
EasyChair Preprint
№ 4206

Effectiveness of Software Metrics on Reliability for
Safety Critical Real-Time Software

Shobha S. Prabhu and H. L. Shashirekha

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 15, 2020

Effectiveness of software metrics on reliability for safety
critical real-time software

Shobha S. Prabhu1 and H.L. Shashirekha2

1 Corresponding author
1 Gas Turbine Research Establishment, Defense R&D Organisation, Bangalore, India

shobha.prabhukamath@yahoo.co.in
2 Department of Computer Science, Mangalore University, Mangalore, India

hlsrekha@gmail.com

Abstract : Safety critical software is a key component of any critical system
and whenever there is a failure in this software, the system malfunctions with
effect on safety of life or mission. Reliability is one of the quality factors and
performance evaluator for this critical software. High reliability is expected of
such software in its design, development and maintenance in order to increase
the quality of the software for the system. Reliability metrics are derived for
this kind of software during the planning phase and enhancement of reliability
metrics is achieved during the design & development phase. When the software
is being designed, the reliability metrics are taken as the factors of foundation
on which the software is built. In this paper, the software metrics which form
the basis for proving their effectiveness on reliability for airborne engine con-
trol safety critical software are described. Development process based on these
metrics not only influenced the reliability enhancement of the critical software
but also improved the performance and efficiency of the embedded real-time
system.

Keywords - Safety Critical Software, Software Reliability, Reliability Me-
trics

1 Introduction

An embedded computer consisting of real-time software based on specific require-
ments with deterministic timing schedule constitutes the safety critical systems. Real-
time systems are considered to be functioning precisely when the system output is
logically correct along with meeting the strict timelines, regardless of the system load
or adverse environmental conditions. Overall, these systems should behave in a pre-
dictable way irrespective of unpredictable external or internal stimulus. Embedded
software is developed for the functioning of these systems where the failures can crit-
ically affect the systems in terms of safety of life or mission. Examples of such soft-
ware are present in the field of medical and aircraft systems, where defects directly
cause loss of life / mission. This kind of software keeps the reliability factors as the
key factor during various phases of software development lifecycle such as planning,

2

design, development and testing. Reliability, being an important quality factor of
software, plays a vital role in the efficiency of these systems. Software Reliability
Management talks about the process of reliability optimization through emphasis on
software error prevention, fault detection / removal and use of measurements to max-
imize reliability irrespective of project constraints [1]. Metrics is a measurement of
the level by which a system, component or process possesses a given characteristic /
feature. Metrics help in getting a measurement of testability, maintainability, clarity,
complexity, consistency, modularity and reliability. The goal of software metrics is to
control and efficiently identify the essential parameters that affect software develop-
ment [2]. In this paper, appropriate metrics are identified, studied and analysed to
check their effectiveness on reliability for safety critical real-time software.

As the definition goes, software reliability is the probability of failure-free opera-
tion of software (in a system) over a specified time within a specific environment for
a specified purpose. According to the above statement, reliability highlights the avail-
ability of the system with continued performance of the software with respect to func-
tionality along with external conditions with which it is operated during the complete
operational period. This shows that the reliability depends on various measurable
quality factors, which could be improved during any / all the stages of software de-
velopment life cycle to obtain a better performance, functionality and safety [3]. Ap-
plication of quality attributes at all phases of the development life cycle highlighting
error prevention, specifically in the early lifecycle is the foundation of building high
reliability software. Metrics are needed at each development phase to measure appli-
cable quality attributes [1], which reflect the characteristics of reliability. The safety
critical software is expected to have proactive fault tolerance and correction of identi-
fied design errors through the stringent development process while keeping strict vigil
on the quality / reliability metrics.

