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Abstract. Drug-Drug interactions (DDIs) refer to the mutual effects
that may occur when two or more drugs are co-administered. These
interactions have significant implications for the efficacy, safety, or tol-
erability of medications, making them of paramount importance in the
field of medicine. Recent research has focused on deep learning tech-
niques, such as graph-based learning methods, which typically consider
the molecular structure information of drugs but often neglect inter-
view information.To overcome this limitation, we propose a hierarchical
graph-based deep learning method that efficiently aligns intra-view and
inter-view embeddings. Specifically, we perform distribution matching in
both the feature space and output space, maximizing mutual information
between the two views to enhance prediction accuracy. Additionally, we
introduce a novel loss function that uses central matching distribution
(CMD) to balance information between intra-view and inter-view em-
beddings, instead of relying on unsupervised contrastive learning. This
approach increases computational speed by 50% while maintaining high
accuracy. Evaluations on three datasets demonstrate that our method
outperforms other state-of-the-art models in DDI prediction.

Keywords: hierarchical graph representation· central matching distri-
bution· drug-drug interaction· graph embedding

1 Introduction

Combination therapies are frequently employed to manage multiple illnesses and
diminish drug resistance [1]. However, administering multiple drugs concurrently
can lead to Drug-Drug Interactions (DDIs), a prevalent source of medication er-
rors. Notably, the elderly, with a prevalence ranging from 20-40%, are susceptible
to such interactions [2]. As depicted in Figure 1, solid lines represent established
drug-drug interactions, while dashed lines signify unknown or yet-to-be pre-
dicted drug-drug interaction. Detecting DDIs poses challenges, and conventional
approaches are both expensive and time-intensive. Consequently, the field of
molecular computational science is indispensable for enhancing DDI prediction.

Computational biology, primarily anchored in statistical methodologies, boasts
a wide-ranging array of applications. It serves as a tool to forecast protein struc-
tures and unravel their functions and interactions [3]. In the field of genomics,
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Fig. 1: DDI hierarchical graph representation

Fig. 2: The illustrative schematic diagram of our proposed DM-DDI framework. It
comprises three consecutive and interrelated phases: 1) During the initial phase, drug
molecular graph underdo encoding into drug embeddings using a message-passing net-
work that is sensitive to bonds. Subsequently, attentive pooling is employed. 2) In the
second phase, external DDI relationships are incorporated into embeddings through a
GCN encoder. Additionally, the distribution matching of feature space matching and
output space feature mapping is utilized to harmonize information from diverse per-
spectives in order to update the drug embeddings. 3) Lastly, leveraging the acquired
drug embeddings, we have developed an interaction predictor responsible for producing
the ultimate prediction outcomes.
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it plays a pivotal role in gene identification, gene expression analysis, and the
classification of DNA sequences[4–6]. Furthermore, computational biology finds
utility in scrutinizing disease mutations [7] and facilitating the discovery of novel
drugs[8, 9].

In the realm of Drug-Drug Interaction (DDI) detection, machine learning ap-
proaches have emerged as potent tools to enhance efficiency. Traditional machine
learning methods have historically leaned on similarity-based features to predict
DDIs, assuming that drugs with analogous chemical structures exhibit compa-
rable DDI patterns. These approaches necessitate manual extraction of drug
features and their subsequent incorporation into machine learning models for
DDI prognosis [10, 11, 37, 13]. Nevertheless, these techniques are time-intensive
and constrained by their reliance on manual feature engineering, leading to a
gradual phasing-out of such methodologies.

Recently, there has been a surge in interest in graph-based research, largely
due to the evolution of graph neural networks (GNNs). These graph-based ap-
proaches can be broadly categorized into two classes: Molecular graph-based
methods and hierarchical graph-based methods. Molecular graph-based tech-
niques rely exclusively on GNNs to extract structural features from drug molecules
for predicting drug interactions [45, 30, 34, 17, 19]. Although these molecular graph-
based methods have effectively mitigated the reliance on feature engineering and
demonstrated promising results in DDI prediction tasks, they overlook the topo-
logical relationships between drugs. To overcome this limitation, several studies
have delved into hierarchical models capable of generating intricate semantic
representations and eliminating the need for manual feature engineering [20].

