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Abstract

This work suggests a new CRT-based secret sharing scheme with
perfect information-theoretic security and multiplicative homomor-
phism. The scheme is designed to support non-zero secrets of mul-
tiplicative groups.

We will review some related works in the CRT-based secret sharing
schemes and see why our scheme is innovative. Our scheme will be
detailed and analyzed in this work in order to set solid foundations
for future work expanding this scheme.

1 Introduction

There is a rising need for clouding storage and clouding computing. Users of
the cloud services want to be sure that the providers of the service are not
exposed to the data, which could be sensitive. The ongoing use of cloud com-
puting can let companies focus on their primary goal leaving cloud providers
to deal with all the storage and computing infrastructures.

Users of cloud providers need to hide sensitive data. In order to hide the data,
the data can be encrypted, but there are some flaws in this scenario. First,
encryption is done using a key that needs to be stored. Second, encryptions
are mainly based on the hardness of computing problems, meaning brute
force on keys can always solve it, rather than the ultimate perfect information
security. This fact is becoming terrifying when considering the emergence of
quantum computing. Third, encryption can be very time-consuming, for
example, calculating powers on numbers done in RSA.

∗Corresponding author
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Besides encryption, other methods like Secret Sharing (SS) and Secure Mul-
tiparty Computations (SMC or SMPC) exist. Those methods are based on
mathematical proofs that ensure the secret data is being secured as long the
adversary does not have the sufficient number of shares defined by a threshold
to recover the secret.

The most known secret sharing schemes are Shamir’s secret sharing scheme
[1], and the schemes based on the Chinese Remainder Theorem (CRT) like
Asmuth-Bloom’s scheme [2]. Both schemes are designed to require a thresh-
old of t out of n shares to reconstruct the secret, where t ≤ n shares are
enough to reconstruct the secret fully. The terminology for using such recon-
struction threshold is called a threshold scheme.

To perform the calculation on encrypted or shared data on the cloud com-
pany’s servers, we need the scheme to support mathematical operations. Such
support is mainly achieved using homomorphic operations. Homomorphism
is a map between two algebraic structures of the same type that preserves the
operation of the structures [6]. Homomorphic operation mainly addressed by
the equation: f(x ⊕ y) = f(x) ⊕ f(y) where ′⊕′ is a binary mathematical
operation in this case. Homomorphism is a property of the function f . Ho-
momorphism can be limited to several operations; in this case, the scheme is
only partly homomorphic.
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2 Definitions

• n - The number of participants.

• t - The reconstruction threshold. State the minimum number of par-
ticipants needed to reconstruct the secret.

• s - The secrecy bound. State the maximum number of participants
that cannot learn any information about the secret.

• S - The secret data.

• Si - The secret share of participant i.

• [·]p - The arithmetic inside is performed in Zp

• UM - The multiplicative group of integers modulo M .

• mi - The i’th number to perform the modulus calculations with.

• mi+j - The (i+j)(mod n) number to perform the modulus calculations
with.

• D - The secret’s distribution.

• S - The secret domain.

• Si - The participant ith shared part’s domain.

• A - The access structure. All the qualified groups of participants that
can reconstruct the secret.

The relations between the scheme factors are:

1. 1 ≤ s < t ≤ n

2. The gap from s to t does not have to be one.

3. It is possible that a group of participants smaller than t could recon-
struct the data.

4. It is possible that a group of participants larger than s would not learn
anything about the data.
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Definition 1. Perfect Secret Sharing Scheme should satisfy the following
two conditions:

1. Correctness : Any qualified group of participants in A can reconstruct
the secret.

2. Perfect Privacy : No unqualified group of participants in Ā can get any
information about the secret.

Definition 2. Perfect ramp secret sharing scheme should satisfy the follow-
ing two conditions:

1. Correctness : Any qualified group of participants in A can reconstruct
the secret.

2. Perfect Ramp Privacy : For every group of participants G, |G| ≤ s,
given a secret S with distribution D. The distribution of the secret
stays the same, meaning, the probability of the secret to be equal a
specific element S ′ ∈ S stays the same even when knowing the data of
the shared secret held by the participants of G. More formally: Given
any S ′ ∈ S:

• Pr[S = S ′] = p.

