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Abstract—The dawn of cost-effective miniaturised satellites
is currently attracting venture capital in a never seen before
ratio to launch mega-constellations of satellites for a diverse
range of applications. These satellites are vulnerable to attacks
by high-capability cyber-criminals (including quantum enabled
adversaries), due to the critical data they transmit. Additionally,
space missions have long lifespan and a long lead time in
terms of development process, requiring a pre-emptive outlook
to ensuring their safety. In 2016, National Institute of Standards
and Technology (NIST) initiated the competition to standardise
the post-quantum cryptography (PQC) schemes, announcing the
first portfolio of chosen schemes in 2022. This work targets the
only public key exchange (PKE) scheme among the winners of
the NIST-PQC standardisation process, CRYSTALS-Kyber, and
implements its core bottleneck operation, i.e., number theoretic
transform (NTT) extensively used for the polynomial multiplica-
tion. To avoid data corruption due to space based radiations, a
novel error-resistant model for NTT is presented based on hybrid
protection mechanisms, i.e., the use of hamming codes for detec-
tion and correction of errors in the twiddle factors and the use
of parity computed for all NTT coefficients for error detection.
Benchmarking error protection overheads on a Xilinx Virtex-7
FPGA reports 16.4% and 10.8% degradation on the hardware
efficiency when the hamming codes for twiddle factors and parity
bit for NTT coefficients are used to mitigate errors, respectively.
A total of 29.2% area overhead is benchmarked when compared
to the standard unprotected NTT implementations.

Index Terms—Post-quantum cryptography (PQC), Lattice-
based cryptography (LBC), CRYSTALS-Kyber, Fault-tolerant
architectures, Number theoretic transform (NTT), Error-resistant
architectures.

I. INTRODUCTION

By executing Shor’s algorithm [1] and Grover’s algo-
rithm [2] on quantum computers, the traditional public key
cryptography (PKC) (RSA [3] and elliptic curve cryptography
(ECC) [4]) are susceptible to be compromised. Consequently,
they need to be replaced by post-quantum cryptography
(PQC). CRYSTALS-Kyber (Kyber) [5] being selected as a
post-quantum key encapsulation mechanism (KEM) protocol
belongs to the family of lattice-based cryptography (LBC), and
the underlying hard problem for Kyber is module-learning with
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errors (M-LWE). M-LWE based schemes tend to have superior
security [6] compared to Ring-LWE schemes [7].

Post-quantum cryptographic algorithms have been exten-
sively implemented on the field programmable gate arrays
(FPGA) platforms. The implementations have been extended
to unconventional applications as well, such as remote sensing
[8] for the satellites on space missions. Compared to conven-
tional computational approaches, FPGAs offer several advan-
tages, such as a large number of computational resources and
high reconfigurability [9]. However, S-RAM based FPGAs are
found to be sensitive to radiations that are present in satellite
orbits at all levels, thus causing single event upsets (SEUs).
SEU in the FPGAs can effect the multiplexers, latches, buffers,
LUTs, control bits, and registers [10]. A single bit error
introduced at any stage during the NTT computation can
have a cascading impact on the entire encryption/decryption
process, thus requiring some mitigation strategies.

This work presents error-resistant NTT architectures by
combining hamming codes and the computation of parity bits.
Hamming codes have been applied to the twiddle factors
in order to detect and correct any SEU occurred. A single
parity bit is computed for the intermediate layers of NTT
that can detect any error occurred. The correction can be
performed by resetting the computations for NTT, making the
architecture lightweight. Thus a novel architecture combining
the advantages of Hamming codes for efficiency and parity
bits for area-conservation is presented in this work.

The main contribution of our work is as follows:

e We propose an efficient error detection and mitigation
strategy for the most compute-intensive part for standard-
ised post-quantum algorithm, CRYSTALS-Kyber. The
ability to detect and correct the error utilising ham-
ming codes combined with parity computations for error
detection, has been employed to impart error-resistant
characteristics to the NTT architectures.

e We implemented our proposed architectures on the
Virtex-7 FPGA platform and carefully benchmarked the
overhead in terms of computational resources. Implemen-
tation results indicate that incorporation of error-resistant



attributes incur an area-overhead of 29.2%, compared to
the standard implementations.