The utilization of hierarchical graph models has proven to be a potent ap-
proach for harnessing both molecular and topological information in the effective
prediction of DDIs [44, 22, 23, 46, 25]. Figure 1 provides a visual representation
of a DDI network comprising drug entities, where each node symbolizes an in-
stance of a drug molecule, and each link signifies a verified interaction between
two drugs. Furthermore, each drug node is portrayed as a molecular graph.
To implement this hierarchical graph structure for DDI prediction, a molecular
graph model is employed to encode drug molecules. The results obtained from
these molecular graphs act as inputs to the drug interaction network graph,
ultimately yielding the final representations of the drugs.

A key aspect in the hierarchical graph paradigm is how to maximize the
mutual information between inter-view and intra-view information, which we
refer to as distribution matching. The previous work [22] explored distribution
matching in the output space, specifically by computing the Kullback–Leibler
divergence (KLD) [27] between inter-view prediction probabilities and intra-view
prediction probabilities to achieve distribution matching. However, they did not
address matching in the feature space.

Building upon this foundation, the paper [28] employed contrastive learning
to achieve distribution matching of inter-view features and intra-view features,
effectively maximizing mutual information. The challenge here lies in the need
to construct positive and negative samples using the topological relationships
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of the upper-level graph, resulting in a computational complexity of O(n2). To
address this, we propose Distribution Matching Drug-Drug Interaction predic-
tion method, DM-DDI, a flexible and efficient feature space matching algorithm,
leveraging O(n) methods such as CMD (central moment discrepancy) [29] to
achieve both feature space distribution matching and output space distribution
matching. Our experimental results demonstrate that our matching approach
outperforms previous methods, achieving state-of-the-art results on two out of
three datasets and comparable performance on the remaining dataset. In addi-
tionally, the nerual network architechture has achivied 1 50% increase in com-
putational speed.

2 Methodology

In this section, we present a novel approach to predict Drug-Drug Interactions,
namely DM-DDI (Distribution Matching for Drug-Drug Interaction). Next, we
will elaborate on the details of the DM-DDI.

2.1 Datasets

We conducted assessments of our proposed model DM-DDI on three various
scales of benchmark datasets, i.e., the small-scale dataset ZhangDDI 3, the medium-
scale dataset ChCh-Miner4 and the large-scale dataset DeepDDI 5. The detailed
statictics information of three datasets are shown in the Table1. Three datasets
have their own attributes, such as ZhangDDI dataset comprises a relatively
small number of drugs but contains completely fingerprints for each drugs. In
contrast, theDeepDDI which is on a larger scale, exhibits a high prevalence of
missing figerprints fo most drugs. As for the ChCh-Miner dataset, despite having
nearly three times the number of drugs compared to the ZhangDDI dataset, it
contains an equivlent number of labeled DDI links. In our experiments, we only
used data items that can be converted into molecular graphs for learning from
SMILES strings.

Table 1: Detailed information about the DDI datasets.
Dataset Drugs DDI links Size Information

ZhangDDI 548 48548 Small Similarity
ChCh-Miner 1514 48514 Medium /
DeepDDI 1861 192284 Large Polypharmacy side-effect[?]

3 https://github.com/zw9977129/drug-drug-interaction/tree/master/dataset
4 http://snap.stanford.edu/biodata/datasets/10001/10001-ChCh-Miner.html
5 https://zenodo.org/record/1205795
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2.2 Preminaries

To establish the framework for our proposed model DM-DDI, we initially present
the essential notations utilized in this paper. We represent the collection of drugs
as D = {d1, ..., dN}, where N represents the total count of drugs. Each drug
is depicted through a molecular graph deneted as G. These drugs, connected
through established DDIs, collectively from the DDI network graph G, which
serves as the foundation for their interrelationships. The subsequent sections
provide detailed descriptions of the molecular graph, DDI network graph, and
the DDI problem.

Molecular Graph. The molecular graph which is denoted as G = (A,B),
where A ∈ Rn×dh signifies the matrix containing atom-level characteristics, and
B ∈ Rn×n signifies the presence of chemical bonds within the respective drug
molecule, alternatively is termed an intra-level graph. n refers to the atom num-
bers of the corresponding drug molecule. Here dh is the dimensions of atom
features and it indicates the dimensions of atom-level representations. θ is the pa-
rameters used in the molecular graph. Then the atom-level representations gen-
erated via the graph encoder gθ(A,B) are expressed as H = {h1, h2..., hn}(H ∈
Rn×dh).