• For every S ′ ∈ S and S ′
ij

∈ Sij , 1 ≤ j ≤ s, with 1 ≤ i1 < i2 <
· · · < is ≤ n, we have:

Pr[S = S ′|Si1 = S ′
i1
, . . . , Sis = S ′

is ] = p
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3 Related Work

Some of the known SMPC homomorphic methods relevant to this research
are:

Simple additive SSS – In this scheme, the sum of shared values recon-
structs the secret. One such scheme has a threshold of t = n− 1, meaning it
is an n out of n scheme. Let S be the secret, n the number of participants,
and Zp the field on which the calculations are being made [3].

• Distribution phase:
The dealer choose at random the numbers S1, S2, ..., Sn−1 ∈ Zp. The
dealer then computes Sn = S−

∑
1≤i<n Si. Finally, the dealer sends Si

to participant i for 1 ≤ i ≤ n.

• Reconstruction phase:
Let G be a group of participants gathered to reconstruct the secret.
The participants compute the secret S by summing all their secret’s
shares.

RF (
⋃

pi∈G Si) :

{
if |G| = n ⇒ S =

∑
1≤i≤n Si(mod p)

if |G| < n ⇒⊥

• Additive homomorphism:
Let S1 and S2 be secrets and S1i and S2i the secrets’ shares of the i’th
participant. S1 + S2 =

∑
1≤i≤n S1i +

∑
1≤i≤n S2i =

∑
1≤i≤n S1i + S2i .

Each participant can perform S1i + S2i and send the sum for the re-
construction phase. Therefore, the scheme is an additive homomorphic
scheme.
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Simple multiplicative homomorphic SSS – This scheme is very similar
to the additive one, but in this case, the product of shared values gives the
secret. Moreover, there are some restrictions; Zero or numbers that are not
co-prime to p are not allowed to be used. One such scheme has a threshold
of t = n − 1, meaning it is an n out of n scheme. Les S be the secret, n
the number of participants, and Up the group on which the calculations are
being made. [5]:

• Distribution phase:
The dealer picks n−1 uniformly random nonzero elements Si, 1 ≤ i < n,
from Up. The dealer then calculates Sn = S · (

∏
1≤i<n Si)

−1. Finally,
the dealer sends Si to participant i for 1 ≤ i ≤ n.

• Reconstruction phase:
Let G be a group of participants gathered to reconstruct the secret.
The participants compute the secret S by multiplying all their secret’s
shares.

RF (
⋃

pi∈G Si) :

{
if |G| = n ⇒ S =

∏
1≤i≤n Si(mod p)

if |G| < n ⇒⊥

• Multiplicative homomorphism:
Let S1 and S2 be secrets and S1i and S2i the secrets’ shares of the
i’th participant. S1 · S2 =

∏
1≤i≤n S1i ·

∏
1≤i≤n S2i =

∏
1≤i≤n S1i · S2i .

Each participant can perform S1i · S2i and send the product on the
reconstruction phase. Therefore, the scheme is a multiplicative homo-
morphic scheme. All the multiplications are correct and do not form
a zero or a number with a common divider with p because Up is a
multiplicative group.
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Ramp additive homomorphic SSS – [4]. This scheme is based on the
ideas of Asmuth-Bloom SSS [2] as mentioned earlier in the background. The
scheme is an n out of n scheme with a security factor of s, meaning that
without having at least s + 1 secret sharing parts, there is no information
leak. Using such a security factor s is called a ramp scheme. Let S be
the secret, n the number of participants, and Zprod the group on which the
calculations are being made.

• Distribution phase:
The dealer chooses a set of integers (prod,m1,m2, ...,mn) such that:

1. m1 < m2 < ... < mn and S < prod = Mn =
∏n

i=1 mi

2. gcd(mi,mj) = 1(∀i ̸= j)

The dealer randomly chooses s integers (r1, ..., rs) in Zprod, and com-
putes Smix = [S +

∑n
i=1 ri]prod.

The dealer computes and distributes share set of each participant i:

Si = (Smix(mod mi), r1(mod mi+1), . . . , rs(mod mi+s))

• Reconstruction phase:
Let G be a group of participants gathered to reconstruct the secret.
The participants compute the secret S by solving the CRT equations.