The rest of the paper is organised as follows: Section II gives
an overview of the previous works. Section III introduces the
Kyber KEM protocol and NTT in Kyber. The proposed NTT
implementations and the error-resistant schemes are discussed
in Section IV. Section V presents the implementation results
and discussion. Finally, the paper concludes in Section VI

II. LITERATURE REVIEW

Several works have been proposed in the literature relating
to the efficient FPGA implementation of the core modules
in Kyber. Modular multiplication, being one of the main
components, has been discussed in [11]-[13] along with the
proposal of efficient implementation strategies. In addition,
efficient implementations of NTT has remained a prime focus.
A novel 2 x 2 butterfly unit incorporating the K2-RED
reduction algorithm is presented in [13]. Authors in [14]
propose lightweight, balanced, and high performance archi-
tectures for NTT/INTT. A fully pipelined architecture has
been proposed by [15], however the proposed architecture is
resource-intensive.

A limited number of works have focused on the error-
resistant architectures, especially for the PQC. SEU detection
for the substitution phase of AES by employing block memory
and combinational logic is discussed in [16] with the goal to
provide area-efficient architectures. A fault-detection mecha-
nism for secure hash standard (SHS) and keyed-hash message
authentication code (HMAC), by employing the hamming
codes, is discussed in [17]. A modified version of TMR, known
as partial TMR, is presented in [18], where TMR is applied
to most critical sections with the help of an automated tool.
Authors in [19] discuss error detection architectures for NTT
to encounter transient and permanent faults.

In summary, the literature contains numerous works on
optimizing the Kyber implementation, however, error-resistant
Kyber architectures are not well-studied. The proposed ar-
chitecture focus on integrating error-resistant features with
efficient NTT implementations in Kyber that are suitable for
space applications.

III. PRELIMINARIES
A. CRYSTALS-Kyber

Kyber is standardised as post-quantum KEM and it consists
of three main operations: Key Generation, Key Encapsula-
tion, and Key Decapsulation. The mathematical hard problem
underlying Kyber is M-LWE; Kyber belongs to the LBC
family in PQC. For LBC, the core operation is polynomial
multiplication, where pk = sk o A + e is the main operation
in the key generation. The modulus for Kyber is chosen to
be 3329, selected in such a manner to ensure the accelerated
performance for polynomial multiplication when executed via
the NTT algorithm. Each of the polynomials for Kyber consist
of n = 256 coefficients. For detailed insights into the working
of Kyber KEM, further information can be found in [5].

B. NTT in Kyber

To accelerate the polynomial multiplication, NTT is often
employed in LBC. For Kyber, the prime ¢ is selected to be
3329, where ¢ — 1 = 28 . 13, the base field Z, comprises
primitive 256-th roots of unity. For any polynomial in Kyber,
denoted as f = {fo+ fix+- -+ fas522°°} € R, and primitive
root of unity w mod ¢, the NTT operations can be defined as:

NTT(f) = f = fo+ -+ fass2?® (D
with
127
fai = Z faiwPPrr@F1)7 2)

Jj=0

127
fois1 = Z foiprw@rrOFDI (3)
j=0
where br; means bit reversal of the unsigned 7-bit integer 1.
Hence, for Kyber, the polynomial with n = 256 can be
split into two polynomials, each with 128 coefficients. The
NTT can be computed independently.

IV. PROPOSED ERROR-RESISTANT NTT ARCHITECTURE
A. Proposed Modular Reduction Architecture

The butterfly core for the NTT computation consists of
a modular reduction operation. Several modular reduction
algorithms can be implemented, however for NTT typically
Barrett reduction algorithm is employed as it is suitable for
operating on smaller mod values. Given two positive integers a
and ¢, computing a mod ¢ requires a division by g, where the
Barrett reduction estimates 1/q to replace expensive division
operation by multiplication and shifting operations, where 1/¢
is approximated as z/2". x can be taken as |2*/q/|. k depends
on a and should also satisfy the error approximation to be less
than 1, k = loga(a). Algorithm 1 demonstrates the working
of Barrett Reduction.