DDI Relationship Network Graph. The DDI interaction relationship
network can be denoted as G = (G,L) which is also named in inter-level rep-
resentation. G ∈ RN×dg is denoted as the intra-level representation of drugs
and L ∈ RN×N denotes the link relationships between drugs. The whole inter-
level descriptions about drugs is shown in S = {s1, s2..., sN} (S ∈ RN×dg )
computed from gϕ(G,L). N is the number of drugs in the DDI network, dg is
the dimension of drug representation and ϕ is the parameters used in the DDI
relationships network graph.

Problem definition. Our aim is to anticipate drug interactions, a task that
entails assessing the presence or absence of a linkage between two pharmaceutical
compunds within the DDI network graph.

2.3 The DM-DDI Framework

Our poposed model, DM-DDI, integrates the intra-view drug representations
through a GCN encoder (low-level graph) and the inter-view drug representa-
tions via another GCN encoder(high-level graph) to make an accuracy prediction
of the interactions between random two drugs.

2.4 Feature Space Matching

Given a batch of n training samples of drug molecules {g1, g2, · · · , gn} with ra-
tionales {d1, d2, · · · , dn} computed by the bond-aware message passing networks
and GCN, respectively. We obtain the intra-view features {gϕ1 , g

ϕ
2 , · · · , gϕn} and

inter-view features {dφ1 , d
φ
2 , · · · , dφn}. A central moment discrepancy regularizer

[40] is employed to match the distributions in the feature space:
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Fig. 3: The proposed graph learning framework compared with contrastive learning.
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where the ϕ and φ are the set of parameters of BAMPN and GCN encoder.
Egϕ and Edφ are empirical expectation of the intra-view and inter-veiw features,
and Cgϕ

k and Cdφ

k are the k-th order central moments of the feature coordinates.
In practice, we compute the central moments up to the fifth order, i.e., K = 5.
It is assumed that the features are distributed in the interval [0, 1], the output
of the sigmoid function; in other cases, constants might be added before each
term.
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2.5 Output Space Matching

We obtain two model distribution from inter-view interaction link embeddings
and intra-view embeddings, namely p and r. We also need to make these con-
sistent distribution between these two model distribution. The output space
matching loss is written as the cross entropy between the intra-view distribution
r(Y ) and the inter-view distribution p(Y ):

lom =

|Y|∑
y=1

−pi(Y = y) log ri(Y = y) (6)

Where Y is the prediction label of two model and y is the true label.

2.6 Overall Loss Function

Both predictors’ primary goal is to minimize the supervised loss, which measures
the distance between the predictions and the true labels. Another goal is to min-
imize a disagreement loss, which measures the distance between two predictors’
predictions. The purpose of minimizing this disagreement loss is to enforce the
model to pay more attention to the commonality between two different views
and consistency between two predictors.

Formally, we formulate the supervised loss for the labeled interaction links
and the disagreement loss for the unlabeled interaction links:

Ls =
∑
li∈Ll

(C(ri,yi) +C(pi,yi)) (7)

Ld =
∑

lj∈Lu

K(pj||rj) (8)

where yi is the true label of li, Ll and Lu denote the labeled and unlabeled
links in L respectively, C(·, ·) is the cross-entropy loss function and K(·||·) is the
Kullback-Leibler divergence.

With feature sapce and outspace matching loss lfm and lom, supervised loss
Ls and disagreement loss Ld, the objective function of our model is,

L = Ls + α1lfm + α2lom + βLd (9)

where α1, α2 and β are hyper-parameters for the trade-off for different loss
components.

2.7 Drug-Drug Interaction Prediction

For each interaction link lij ∈ L, We first compress two drug embedding vectors
into an interaction link embedding vector:

l = di ⊙ dj (10)
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where ⊙ denotes the element-wise product, l is the interaction link embedding
vector. Then, we apply a two-layer fully-connected neural network to make the
final prediction:

p = σ(Wp ReLU(Wll + bl) + bp) (11)

where p ∈ Rk and [; ] denotes the concatenation operation. If the aim is to predict
the occurrence of DDI, k is 2.