RF



⋃
pi∈G

Si,0⋃
pi∈G

Si,1

...⋃
pi∈G

Si,s


:



if |G| = n :



Smix = CRT [S1,0, ..., Sn,0]prod

r1 = CRT [S1,1, ..., Sn,1]prod

...

rs = CRT [S1,s, ..., Sn,s]prod


⇒ S = [Smix −

∑s
i=1 ri]prod

if s+ 1 ≤ |G| < n ⇒ partial information

if |G| < s+ 1 ⇒⊥
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• Additive homomorphism:
Let S1 and S2 be secrets. S1mix

, r11 , ..., r1s are the blinded secret and
all the blinding randoms of S1. S2mix

, r21 , ..., r2s are the blinded secret
and all the blinding randoms of S2. Each participant i has the secret
shares of each blinded secret and blinding randoms:
S1mixi

, r11i , ..., r1si , S2mixi
, r21i , ..., r2si .

Now we will show that this scheme is additive homomorphic:
S1 + S2 = S1mix

−
∑

1≤j≤s r1j + S2mix
−

∑
1≤j≤s r2j = S1mix

+ S2mix
−∑

1≤j≤s r1j + r2j . Each participant can perform S1mixi
+ S2mixi

and
r1ji + r2ji for each 1 ≤ j ≤ s and send the sum of all the needed
parts to the reconstruction phase, where using a CRT solver algorithm.
Therefore, the scheme is an additive homomorphic scheme.

4 Motivation for the new scheme

In this work, we want to introduce a new SSS with the feature of multiplica-
tive homomorphism. There are already schemes that allow homomorphic
multiplication, one of them found in the related work Section(3). However
our scheme can be extended to support more features, such as threshold
reconstruction and additive homomorphism, under some disclaimers.
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5 Method explanation

The scheme is an n out of n scheme with a security factor of s, meaning that
without having at least s + 1 secret sharing parts, there is no information
leak. Using such a security factor s is called a ramp scheme. Let S ∈ Uprod

be the secret, n the number of participants, and Uprod the group in which the
calculations are being made.

• Distribution phase:
The dealer chooses a set of pairwise co-primes m1,m2, ...,mn and cal-
culate prod =

∏
1≤i≤nmi such that:

1. m1 < m2 < ... < mn and S < prod = Mn

2. gcd(mi,mj) = 1, ∀i ̸= j

The dealer randomly chooses s integers r1, ..., rs in Uprod, and computes
Smix = [S ·

∏
1≤i≤s ri]prod The dealer computes and distributes share set

of each participant 1 ≤ i ≤ n:

Si = (Smix(mod mi), r1(mod mi+1), . . . , rs(mod mi+s))

• Reconstruction phase:
Let G be a group of participants gathered to reconstruct the secret.
The participants compute the secret S by solving the CRT equations,
following the steps of the reconstruction function:

RF



⋃
pi∈G

Si,0⋃
pi∈G

Si,1

...⋃
pi∈G

Si,s


:



if |G| = n :



Smix = CRT [S1,0, ..., Sn,0]prod

r1 = CRT [S1,1, ..., Sn,1]prod

...

rs = CRT [S1,s, ..., Sn,s]prod


⇒ S = [Smix ·

∏s
i=1 r

−1
i ]prod

if s+ 1 ≤ |G| < n ⇒ partial information

if |G| < s+ 1 ⇒⊥
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5.1 Auxiliary claims

Corollary 1. Given the multiplicative group A = Um1·m2·····mn = UMn there
is an isomorphism to the direct product of Mn pairwise co-primes dividers,
meaning B = Um1 × Um2 × ...× Umn.

Proof. Let’s define f : A → B in the following way:

f(α) = ⟨α(mod m1), α(mod m2), ..., α(mod mn)⟩ (1)

We need to show that f(α1 · α2) = f(α1) · f(α2).

f(α1·α2) = ⟨(α1·α2)(mod m1), (α1·α2)(mod m2), ..., (α1·α2)(mod mn)⟩ (2)

f(α1) · f(α2) = ⟨α1(mod m1), α1(mod m2), ..., α1(mod mn)⟩·
⟨α2(mod m1), α2(mod m2), ..., α2(mod mn)⟩ =

⟨(α1 · α2)(mod m1), (α1 · α2)(mod m2), ..., (α1 · α2)(mod mn)⟩
(3)

The last equality in Equation(3) is achieved by the definition of multiplication
in a direct product.

Corollary 2. Define Mn = m1·m2·· · ··mn where m1,m2, . . . ,mn are pairwise
co-primes. Given element α ∈ A = UMn of a finite group:
∀γ ∈ UMn ,∃β ∈ Umn s.t. α · β = γ. Meaning that all elements can be the
product of α and another element in the group.