Figure 1 shows the implementation of modified Barrett
reduction in hardware. Since the reduction architecture is
designed to work with a single mod ¢, the hardware design
can be modified. Mod ¢, and parameters k£ and x are pre-
computed and stored inside the registers. Two multiplications
involved in the reduction process employ the standard school-
book approach and are computed in series and constitute the
major hardware footprint for the reduction process. By pre-
computing, substantial hardware resources and time utilisation
can be saved, making the butterfly architecture efficient.

Fig. 1. Modified modular reduction using Barrett reduction algorithm



Algorithm 1 The Barrett Reduction Algorithm

1: Input: o
QOutput: ¢ mod ¢
Pre-computed: k = logs(a), = = [2¥/q, |, ¢ = 3329
Yy (axx)>>k;
z4—a—yXq;
if z > ¢ then

Z242z—¢q

end
return z

R A A S o

B. NTT in Butterfly core

The compute-intensive operation in terms of hardware foot-
print and time utilisation is polynomial multiplication, thus
acting as the bottle-neck operation in Kyber. To achieve
efficiency for the execution of polynomial multiplication, NTT
is computed for the operands of multiplication. For NTT
computation, the proposed architecture utilises two modular
reduction operations being executed in parallel inside the
butterfly core. A single butterfly core is iterated during each
clock cycle with different values of inputs, that can take
two input coefficients u and v and a twiddle factor w and
outputs the updated coefficients. The butterfly core includes
a multiplication (between twiddle factor w and one of the
inputs v) to generate an intermediate result, an addition and
a subtraction of the intermediate result to the other input
u, followed by the reduction process. This process executes
the Cooley-Tookey configuration and computes the important
butterfly step as v + vw and u — vw.

In order to start the NTT computation, the coefficients
are first loaded into the registers. A register bank with n
registers, each of [loga(q)]-bit hold the input coefficients. One
coefficient is loaded into the register bank in each clock cycle
thus requiring n clock cycles. This is followed by loading
the twiddle factors w, that require n/2 clock cycles. Thus
the pre-processing requires 3n/2 clock cycles, where the data
is stored in register banks before the start of computation.
The novel implementation strategy, proposed in this work
suggests to use the register banks as they are the fastest
memory elements available in an FPGA and data access can
be performed in a single clock cycle. In addition, register
banks use a small amount of FPGA resources compared to
other memory options, making them suitable for designs with
limited available resources.

During each clock cycle, two coefficients are read from
the register bank. For the first level, the distance between
the coefficients is n/ 2! where [ is the level number during
computation. For first level, [ = 1, the difference would be
128, so the first coefficients are (0,128) and so on. The input
is provided to the butterfly core and the output of the first level
is stored in registers sequentially. The same process is repeated
for all inputs, thus requiring n/2 clock cycles to process the
first level of NTT computation. Once all of the results are
stored in the register banks, the computation for the second
layer starts in a much similar fashion, however, the distance

between the coefficients, n/ 2! would be 64, since I = 2 for this
layer. The updated values of the layer are then stored back in
the previous registers, so only two register banks are required
to complete the whole process. In this way a total of [ x n/2
clock cycles are required to complete the NTT computation.
This architecture for NTT computation can save a substantial
amount of hardware footprint. The twiddle factors are also
stored in registers than can hold n/2 values each of [log2(q)]-
bit values. This constitutes the overall architecture of the NTT
for the proposed design. Figure 2 shows the architecture for
the butterfly core and the register banks employed during the
NTT computation.

C. Error-Resistant NTT Architectures

Once the basic architecture for the NTT computation is
designed, the error-resistance characteristics are then incor-
porated. In order to mitigate the effect of SEU, the hardware
architectures for the NTT, described in the previous section,
have been modified. The proposed error-resistant architecture
is shown in the Figure 3 that utilises hamming codes to detect
and correct any SEU introduced in the twiddle factors, with the
help of extra bits introduced. In addition, for the intermediate
data stored between updating the internal layers of NTT, the
parity bits is computed to detect any bit flip. The aim of this
work is to incorporate the error-resistance properties within the
NTT that can pose minimum overhead in terms of hardware
footprint and computation time.