Besides, we design another auxiliary interaction predictor using the inter-view
drug embeddings. We cascade the last layer of the MPN with a fully connected
layer and a sigmoid transformation function to construct this classifier. The pre-
diction of the inter-view interaction predictor is denoted as r ∈ Rk. Optimizing
the inter-view interaction prediction results can help the supervised information
directly flow into previous network layers. The model learns the commonality
between different views through a disagreement loss, which will be discussed
below. So, finally, we get two prediction results corresponding to two different
predictors. It should be noted that we only use p for the final DDI prediction.

2.8 Algorithmic Complexity Analysis

From the Figure 3, we can summarize up to that the MIRACLE algorithm used a
contrastive learning to integrate the multi-view information into the prediction
of DDI. In the process pf contrastive learning, positive samples and negative
samples of one anchor node must be established and the loss compuatation
will be O(n2), where n is the number of nodes. In our proposed model DM-
DDI, element wise alignment scheme is used instead of the contrastive learning
strategy. During the loss computation, we do not need to search positive and
negative samples around every each anchor node, so that the computational
complexity can be o(n). The algorithm’s low complexity in 50% improvement in
computation time. With a slight increase in prediction performace, the ability
to reduce computational speed is a highlight of this algotithm.

3 Experiments

In this section, we commence by presenting the datasets utilized shown in Table
1, the methods employed for comparison, and the evaluation metrics applied
during the experiments. Subsequently, we conduct a comparative analysis of
DM-DDI against other relevant methodologies. Finally, we perform an in-depth
examination of DM-DDI’s performance across a range of diverse experimental
conditions.

3.1 Comparing Methods

In order to showcase the excellence of our proposed model, we have executed
numerous baseline techniques to assess their performance. These baseline meth-
ods encompass both similarity-based and graph-based approaches. In the case of
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the latter, to ensure a fair comparison of methods that utilize various perspec-
tives of information, we have standardized them within the same framework as
DM-DDI, as outlined in Table 2 and elaborated below.
• Nearest Neighbor [36]: Vilar and his team utilized drug interaction infor-
mation and substructure-based similarity for DDI prediction, which we simply
refer to as NN.
• Label Propagation: [37] employed the label propagation (LP) algorithm to
construct three similarity-based predictive models. These models are based on
substructure, side effects, and off-label side effects, respectively, and we refer to
them as LP-Sub, LP-SE and LP-OSE, respectively.
• Multi-Feature Ensemble: [38] created a hybrid ensemble model by incor-
porating neighbor recommendation (NR), label propagation (LP), and matrix
disturbs (MD) algorithms, which consider various aspects of drugs. We call this
model Ens.
• SSP-MLP: [39] combined a pre-computed low-dimensional Structural Simi-
larity Profile (SSP) with a Multi-layer Perceptron (MLP) for classification, and
we label this model as SSP-MLP.
• GCN: [34] employed a graph convolutional network (GCN) for semi-supervised
node classification tasks. We use GCN to encode drug molecular graphs and
make predictions based on their representations as a baseline.
• GIN: [41] introduced a graph isomorphism network (GIN) for learning molecule
representations in various single-property prediction tasks. We utilize GIN to
encode drug molecular graphs and make predictions based on their representa-
tions as a baseline.
• Attentive Graph Autoencoder: [42] esigned an attentive mechanism to
integrate multiple drug similarity views, which are then fed into a graph au-
toencoder to learn embedding vectors for each drug. This model is referred to
as AttGA, and predictions are made based on the learned drug representations
pairwise as a baseline.
• GAT: [43] utilized a graph attention network (GAT) to learn node embeddings
through a well-designed attention mechanism on the graph. We apply GAT to
obtain drug embeddings from the DDI network for predictions.
• SEAL-CI: [44] introduced a hierarchical graph representation learning frame-
work for semi-supervised graph classification tasks, and we call this model SEAL-
CI. We use it to learn drug representations for DDI predictions as a baseline.
• NFP-GCN: [45] developed the first graph convolution operator specifically
designed for molecules. We refer to this model as NFP-GCN and incorporate
it as a baseline by using its bond-aware message passing networks.
• MIRACLE: [46] developed a novel method which framework contains three
sequential and independent phases, namely drug embeddings from the bond-
aware message passing network, drug embeddings intrgration from multi-view
graph representation using GCN encoder and contrastive learning-based strategy
and interaction prediction. We refer to this model as MIRACLE (MultivIew
gRAph Contrastive representation LEarning for drug-drug interaction predic-
tion).
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Table 2: Comparison of baseline methods.
Algorithm Model Type The Inter-