The glimpse of this paper is: Section 2 explains the relevance of reliability and me-
trics considered for the safety critical software for the case study. Section 3 highlights
the motivation obtained as an outcome of the survey carried out on the similar work.
Section 4 presents the strategies followed in implementing the above concepts during
the design & development of the software lifecycle. Section 5 highlights the effec-
tiveness of metrics on software reliability improvement and thereby on the software
quality improvement. Section 6 concludes the methodologies with future scope for
expansion of this work.

2 Current Work

Case under study is Safety Critical Software developed for Embedded Real-Time
Controller (SACSERC) system which provides engine control and monitoring of
propulsion system over the complete flight envelope of the unmanned aerial vehicle
[4]. This embedded software features the complete aero engine control functionality
along with efficient performance, safety and reliability. Unique features of this soft-
ware include - execution of the expected functionality as per system requirements,
hard real-time behaviour with scheduling methodologies for deterministic timing

3

requirements, optimally well planned software design strategies, complete traceability
from system requirements to embedded object code etc. Software of this system being
safety critical in nature is expected to have Mean Time To Fail (MTTF) of 1 Lakh
hours (continuously running for more than 10 years). This will lead to a failure once
in 105 hours with a reliability score of more than 0.9. SACSERC being an embedded
system, its reliability depends on the reliability of both software and hardware. As the
software is being developed for the safety critical system, it is necessary to embed
enormous safety and quality features in it. This enforces the software to implement
safety and emergency features alongside normal functioning to take care of abnormal
events with high reliability. Hence, airborne DO-178C process with Level A (highest
level of safety) along with its in-built stringent guidelines is followed in achieving
better reliability by minimizing faults / failures [5]. The software reliability attributes
are measured so that they can be monitored and enhanced if required. Until now, there
do not exist a single good method of measuring software reliability for softwares with
varied scope and nature. Sufficient experimental studies are carried out on the
SACSERC software to identify the metrics, prove their effectiveness on software
reliability and enhancing the reliability by modifying the software through moderating
the metrics is discussed in this paper.

Software failures are one of the most dominant causes of failures in today’s critical
systems. System reliability directly depends on the software reliability and in turn on
failure free functioning of the software. Failures are caused by faults which occur
during different software life-cycle phases and it is required to eliminate these faults
to build a reasonably reliable system. In reality, even though it is not possible to elim-
inate all the faults in the software, usage of sound software engineering process helps
in producing better software in terms of reliability. The top level metrics which are
considered for the case study are Mean Time To Fail (MTTF) and Mean Time To
Recover (MTTR) which are directly linked with the failure density and recovery time.
Failure related incidents and their recovery duration need to be minimized in order to
increase the MTTF and decrease the MTTR. Identifying potential areas of problems
and rectifying them at early phases prevents ripple effects at later stages and increases
MTTF [4]. Hence, the metrics which affect the factors related to MTTF and MTTR
are studied for their impact and attempt has been made to moderate them. These me-
trics are identified through the measurement of structural complexity, inter relation-
ship among the software components and transparency of software modules in the
case study. Following are the metrics considered:

 Cyclomatic complexity - A metrics which gives sneak peek into the design as-

pect of the software which has indirect influence on testing.
 Coupling - A metrics which measures modularity as well as dependency fac-

tors of software modules.
 Percentage of comments - a derived metrics which is a measure of clarity and

dependent on Lines of Code (LOC) (complete coded lines along with com-
ments excluding the blank lines).

4

Overall, the intention of this study is to enhance the reliability of the software by
moderating these metrics which contribute to MTTF and MTTR through restructuring
the software architecture during software development lifecycle.

3 Survey on Related Work

Even though research goes on continuously in the field of software reliability, till now
there is no conclusion about a common methodology using which improvement can
be done in reliability for all types of software. It is specific to each type of software
and is the responsibility of the designer or developers to find a suitable methodology.
In this context, the safety critical software which is developed for the airborne system
demands reliability enhancement as a continuous effort to establish improvements in
the reliability. A number of literatures have been studied to derive suitable methodol-
ogy for the work presented here.