1) Error detection and correction of twiddle factors using
hamming codes: The twiddle factors must be secure from
SEU. A single error introduced during the NTT computation
has the potential to cascade throughout the final output in a
domino effect, thus requiring the mechanisms to negate the
effect of SEU. To overcome this problem, the proposed scheme
suggests to compute the hamming weights for each twiddle
factor and store them along with the original value of the twid-
dle factors. The hamming codes have the capability to detect
and correct the SEU, ideally desired for such applications. The
hamming code bits are computed in such a way that specific
data bits are chosen and the total number of 1 bits, including
the hamming bits itself, must be even. The twiddle factors are
stored in n/2 registers, where each register holds [loga(q)]-
bit value. The number of additional bits required must satisfy
2P > m+p+ 1, where p-bits are minimum acceptable for the
error detection and correction. p is typically determined with
trial and error method, starting from the smallest p value to the
point where the equation is satisfied. All the hamming weights
for the twiddle factors are computed on the fly and stored in
the registers along with twiddle factors. This operation does
not pose any overhead in terms of computation time as the
operations are pipelined with NTT computation operations.
Figure 3 shows the registers that holds the twiddle factors
along with the desired width.

The butterfly core is modified to be capable of error detec-
tion and correction before the twiddle factors are incorporated
in the computation. For this purpose, when the twiddle factors
are read from the register bank, they are read along with
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Fig. 2. Basic hardware architecture for the NTT/INTT computation

the hamming weights. Inside the butterfly core, the hamming
codes are computed again using the h.compute module and
compared to the received hamming codes. In case of detection
of any mismatch, the butterfly core has the capability to detect
the position of the erroneous bit and then correct it just by
flipping that bit by using the h.correct module. The corrected
output is then processed for the standard NTT computations.
This enhances the data integrity and reliability during the NTT
computation. Figure 3 shows the internal architecture of the
modified butterfly core along with the h.compute and h.correct
modules.

2) Error detection and correction of coefficients using par-
ity bits: During the NTT computation, the coefficients are
stored in the register banks, that are updated and stored in
another register bank. The coefficients are updated by shifting
between both register banks. In order to avoid any SEU for
the coefficients stored in the registers, a relatively simple yet
efficient approach is employed. Instead of computing hamming
weights for all of the intermediate layers that can pose a certain
area and time overhead, the proposed architecture suggests
to compute a single bit parity for each of the data stored
in between the layers. The register width in this case would
increase to [loga(g)] + 1 bit, as indicated in the Figure 3.
Thus only a single bit register is increased in terms of the area
overhead. The computation of parity bits does not pose any
overhead on time as the operation of computation of parity bits
are pipelined with the storing the coefficients in the registers.

The butterfly core has the additional capabilities to detect
SEU for the coefficients of NTT. For this purpose, the butterfly
core computes the parity of each coefficient before the start
of the computation, using the parity module, which is then
compared to the parity received. In case of a mismatch a signal
rst_1 or rst_2 is generated that can act as a reset signal for

the NTT computation. This can reset the whole computation,
thus the process is repeated. Figure 3 shows the architecture
for the NTT computation with the error-resistant capabilities
incorporated.

V. IMPLEMENTATION RESULTS AND DISCUSSION

Implementations of the proposed architectures are flexible
to be implemented for any FPGA family and are independent
of any specific hardware. The architectures are designed in
Verilog HDL, and synthesis and implementations have been
performed in Vivado for the Virtex-7 platform. The designs
have been tested for functional verification and results have
been generated for post-place and route (PAR) simulations.

The basic evaluation metrics include the hardware area
utilisation and time consumption while some other important
metrics like throughput (TP) and throughput/area (TP/A) are
also measured. TP is the number of bits that the specific
architecture can process in certain time while TP/A considers
the area consumption as well. Table I summarises the imple-
mentation results for the proposed strategies.