view Model
The Intra-view
Model

Feature Type

NN similarity-based N/A N/A similarity-based
LP similarity-based N/A N/A similarity-based

fingerprint
Ens similarity-based N/A N/A similarity-based

fingerprint
SSP-MLP similarity-based N/A N/A similarity-based

fingerprint
GCN inter-view GCN N/A Molecular Graph
GIN inter-view GIN N/A Molecular Graph
AttGA intra-view N/A AttGA Interaction Rela-

tionship
GAT intra-view N/A GAT Interaction Rela-

tionship
SEAL-CI multi-view GCN GCN Molecular Graph

& Interaction Re-
lationship

NFP-GCN multi-view NFP GCN Molecular Graph
& Interaction Re-
lationship

MIRACLE multi-view BAMPN GCN Molecular Graph
& Interaction Re-
lationship

DM-DDI multi-view GCN BAMPN Molecular Graph
& Interaction Re-
lationship

3.2 Evaluation Metrics and Experimental Settings

We’ve split the interaction samples into a 4:1 ratio for training and testing, with
a random 1/4 as a validation set. Our dataset contains only confirmed positive
drug pairs, with randomly sampled negative pairs for training [47].

Parameter group learning rates decay exponentially from an initial rate of
0.0001. Hyperparameters include a 256-dimension hidden state, three bond-
aware message passing neural networks, and a GCN encoder. Objective function
coefficients α and β are set at 100 and 0.8, respectively, while dropout with
p = 0.3 is applied to intermediate layers [48].

We implemented the model using Pytorch [49] and Pytorch-geometric 1.4.2 [50],
utilizing the Adam [51] optimizer and Xavier [52] initialization. Model effective-
ness is evaluated using AUROC, AUPRC, and F1, with results reported as mean
and standard deviation over ten repetitions.
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3.3 Experimental Results

We experimented with three distinct datasets to confirm the effectiveness of our
proposed method in various scenarios. These experiments validate that our DM-
DDI method outperforms the baselines in three different settings: a small-scale
dataset with diverse drug features, a medium-scale dataset with limited labeled
DDI links, and a large-scale dataset with missing drug features.

Comparison on the ZhangDDI dataset
Table 3 compares our DM-DDI model’s performance against baseline ap-

proaches on the ZhangDDI dataset, which utilizes various drug features for DDI
prediction. The best results are highlighted. DIM-DDI integrates multi-view in-
formation for drug representations, considering both inter-view drug molecular
graphs and intra-view DDI relationships. According to the experiments, the pro-
posed model outperforms the baseline approaches.

While algorithms using similarity-based fingerprints like NN, LP, and SSP-
MLP performs poorly due to relying on only one type of features. Ens achieve
better results by combining three models that use eight types of drug feature
similarities and six topological features. This highlights the importance of inte-
grating information from multiple sources like similarity-based fingerprints and
topological features.

Some graph-based methods perform worse than the models mentioned above
because they rely on the single view graph information. GCN and GIN encode
drug molecular graphs using two different graph neural network frameworks for
pairwise DDI prediction. AttGA and GAT directly learn drug representations
from DDI interaction relationships. The former considers multiple connectivities
of the DDI network and applies a GCN encoder to achive better performace than
GAT, who only considers the existence of DDI network’s links.

In multi-view graph settings, SEAL-CI and NFP-GCN and even MIR-
ACLE outperform other baselines, showing that the integration of multi-view
graph can significantly enhance model performance. However, their performance
is still not as strong as the proposed DDI method in addition to the MIRACLE.
MIRACLE and DDI futher considers the importance of the message passing
within chemical bonds inside drug molecular graphs and maintains a balance
between multi-view graph information to learn more comprehensive drug rep-
resentations. In contrast, SEAL-CI and NFP-GCN explicitly model multi-
view graphs but overlook the information equilibrium beteween different views.
Additionally, DM-DDI uses a self-attentive mechanism to generate inter-view
drug representations by selecting the most significant atoms for meaningful func-
tional groups in DDI reactions while ignoring noisy, meaningless substructures.
However, compared with the MIRACLE, our method DM-DDI achive better
performace on the metrics AUPRC and F1 Score with additional feature space
matching and output space matching in a more efficient way.