To improve the quality and reliability of products, projects depend on software me-
trics for identification of critical areas where problems or failures may occur. Identifi-
cation of these metrics which help in detection and correction of requirement faults
are of utmost importance for prevention of errors at later stages of the life cycle is
opined by Linda Rosenberg [1]. Lockhart et. al., [6] highlights the fact that consistent
and concise system specification removes design errors prior to implementation
which is crucial for developing reliable software systems for safety critical applica-
tions. These techniques also include static analysis for the removal of development
errors before the release of the software in order to build better reliability into the
critical embedded systems.

Most important and sought-after characteristic of software that is accurate and
trustworthy is its reliability. Hence the evaluation of software engineering metrics
with deterministic quantitative model of failure patterns for reliability enhancement is
proposed in [2]. Milena Krasich [7] presents the methodology to improve reliability
through early planning and assessment during the software development process. It
highlights the fact that faults which have a high impact on reliability are discovered
early in design, analysis and test so that reliability improvement can be attempted
with identification and correction of potential faults at every phase. Certification stan-
dard for avionics software, which provides guidance and data concerning verification
based software life-cycle processes is the essence given by Yannick Moy et. al., [8].
QiuFang et. al., [9] have brought out the necessity of achieving higher reliability by
reducing faults through keeping eye on the metrics of software product especially in
the case of real-time safety critical software.

In a nut shell, the literature survey has revealed the impact of metrics and its relev-
ance to reducing failures in the study of reliability of safety critical real-time software.
In the context of airborne software, several areas were focused in terms of evaluating
the improvement on reliability in order to reduce the MTTR and increase the MTTF.
Keeping in view of the metrics at different software phases, removal of remotely oc-
curring faults becomes prime importance in increasing the reliability.

5

This paper highlights the software metrics for SACSERC, their effectiveness
and the strategies adopted in order to enhance the reliability of the safety critical
embedded software.

4 Methodology

The following paragraphs detail the methodology adopted for the above mentioned
strategies in the context of SACSERC for avionics application.

Working in tandem with DO-178C based software life cycle processes, the quality
and reliability are considered as basic non-functional characteristics in the case study.
During the development of software, importance is given to reliable, traceable and
error free code by which one can ensure better quality of software. It is necessary to
measure and monitor the metrics, so that impact of the same on reliability could be
studied. At the same time, these metrics provide the developer with certain details
about the structure of software architecture, clarity and testability of modules which
are useful during maintenance period. During the development phase, it is also man-
datory to expose the software to rigorous static and dynamic analyses, which in turn
help in exposing the errors / faults (which otherwise may escape testing techniques)
prior to releasing the object code. A combination of these analyses alongside keeping
a watch on the software metrics is a better option while focusing on the quality
attributes [10] such as Reliability, Maintainability, Testability and Efficiency.

4.1 Cyclomatic Complexity

It is generally accepted that more complex modules are more difficult to understand
and have a higher probability of defects than less complex modules. Thus complexity
has a direct impact on overall quality specifically on maintainability [1]. Cyclomatic
complexity is a metrics which is used to indicate the complexity of a program by di-
rectly measuring the number of linearly independent paths through a program’s
source code. It is a primary measure of the soundness of the module, which also is a
strong indicator of testing effort. It is considered as a good testability metrics because
it determines the number of test cases needed to test all paths in a software module
(test coverage). The high complexity programs contain more errors and detecting
them is more difficult through testing [11]. Hence developers who would like to sim-
plify testing often re-write the code for reducing complexity. This also may affect the
higher coupling factor. The developer has to work out a suitable and optimum soft-
ware architecture for reducing complexity as well as reduce coupling together to
maintain good cohesion.