Proof. Given α ∈ UMn , let’s assume in contradiction that there is an element
γ1 ∈ UMn such that: α · β ̸= γ1,∀β ∈ Umn . We know that UMn is a mul-
tiplicative group so every multiplication of elements in the group form an
element in the group. Since the source and the domain of the multiplication
are of the same finite size, there is at least one element γ2 ∈ UMn such that:

α · β1 = α · β2 = γ2, β1 ̸= β2 (4)

The element α has an inverse α−1 because UMn is a group. Applying α−1 on
Equation (4) we get: α−1 · α · β1 = α−1 · α · β2 = α−1 · γ ⇒
β1 = β2 = α−1 · γ in contrast to β1 ̸= β2 which means that our assumption
was incorrect: ∄γ1 ∈ UMn ,∀β ∈ Umn s.t. α · β ̸= γ1 ⇒ ∀γ ∈ UMn ,∃β ∈ Umn

s.t. α · β = γ.
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Corollary 3. Let G be a finite group. Given two elements g1, g2 ∈ G chosen
randomly, uniformly and independently. The multiplication g1 · g2 = g′ ∈ G
is a randomly, uniformly element of G.

Proof. We need to show that each g′ can be chosen with the same probabil-
ity, which means 1

|G| .

Pr[g1 · g2 = g′] = Pr[
⋃
g0∈G

{g1 = g0, g2 = g−1
0 · g′}] =1

∑
g0∈G

Pr[g1 = g0, g2 = g−1
0 · g′] =2

∑
g0∈G

Pr[g1 = g0]Pr[g2 = g−1
0 g′] =3

∑
g0∈G

1

|G|
· 1

|G|
= |G| · 1

|G|2
=

1

|G|

The 1 equality is achieved by the fact that each event of g0 ∈ G are different.
The 2 equality is achieved because of the independence of g1 and g2.
The 3 equality is achieved because g1 and g2 are chosen randomly uniformly.

Corollary 4. Let G be a finite group. Given two elements g1, g2 ∈ G where
g1 is taken from a uniformly distribution and g2 is from some distribution D.
g1 and g2 are chosen independently. The multiplication g1 · g2 = g′ ∈ G is a
randomly, uniformly element of G.

Proof. Same proof as Corollary(3), until equality 3.

Pr[g1 · g2 = g′] = · · · =
∑
g0∈G

Pr[g1 = g0]Pr[g2 = g−1
0 g′] =3 1

|G|

The 3 equality is achieved as g0 goes over all elements in G, same goes with
g−1
0 as each element has a different inverse. So finally when going over all
elements in G we receive that each element g′ has the same probability.
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5.2 Correctness

In order to use a scheme, one must know that the scheme is always correct.

Theorem 1. The multiplicative scheme can always be reconstructed given a
group of participants G ∈ A.

Proof. Given a group of participants G ∈ A. The scheme is of threshold
t = n − 1, meaning |G| = n. The correctness of this scheme relays on
the fact that all elements in UMn have an inverse. Each ri, 1 ≤ i ≤ s can
be reconstructed from the n shares of its modulus using CRT as ri ∈ UMn

and CRT can reconstruct numbers to it’s product of modulus pairwise co-
primes equations meaning one solution in ZMn because all the modulus are
the pairwise co-primes factors of Mn. After reconstructing ri,∀1 ≤ i ≤ s, we
can calculate r−1

i . That is the reason why we must take the randoms from
UMn and not from ZMn . To get the secret we calculate:

Smix ·
s∏

i=1

r−1
i = S ·

s∏
i=1

ri ·
s∏

i=1

r−1
i = S

That can be done because multiplication is associative in UMn .

5.3 Multiplicative Homomorphism

Theorem 2. The multiplicative scheme is multiplicatively homomorphic.

Proof. To show that the scheme is multiplicative homomorphic, we will show
that when taking k secrets, distributing them, multiplying as shares on the
participants side and finally reconstructing the result, the result will be cor-
rect.
Let n be the number of participants, k the number of secrets and s the secrecy
bound.
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• Let S1, S2, . . . , Sk ∈ UMn be secrets that the user want to know later
their product.