Comparison on the ChCh-Miner dataset
In this experimental section, we aim to assess the performance of our pro-
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Table 3: Comparative evaluation results on ZhangDDI
Algorithm Performance

AUROC AUPRC F1
NN 67.81± 0.25 52.61± 0.27 49.84± 0.43

LP-Sub 93.39± 0.13 89.15± 0.13 79.61± 0.16

LP-SE 93.48± 0.25 89.61± 0.19 79.83± 0.61

LP-OSE 93.50± 0.24 90.31± 0.82 80.41± 0.51

Ens 95.20± 0.14 92.51± 0.15 85.41± 0.16

SSP-MLP 92.51± 0.15 88.51± 0.66 80.69± 0.81

GCN 91.91± 0.62 88.73± 0.84 81.61± 0.39

GIN 81.45± 0.26 77.16± 0.16 64.15± 0.16

AttGA 92.84± 0.61 90.21± 0.19 70.96± 0.39

GAT 91.49± 0.29 90.69± 0.10 80.93± 0.25

SEAL-CI 92.93± 0.19 92.82± 0.17 84.74± 0.17

NFP-GCN 93.22± 0.09 93.07± 0.46 85.29± 0.38

MIRACLE 98.95± 0.15 98.17± 0.06 93.20± 0.27

DM-DDI 98.42 96.31 92.72

posed DM-DDI method on datasets with limited labeled DDI links. We only
compare DM-DDI with graph-based baselines because this dataset lacks similarity-
based fingerprints for drug pairs. Due to this limitation, AttGA is not applicable
to this dataset. The results are presented in Table 4.

Clearly, methods that consider multi-view information, such as SEAL-CI
,NFP-GCN, MIRACLE and DM-DDI outperform baselines that rely on
single-view information. However, DM-DDI outhsines them all, demonstrating
its superiority on datasets with scarce labeled data.

The graph contrastive learning component in MIRACLE effectively in-
tegrates and balances information from different views, enabling MIRACLE
learns drug representations better with limited labeled DDI links. However,
the compuation cost of MIRACLE is expensive compared with our proposed
model DM-DDI. The proposed method DM-DDI also considers integration
and balance information from intra-view and inter-view using the feature and
output space matching, considering the DDI network’s structural information
when making the final predicting decisions, which helps the model extracts the
most useful information from all dimensional features for DDI prediction. We
further verify our points by a small ablation study in which we adjust the training
ratio of the dataset in subsection 3.4.

Comparison on the DeepDDI dataset
To assess the scalability of our proposed method, we conducted experiments

on a large-scale dataset, DeepDDI, which contains abundant labeled data and
DDI information. In Table 7, we compare the performance of our approach to
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Table 4: Comparative evaluation results on ChCh-Miner
Algorithm Performance

AUROC AUPRC F1
GCN 82.84± 0.61 84.27± 0.66 70.54± 0.87

GIN 70.32± 0.87 72.41± 0.63 65.54± 0.97

GAT 85.84± 0.23 88.14± 0.25 76.51± 0.38

SEAL-CI 90.93± 0.19 89.38± 0.39 84.74± 0.48

NFP-GCN 92.12± 0.09 93.07± 0.69 85.41± 0.18

MIRACLE 96.15± 0.29 95.57± 0.19 92.26± 0.09

DM-DDI 92.59 97.94 97.82

the baseline methods. Many baseline approaches rely on similarity-based fin-
gerprints, which often require a siginificant number of non-structural similarity
features, which may be lacking in this large scale dataset. Therefore, we only con-
sider models that are applicable to this dataset, including NN and SSP-MLP.
Among the graph-based methods, we exclude AttGA due to the absence of
many necessary drug features. Additionally, We do not present experimental
results for GIN and NFP-GCN due to their inferior performance and space
limitation.

MLP-SSP outperforms NN, primarily because the former framework is
based on deep neural networks. GCN achieves better results than GAT, fur-
ther underscoring the importance of inter-view information in DDI predictions.
Among the baselines, SEAL-CI follows follows the proposed method DM-DDI
model closely, emphasizing the strength of the multi-view graph framework.
MIRACLE is the method using contrastive learning in the integration infor-
mation from different view. DM-DDI using another efficient way in the distri-
bution matching and significantly outperformed other baseline methods in terms
of all the three metrics.

