.

Proof. This is trivially true from the definition of these languages. J

I Theorem 6. LV R /∈ 1NSPACE(S(n)) for all S(n) = o(logn).

Proof. The language LV R cannot be computed in 1NSPACE(S(n)) for some S(n) = o(logn),
because of this would imply that PRIMES belongs to 1NSPACE(S(n)) for some S(n) =
o(logn) as well. Certainly if this could be true, then we can find m2 = deγ × p× log log pe
and check whether the triple (p, 1,m2) is an element of LV R and thus, we could decide
whether p is prime. Indeed, a number p is prime if and only if the sum of its divisors
is p + 1 [8]. This could be nondeterministically done on input p just choosing arbitrarily
another number m2, but instead of putting in the work tapes, then this will put with
p and 1 in the output tape just using constant space in one-way. We are able to do
this, because of m2 should be polynomially bounded by the input p. After that, we use
the space composition reduction just using the previous output of p, 1 and some integer
m2 into a new nondeterministic Turing machine that would decide whether the instance
belongs to LV R in 1NSPACE(S(n)) for some S(n) = o(logn) using (p, 1,m2) as input [14].
Since 1NSPACE(S(n)) for some S(n) = o(logn) is closed under 1NSPACE-reductions with
constant space, then the whole computation could be done in 1NSPACE(S(n)) for some
S(n) = o(logn). However, this would be a contradiction according to Theorem 1, since the
language PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(logn). Consequently, we obtain
that LV R /∈ 1NSPACE(S(n)) for all S(n) = o(logn). J

I Theorem 7. The Riemann hypothesis is true.

Proof. If the Riemann hypothesis is false, then LR ∈ REG or LR is non-regular and
its complement is infinite, since every finite set is regular and REG is also closed under
complement [14]. Let’s assume the possibility of LR ∈ REG. Nevertheless, this implies that
the exponentially more succinct version of LR, that is LV R, should be in 1NSPACE(S(n))
for some S(n) = o(logn), because of REG = 1NSPACE(o(log logn)) and the same algorithm
that decides LR within 1NSPACE(o(log logn)) could be easily transformed into a slightly
modified algorithm that decides LV R within 1NSPACE(S(n)) for some S(n) = o(logn)
[13], [7]. Actually, LR is the unary version of LV R due to Lemma 5. As we mentioned
before, the standard space translation between the unary and binary languages actually
works for nondeterministic machines with small space [7]. This means that if some unary
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language belongs to 1NSPACE(S(logn)), then the binary version of that language belongs to
1NSPACE(S(n)) [7]. In this way, we obtain that LR /∈ REG, since it is not possible that LR ∈
1NSPACE(o(log logn)) under the result of LV R /∈ 1NSPACE(S(n)) for all S(n) = o(logn) as
a consequence of Theorem 6. Consequently, we obtain a contradiction just assuming that the
Riemann hypothesis is false and LR ∈ REG. Hence, we obtain that the Riemann hypothesis
is true or the Robin’s inequality has an infinite number of counterexamples. However, the
asymptotic growth rate of the sigma function can be expressed by [11]:

lim sup
n→∞

σ(n)
n× log logn = eγ

where lim sup is the limit superior and σ(n) =
∑
d|n d. In this way, if the Robin’s inequality

has an infinite number of counterexamples, then the previous limit superior should be false.
Since this is a previous checked result, then we have the Riemann hypothesis is true as the
remaining only option. J

3.3 The Goldbach’s conjecture
I Definition 8. We define the Goldbach’s language LG as follows:

LG = {12×n0p0q : n ∈ N ∧ n > 2 ∧ p and q are odd primes ∧ 2× n = p+ q}.

I Theorem 9. If the strong Goldbach’s conjecture is true, then the Goldbach’s language LG
is non-regular.

Proof. If the strong Goldbach’s conjecture is true, then the Goldbach’s language LG is equal
to the another language L′ defined as follows:

L′ = {12×n02×n : n ∈ N ∧ n > 2}.

L′ is a well-known non-regular language using the Pumping lemma for regular languages
[17], [15]. J

I Definition 10. We define the verification Goldbach’s language LV G as follows:

LV G = {(2× n, p, q) : such that 12×n0p0q ∈ LG}.

I Definition 11. We define the Goldbach’s language with separator LSG as follows:

LSG = {02×n#0p#0q : such that 12×n0p0q ∈ LG}

where # is the blank symbol.