• Apply the distribution phase of the scheme on each secret. Note that
Sij , 1 ≤ i ≤ k, 1 ≤ j ≤ n is the part of the Si, 1 ≤ i ≤ k secret held by
the j’th participant. Calculating:
S11 = (S1mix

(mod m1), r11(mod m2), . . . , r1s(mod ms+1))
. . .
Sk1 = (Skmix

(mod m1), rk1(mod m2), . . . , rks(mod ms+1))
S12 = (S1mix

(mod m2), r11(mod m3), . . . , r1s(mod ms+2))
. . .
Sk2 = (Skmix

(mod m2), rk1(mod m3), . . . , rks(mod ms+2))
. . .
S1n = (S1mix

(mod mn), r11(mod m1), . . . , r1s(mod ms))
. . .
Skn = (Skmix

(mod mn), rk1(mod m1), . . . , rks(mod ms))

• Multiply all shares of each participant - this operation can be done by
the participants themselves as needed:
Sres1 = (

∏
1≤i≤k Simix

(mod m1), . . . ,
∏

1≤i≤k ris(mod ms+1))
Sres2 = (

∏
1≤i≤k Simix

(mod m2), . . . ,
∏

1≤i≤k ris(mod ms+2))
. . .
Sresn = (

∏
1≤i≤k Simix

(mod mn), . . . ,
∏

1≤i≤k ris(mod ms))

• Reconstructing all the results of products shares in order to find the
result of the product of all secrets Sres =

∏
1≤i≤k Si:

Sresmix
= CRT [Sres10

(mod m1), . . . , Sresn0
(mod mn)]Mn

rres1 = CRT [rres11 (mod m2), . . . , rresn1
(mod m1)]Mn

. . .
rress = CRT [rres1s (mod ms+1), . . . , rresns

(mod ms)]Mn

Each CRT equation has all the pairwise co-prime modulus mi, 1 ≤
i ≤ n results, meaning that the numbers are reconstructed perfectly in
modulo ZMn . Also The calculations are correct from Corollary 1.
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5.4 Security Analysis

Since we want to use the scheme to store and make operations on secret data,
we want to ensure that the scheme holds the security properties we need.

Theorem 3. The multiplicative scheme is a Perfect ramp secret sharing
scheme and is a perfect secret sharing scheme in case s = n− 1.

For the simplicity of notation and sizes, we will use mi, ∀1 ≤ i ≤ n as primes
and not the general case of pairwise co-primes. To get some intuition we will
start by analyzing the basic case of s = 1. The domain of Smix and r1 is UMn

and the size of the domain is |UMn| = φ(Mn) =
∏

1≤i≤n φ(mi).
For any elements r′1, S

′
mix, S

′ ∈ UMn , we have:
Pr[r1 = r′1] =

1
φ(Mn)

as r1 is randomly uniformly chosen.

Pr[S = S ′] = p as S is chosen from some distribution D.
Pr[Smix = S ′

mix] =
1

φ(Mn)
as r1 is randomly uniformly chosen, and the secret

S is of some distribution, based on Corollary 4.

The probabilities of r1 and Smix to be equal to r′1 and S ′
mix, respectively, do

change knowing some i’th participant data since s = 1:

• Pr[r1 = r′1|r1(mod mi+1) = r′1(mod mi+1)] =
1

φ(Mn)
φ(mi+1)

= φ(mi+1)
φ(Mn)

1,

• Pr[Smix = S ′
mix|Smix(mod mi) = S ′

mix(mod mi)] =
1

φ(Mn)
φ(mi)

= φ(mi)
φ(Mn)

.

Yet, we claim that the conditional probability of the secret S to be equal to
S ′ does not change:

Pr[S = S ′| r1(mod mi+1) = r′1(mod mi+1),
Smix(mod mi) = S ′

mix(mod mi)] = p
(5)

1same as a secret shared in Mignotte’s scheme, which is the equivalence class of
r1(mod mi+1)
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In fact, Smix has φ(Mn)
2 options to be calculated, and all the φ(Mn) options

to be formed to. The options left for participant i as possible results of Smix

are φ(Mn)
φ(mi+1)

. Also, r1 has φ(Mn) options to be chosen from, so each option

left for participant i can be from φ(Mn)
φ(mi)

options.

The participant then can also calculate [r−1
1 ]Mn for every r1 in his options

because Mn is known. Calculating the number of options to get S we have
φ(Mn)
φ(mi)

· φ(Mn)
φ(mi+1)

= φ(Mn) ·
∏

1≤j≤n,j ̸=i,i+1 φ(mj) options.