Table 5: Comparative evaluation results on DeepDDI
Algorithm Performance

AUROC AUPRC F1
NN 81.81± 0.37 80.82± 0.20 71.37± 0.18

SSP-MLP 92.28± 0.18 90.27± 0.28 79.71± 0.16

GCN 85.53± 0.17 83.27± 0.31 72.18± 0.22

GAT 84.84± 0.23 81.14± 0.25 73.51± 0.38

SEAL-CI 92.83± 0.19 90.44± 0.39 80.70± 0.48

MIRACLE 95.51± 0.27 92.34± 0.17 83.60± 0.33

DM-DDI 93.17 96.48 95.82
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Fig. 4: Parameter sensitivity study on CHMiner

3.4 Ablation Study

Different matching loss comparision
To achieve kinds of different matching loss comparison, we conducted exper-

iments on DM-DDI based on different matching loss using CHMiner datasets.
The results are shown in Table 5. We can see our DMR matching loss outper-
formed than the coral, MMD, GAN, JSD and DV matching loss.

Table 6: Comparision of Different Matching Loss on CHMiner
Method Performance

F1 ACC
DMR-coral 97.838 96.245

DMR-MMD 97.84 96.25

DMR-GAN 97.75 96.08

DMR-JSD 97.83 96.23

DMR-DV 98.38 97.11

DMR-CMD 98.66 97.59

We conduct ablation experiments on the ChCh-Miner dataset to validate the
feature space matching and output space matching component’s effectiveness and
in our DM-DDI model. The experimental results are reported in Table 4. To
better understand the differences between DM-DDI with and without the feature
and output space matching component,we can observe that DM-DDI effectively
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learns drug embeddings with conclusion two space matching components. DM-
DDI with the feature and output space matching component can also achieve
high performance.

Table 7: Ablation experimental results on fm & om. "-fm" means removing the feaure
space matching loss, and "-fm & om" means removing both reature and output space
matching losses.

Method Performance
F1 ACC

DM-DDI 98.66 97.59

-fm 98.322 96.99

-fm and -om 98.38 97.11

Parameter Sensitivity In our model in equation 9, there are two major pa-
rameters α1 and α2. In this subsection, we evaluate the impacts of them, together
with the dimensionality of drug embeddings dg on the CHMiner dataset. Figure
?? to ?? show the results by changing one parameter while fixing another one.

First, we vary α1 by {1e-1,1e-2,1e-3,1e-4,1e-5,1e-6}, and fix α2 = 0.8. Here,
for parameter study purpose, α2 is set to its optimal value on this dataset instead
of the default value 1. From the figure, our method is quite stable in a wide range
of α1 and achieves the best performance when α = 1e− 6 in terms of F1 Score.
Next, we vary α2 by {8e-1, 8e-2, 8e-3, 8e-4, 8e-5, 8e-6} with α1 = 1e − 6 and
dg = 256. As can be seen, the near optimal performance at α2 = 8e− 4 justifies
our parameter setting. Overall, α1 and α2 are stable w.r.t these parameters.
Moreover, the non-zero choices of α1 and α2 demonstrate the importance of the
loss terms in our model.

We also take a parameter (α1 and α2) test on the metric of Acc. As can
be seen, the near optimal performance at α1=1e-6 and α2 = 8e − 4 justifies
our parameter setting. Overall, α1 and α2 are stable w.r.t these parameters.
Moreover, the non-zero choices of α1 and α2 demonstrate the importance of the
loss terms in our model.

ylabel=Objective function value, xmin=-10, xmax=610, ymin=-450, ymax=2100,
xtick=0,150,300,450,600, ytick=-400,200,800,1400,2000, legend pos=north east,
ymajorgrids=true, grid style=dashed, no markers, every axis plot/.append style=thick

4 conclusion

To effectively harness the rich multi-view graph information within the DDI
network, we introduce DM-DDI for the task of DDI prediction in this pa-
per. DM-DDI adopts a multi-view graph perspective for learning drug embed-
dings, achieved trough an end-to-end framework comprising a bond-aware mes-
sage passing network and a GCN encoder. Furthermore, we introduce a novel
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distribution matching approach to balance information from different views. Ad-
ditionally, the DM-DDI also designs two predictors based on both views to maxi-
mize the utilization of available information. Through extensive experimentation
with various datasets, we have substantiated that DM-DDI is not only highly
effective but also efficient in its DDI prediction capabilities include computation
cost.
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