The SACSERC was developed as per the software design and coding standard spe-
cifically prepared for this software. The value of cyclomatic complexity stated in
these standards was as low as 9 initially. During the software design phase, it was
found that 9 was too less to accommodate few of the important and complex control
function requirements. If the cyclomatic complexity number is increased to 15, it was
logically difficult to handle too many test cases to complete the 100% test coverage
during normal testing or regression testing. It is also observed that the maintenance

6

becomes bit difficult with more complex module. There needed a tradeoff between
the complexity and all other dependant factors in order to have the increased reliabili-
ty. The restructuring of software architecture was carried out to optimize the complex-
ity, maintenance cost / time and testing / verification efforts.

Fig. 1 depicts the effect of cyclomatic complexity on testability and maintainability

metrics which in turn affect the reliability. Exercises are carried out by moderating
different software architectures to finalise the cyclomatic complexity. It is observed
from the figure that cyclomatic complexity of 9 (initial) has resulted in a higher test-
ing effort and MTTR. To ease the situation, it was decided to go for cyclomatic com-
plexity of 15. This again complicated the testing as well as MTTR as evident from the
Fig. 1. With several experiments, the cyclomatic complexity was finalized to 12,
which gave the minimum testing effort (of 22 hours) and least MTTR (of 120 mi-
nutes) during a demand of minor change in the software.

Fig.1. Effect of complexity on reliability factors

4.2 Coupling

Coupling is the degree of interdependence between software modules or the strength
of relationships between modules and represented as a measurement of modularity.
Low coupling & high cohesion is often a sign of a well-structured software product
with a good design and supports the general goals of high readability and maintaina-
bility. In order to have the complete structural coverage, two types of couplings are
discussed here: Data Coupling and Control Coupling. Both these coupling studies are
intended to identify any code structure that was not exercised during the require-

7

ments-based testing [12]. In DO 178C process, Data and Control Coupling objectives
are to provide a measurement and assurance of the correctness of software compo-
nents, interactions and dependencies between modules [13]. They can indicate issues
during integration tests such as data loss across an interface, components adversely
affecting each other, sub modules not contributing to desired functionality and prob-
lems faced with global data against the intended & designed requirements.

Data Coupling represents the dependence of a software module on data not exclu-
sively under the control of that software component. Control Coupling represents the
manner or degree by which one software module influences the execution of another
software component [12]. Extensive exercises have been carried out to decide on the
coupling percentages, specifically keeping reliability in view during requirement
based testing and coverage analysis of the software. For complex software like
SACSERC, deciding on the upper limit for coupling study is a major task as its im-
pact is directly felt on the subsequent activities in the software lifecycle such as re-
view, analysis, testing and maintenance. It has been decided to have an upper limit of
20% for data coupling and 15% for control coupling to check if the data / modules are
loosely or tightly coupled. These upper limits are finalised on the basis of low soft-
ware maintenance, high cohesion among modules, low testing effort and low MTTR.

In SACSERC, there are 614 modules and 205 variables. The architecture of the
software is designed in such a way that modules need to be loosely coupled with high
cohesion of individual modules. Data or control coupling are categorized as given
below:

a) Loosely Coupled Data (or Control): If by changing a specific variable (or
module), the number of modules getting affected is less than 20% (or 15%) of the
total number of modules, the specific data (or control) is said to be Loosely Coupled.

b) Tightly Coupled Data (or Control): If by changing a specific variable (or
module), the number of modules getting affected is more than 20% (or 15%) of the
total number of modules, the specific data (or control) is said to be Tightly Coupled.

Data coupling categories for all 205 variables for SACSERC software are worked out
and the result is depicted in the Fig. 2. From this it can be noticed that 194 variables
(data) (95%) are having coupling percentage of less than 10 and coupling percentage
of 10-20 is observed in 11 variables (data) (5%). All variables are within the upper
limit of data coupling percentage which is 20%. This shows that the dependency of
modules on data is well within the limit and changes to the software can be handled
with a low MTTR and low testing effort.