TABLE I
RESULTS IMPLEMENTED ON FPGA (VIRTEX-7)
Time Freq. TP TP/A
#LUT - #DSP ¢ Mh(llz Mbps  TPAL A
Basic Architecture
A-O 7.9k 0 16.57 6032 206.82  26.17 -
R-O 7.8k 6 13.86  72.11 24726  31.69 -
Hamming codes
A-O 9.2k 0 16.34  61.17  209.75  22.79 16.4
R-O 9.3k 6 13.59 73.54 252.17 27.11 19.2
Hamming codes + Parity bits
A-O 102k 0 16.84 59.37  203.71 19.97 10.8
R-O 113k 6 14.06 71.12 24386 21.58 21.5
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Fig. 3. Error-Resistant NTT/INTT computation architecture

Aside from the internal architectural optimisations discussed
in the previous section, the synthesis optimisations provided
by the Vivado tool are also applied to the proposed architec-
tures. As a result, an area-optimised (A-O) architecture and
a run-time optimised (R-O) architecture are presented for the
proposed strategies.

Firstly, the area utilisation in terms of number of LUTSs
and DSP blocks is discussed. For the basic architecture of
NTT, without any error-resistance method incorporated, the
proposed architecture consumes 7.9k LUT for area-optimised
design while 7.8k LUTs + 6 DSP blocks for the run-time
optimised design. The area-optimised design is mapped into
the general fabric of FPGA without the need of any DSP
blocks. Once the hamming codes are incorporated to the
twiddle factors, the area consumption has been increased by
16.4% (in terms of LUTs). This is primarily due to the
fact that more register width is required to hold the values
(twiddle factors + hamming weights). For the next design,
when the parity bits are also added to detect the error for the
intermediate layers, the area further increases by 10.8% (in
terms of LUTs). This area increase is caused by addition of
parity bit in the registers. The butterfly core has also been
modified to include the error detection and correction part.
Compared to the initial unprotected area consumption to the
final architecture, there is an increase of 29.2% area utilisation.

Next the computation time and operating frequency are
discussed. For all the proposed architectures, the clock cycles
consumption is always [ x m/2. The additional operations
for the SEU detection and mitigation are pipelined with the
internal NTT computations, making the whole operations to
be performed in constant clock cycles. By introducing this
pipelined architecture, operations are overlapped in different
pipeline stages, thus introducing the same critical path delay.
Frequency, being the inverse, remains relatively similar for all
the architectures for the area-optimised architectures as well
as the run-time optimised architectures. The same can be seen
for the run-time optimised architectures as well.

Some important parameters as already defined are the TP

and TP/A. Since the overall time for the proposed archi-
tectures is constant (constant clock cycles utilisation and
critical path) the TP remain relatively unchanged for each
of the optimisation strategy. The TP/A however varies as the
designs utilise different hardware. TP/A ratios are better for the
basic architecture mainly due to the fact that they utilise less
area compared to the error-resistant designs. The percentage
increase in area (%+A) for each architecture compared to
the basic implementations is also provided in the Table I.
Summarising the implementation results, we can say that
the overall error-resistant design requires almost 29.2% more
hardware area compared to the basic architecture for the NTT.
The possible limitations of the proposed architectures comes
from the area overhead. On the other hand, the designs are
pipelined in such a way to make the overall architectures
independent of the time consumption making them run in
constant time.

Comparison of the proposed architectures directly with
other works in the literature is not possible. The architecture of
AES presented in [16] that can detect the SEU for substitution
phase of AES requires almost 80% more area in terms of
number of LUTs utilised. For the 256-bit SHA and HMAC
implementations presented in [17] an area overhead of 106%
and 60% can be seen when the registers are encoded all the
time. The work proposed in [19] can detect the transient and
permanent faults for the NTT, by recomputing and decoding
through two variants, where the best results can obtain error
detection with 12.74% LUTs overhead and 15.88% more
computation time. To the best of our knowledge, our proposed
work remains the first to employ a hybrid protection mecha-
nism employing efficient error correction codes along with the
lightweight parity bits computation to detect and correct the
SEUs for the NTT in Kyber.

VI. CONCLUSION

This research proposes error-resistant FPGA implementa-
tions for the bottle-neck operation in CRYSTALS-Kyber, i.e.,
NTT. The proposed architecture employs hamming codes and



parity bits to detect as well as correct SEU occurring in the
radiation environment for space applications. The overhead in
terms of area consumption has been computed to be 29.2%.
Further, the performance analysis has been presented in terms
of TP and TP/A ratio. As a future direction, the same strategies
can be exported to design CRYSTALS-Kyber accelerators
capable to detect and correct the SEUs.
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