I Lemma 12. The Goldbach’s language with separator LSG is the unary representation of
the verification Goldbach’s language LV G.

Proof. This is trivially true from the definition of these languages. J

I Theorem 13. LV G /∈ 1NSPACE(S(n)) for all S(n) = o(logn).

Proof. LV G cannot be computed in 1NSPACE(S(n)) for some S(n) = o(logn), because of
this would imply that PRIMES belongs to 1NSPACE(S(n)) for some S(n) = o(logn) as
well. Certainly, if this could be true, then we can take any number p and check whether
p is prime. This could be nondeterministically done on input p just deterministically
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generating the numbers p+ 3 and 3 and nondeterministically choosing an arbitrary number
q, but instead of putting in the work tapes, then we will put them to the output tape
just using constant space in one-way. After that, we use the space composition reduction
just using the previous output of (p+ 3, 3, q) as input into a new nondeterministic Turing
machine that would decide whether the instance belongs to LV G in 1NSPACE(S(n)) for
some S(n) = o(logn). Indeed, the nondeterministic one-way computation will accept this
input if and only if the nondeterministic generated number q is equal to p and p is prime.
In this reduction, we assume the initial string p has a binary representation with the least
significant bit in the first position within the input tape from left to right. In this way,
it will be possible to deterministically generate p + 3 in one-way using constant space.
Since 1NSPACE(S(n)) for some S(n) = o(logn) is closed under 1NSPACE-reductions with
constant space, then the whole computation could be done in 1NSPACE(S(n)) for some
S(n) = o(logn) . Nevertheless, this would be a contradiction according to Theorem 1, since
the language PRIMES /∈ 1NSPACE(S(n)) for all S(n) = o(logn). Consequently, we obtain
that LV G /∈ 1NSPACE(S(n)) for all S(n) = o(logn). J

I Theorem 14. The strong Goldbach’s conjecture is true.

Proof. If the strong Goldbach’s conjecture is false, then LG ∈ REG or LG is non-regular
and its complement is infinite, since every finite set is regular and REG is also closed under
complement [14]. Let’s assume the possibility of LG ∈ REG. Under this assumption, we have
that LSG could be reduced to LG in a nondeterministic constant space, where LSG is the
unary version of LV G due to Lemma 12. Certainly, we can reduce in a nondeterministic one-
way using constant space the language LSG to LG just removing the blank symbol # between
the 0’s on the input and generating the final output to LG. But firstly, this nondeterministic
one-way reduction replaces the 0’s by 1’s, but only those 0’s which are exactly at the beginning
of the original input of LSG (before the first blank symbol). Indeed, we could have that
LSG ∈ REG as result of this nondeterministic one-way reduction in constant space to the
language LG that would be in 1NSPACE(o(log logn), since REG = 1NSPACE(o(log logn)
and 1NSPACE(o(log logn) is closed under 1NSPACE-reductions with constant space [13].

However, this implies that the exponentially more succinct version of LSG, that is LV G,
should be in 1NSPACE(S(n)) for some S(n) = o(logn), because we would have REG =
1NSPACE(o(log logn)) and the same algorithm that decides LSG within the complexity
1NSPACE(o(log logn)) could be easily transformed into a slightly modified algorithm that
decides LV G within 1NSPACE(S(n)) for some S(n) = o(logn) [13], [7]. As we mentioned
before, the standard space translation between the unary and binary languages actually
works for nondeterministic machines with small space [7]. This means that if some unary
language belongs to 1NSPACE(S(logn)), then the binary version of that language belongs
to 1NSPACE(S(n)) [7]. Consequently, we obtain that LSG /∈ REG, since it is not possible
that LSG ∈ 1NSPACE(o(log logn)) under the result of LV G /∈ 1NSPACE(S(n)) for all
S(n) = o(logn) as result of Theorem 13. In this way, we obtain a contradiction just assuming
that the strong Goldbach’s conjecture is false and LG ∈ REG. In contraposition, we have
the strong Goldbach’s conjecture is true or this has an infinite number of counterexamples.
Since the fraction of even numbers which can be so written as the sum of two primes tends
towards 1 [1], then the infinite number of counterexamples is not possible. In this way, we
prove the strong Goldbach’s conjecture is true as the remaining only option. J
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