Control coupling categories for each of the 614 modules for this software are
worked out and the result is depicted in the Fig. 3. From this it can be noticed that 589
modules (96%) are having coupling percentage of less than 10 and 25 modules (4%)
are having coupling percentage of 10-15. All modules are within the upper limit of
control coupling percentage which is 15%. This shows that the dependency of mod-
ules on other modules is well within the upper limit and changes to the software can
be handled with a low MTTR and low testing effort.

8

Fig. 2. Effect of data coupling on reliability factors

Fig. 3. Effect of control coupling on reliability factors

4.3 Percentage of Comments

This is a measure of clarity which gives the details of each module. SACSERC is
developed in C programming language as it is flexible, mature and easily portable.
During the analysis of SACSERC, it was found that few metrics are dependent on
Lines of Code (LOC). Analysis is carried out on those metrics which are keeping

9

LOC as their prime factor and showing their efficacy on the software reliability indi-
rectly. One such metrics is percentage of comments in a module. This is computed
with the ratio of number of lines of comments to LOC of a module and converted into
percentage. Even though there are many definitions of LOC [11], coded lines along
with comments excluding the blank lines are considered as the LOC for this case
study. Comments are written for declaration part as well as code part of the module
separately to give transparency among development team members. Comments are
useful in deriving the test cases at the time of verification and clarity during mainten-
ance. The comments are bridging the gap between the developer of the module and
other personnel involved in various stages of software development life cycle. The
comments in a module play a vital role during structural coverage activity (intends to
identify any code structure that was not exercised during the testing) and further till
the active life of the software.

During the initial stages of implementation of SACSERC, minimum comments (5-
10%) were introduced for all modules as it is assumed that detailed software design
gives sufficient clarity. During the verification stage, confusion aroused during the
testing and analysis phases due to insufficient and minimum comments. This affected
the cost, time and development effort of the project. Hence, detailed and explanatory
comments were introduced to eliminate any miscommunication among personnel
involved in different phases of development. Further, lower (5%) and upper (40%)
limits were introduced for the comments in order to control the optimum and neces-
sary details only to check the completeness and correctness of implementation. Com-
ments played a significant role during the static and dynamic analyses in eliminating
hidden errors, in turn increasing MTTF. Detailed comments also helped in reduction
of time during the maintenance phase which in turn reduced the MTTR. As code cov-
erage (degree to which the source code has been tested) of 100% is mandatory for
safety critical airborne software, optimum comments for a module helped in achiev-
ing structural coverage analysis in a shorter duration.

We have a total of 614 modules as seen from Section 4.2. Among them, 12% of
modules (73) have below 5% of comments; 57% (350) have 5-20% of comments and
31% (191) have 20-40% of comments. To arrive at this final decision on the percen-
tage of comments, several aspects were considered. Modules with a complex logic
may require more comments and short modules with simple logic may not need much
description. Some modules are clearly explained in the design phase and hence they
may not need more description. All these aspects contributed for the study to decide
on the amount of comments needed for each of the modules. Fig. 4 depicts the effect
of this percentage of comments on verification and maintenance metrics. It is also
observed that as the percentage of comments optimised from 5 to a range of 5-40,
coverage increased from 65% to 100%. Meanwhile the MTTR reduced from 300
minutes to 120 minutes. It is derived that, when the clarity is better, the testing be-
comes easy and it is possible to get the test coverage easily. Similarly, right percen-
tage of comments help in achieving the software maintenance in a shorter time when
there is complete clarity. This shows that the percentage of comments is having direct
effect on verifiability as well as maintenance and hence contributed immensely in
enhancing reliability of the said software.