From Corollary 1 we know that UMn
∼= Um1 × Um2 × ... × Umn and we can

also say that UMn/mi
∼= Um1 × ... × Umi−1

× Umi+1
× ... × Umn for every

i. Therefore when multiplying all elements in UMn/mi
with all elements in

UMn/mi+1
we get all the elements in UMn . Since r1 and Smix act as randomly

chosen elements in UMn , each option of S ∈ Umn has the same amount
of appearances from all the φ(Mn) ·

∏
j ̸=i,i+1 φ(mj) options calculated by

the participant, and exactly
∏

j ̸=i,i+1 φ(mj) calculations each. Therefore the
scheme is perfect ramp security for s = 1.

Proof. Let G be a group of curious participants gathered to reconstruct the
secret or leak some information about it, |G| ≤ s.

Given Smix, r1, . . . , rs ∈ UMn , The domain of Smix, r1, . . . , rs is UMn and the
size of the domain is |UMn| = φ(Mn) =

∏
1≤i≤n(mi − 1) (The Euler function

in case Mn is the product of primes from degree 1).
For each element r′1, . . . , r

′
s, S

′
mix, S

′ ∈ UMn the probabilities of r1, . . . , rs, Smix

and S to be equal accordingly are:
Pr[r1 = r′1] =

1
φ(Mn)

as r1 is randomly uniformly chosen.
. . .
P r[rs = r′s] =

1
φ(Mn)

as rs is randomly uniformly chosen.

Pr[S = S ′] = p as S is chosen from some distribution D.
Pr[Smix = S ′

mix] =
1

φ(Mn)
as r1, . . . , rs are randomly uniformly chosen, and

the secret S is of some distribution, based on Corollary 3 with induction
That can be applied and Corollary 4.
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The probabilities of r1, . . . , rs and Smix to be equal to r′1, . . . , r
′
s and S ′

mix

respectively, do change knowing the information held by the group
G = {i1, . . . , is}, 1 ≤ i1 < · · · < is ≤ n:

Pr[r1 = r′1|r1(mod mi1+1) = r′1(mod mi1+1), . . . , r1(mod mis+1) = r′1(mod mis+1)] =

1
φ(Mn)∏

i∈G φ(mi+1)

=

∏
i∈G φ(mi+1)

φ(Mn)

. . .

P r[rs = r′s|rs(mod mi1+s) = r′s(mod mi1+s), . . . , rs(mod mis+s) = r′s(mod mis+s)] =

1
φ(Mn)∏

i∈G φ(mi+s)

=

∏
i∈G φ(mi+s)

φ(Mn)

Pr[Smix = S ′
mix|Smix(mod mi1) = S ′

mix(mod mi1), . . . , Smix(mod mis) = S ′
mix(mod mis)] =

1
φ(Mn)∏
i∈G φ(mi)

=

∏
i∈G φ(mi)

φ(Mn)
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Yet, we claim that the conditional probability of the secret S to be equal to
S ′ does not change:

Pr[S = S ′|r1(mod mi1+1) = r′1(mod mi1+1), . . . , r1(mod mis+1) = r′1(mod mis+1),

. . . , rs(mod mi1+s) = r′s(mod mi1+s), . . . , rs(mod mis+s) = r′s(mod mis+s),

Smix(mod mi1) = S ′
mix(mod mi1), . . . , Smix(mod mis) = S ′

mix(mod mis)] =
∗ p

In fact we know that s < n and therefore, we know that each modulo of
φ(mij),∀1 ≤ j ≤ s does not appear n times in different equations. Hence
the total amount of valid options for S to be calculated by the group G is:∏
1≤j≤s

φ(Mn)∏
i∈G φ(mi+j)

· φ(Mn)∏
i∈G φ(mi)

=
φ(Mn)

s+1

(
∏

1≤j≤s

∏
i∈G φ(mi+j)) · (

∏
i∈G φ(mi))

≤∗∗ φ(Mn)
s+1

φ(Mn)s

** Since s < n, than φ(mi), ∀1 ≤ i ≤ n appear at most s times.

As in the intuition part, based on Corollary 1, it is possible to show that the
distribution of S does not change, even when knowing the information of the
group G, and each element in S ′ ∈ UMn stays with the same probability that
S is equal to it. Therefore the scheme is perfect ramp security for any s < n.

The choice of s = n − 1 yields a perfect secret sharing scheme according to
Definition 1 as ∀G /∈ A there is no information leak.
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