10

Fig. 4. Effect of clarity on reliability factors

5 Comparative Study

When the reliability considerations are not part of software development process, the
metrics are computed for record of statistics rather than utilizing them for software
quality improvement. Hence the usage of metrics is never highlighted. Since reliabili-
ty is part of DO-178C process which is followed in the current case study, measure-
ments of critical features through metrics were made use for this study. The reliability
enhancements were indirectly evaluated by measuring, monitoring and improving
these metrics during the development lifecycle of this critical software. The above
paragraphs show the efforts made in exhibiting the effectiveness of software metrics
on reliability for safety critical software. Metrics such as Percentage of comments,
Cyclomatic complexity and Coupling were studied and moderated to achieve the im-
provement in reliability (and also quality) through reduction of MTTR and increase in
MTTF. The numbers which are moderated for each of these metrics may not be suita-
ble for all types of software. In particular, even the safety critical software for differ-
ent applications may not adapt to the same metric values. Normalisation of these me-
trics and their values is not uniform for different varieties of softwares.

6 Conclusions and Future Work

Reliability is an indicator of quality and performance of safety critical real-time soft-
ware for an airborne system and is enhanced through some of the software metrics. In
this paper, the metrics which are affecting the reliability are studied thoroughly and
moderated (either increased or decreased) in order to enhance the reliability of the

11

system significantly. Metrics such as percentage of comments has been considered as
a strong clarity metrics which is useful in all phases of development lifecycle. Cyclo-
matic complexity and coupling, being indicators of testability, complexity, modularity
and maintainability are also considered for improvement. Attempts were made to
improve these metrics and show their effect on MTTR and MTTF of the software.
This paper emphasizes enabling improved safety and reliability into the software by
means of study on few affecting metrics and observed their effectiveness.

As a future work, process related metrics such as percentage of bidirectional tra-
ceability with object code, compliance to coding standards, absence of dead code,
existence of run time errors may be explored and analysed to bring the quality and
reliability features of the airborne real-time embedded safety critical software to a
improved / higher level. Feasibility study may be attempted to normalise the metrics
for a particular type of software, if not for general embedded safety critical software.

Acknowledgements The authors are thankful to Director, Gas Turbine Research Es-
tablishment, Defense R&D Organisation, who permitted them to publish this paper.
The authors thank all the personnel who are associated with this work.

References

1. Dr. Linda Rosenberg, Ted Hammer, Jack Shaw: Software Metrics and Reliability. In:

IEEE International symposium on Software Reliability Engineering, 301-286-0087, 301-
286-7475, 301-286-7123 (1998).

2. Kashyap, S., AshishTripathi, Kapil Sharma: Analysis and Ranking of Software Engineer-
ing metrics. In: 2nd International IEEE Conference on Computing for Sustainable Global
Development (INDIACom), pp. 1654-1659. INSPEC Accession Number: 15109983
(2015).

3. Roger Pressman S.: Software Engineering a practitioners approach. Seventh edition, The
Mc-Graw Hill Publications (2011).

4. Shobha Prabhu S., Hem Kapil, Shashirekha, H.L: Safety Critical Embedded Software:
Significance and Approach to Reliability. In: 7th International Conference on Advances in
Computing, Communication and Informatics, ICACCI-2018, pp. 449-455. DOI:
10.1109/ICACCI.2018.8554566, IEEE Xplore (2018).

5. Guidelines, Standard for: Software Considerations in Airborne Systems and Equipment
Certification. RTCA DO-178B/C, Radio Technical Commission for Aeronautics (2011).

6. Lockhart, J., Purdy, C., Wilsey, P.: Formal methods for safety critical system specification.
In : IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS),
pp.: 201-204, DOI: 10.1109/MWSCAS.2014.6908387 (2014).

7. Milena Krasich: Modeling of SW reliability in early design with planning and measure-
ment of its reliability growth. In: IEEE Conference on Reliability and Maintainability
Symposium (RAMS), DOI: 10.1109/RAMS.2015.7105066, INSPEC Accession Num-
ber: 15112765 IEEE Xplore (2015).

8. Yannick Moy, Emmanuel Ledinot, Herve Delseny, Virginie Wiels, Benjamin Monate:
Testing or Formal Verification: DO-178C Alternatives and Industrial Experience. IEEE
Software Issue : May/June 2013,Vol.30, pp. 50-57, DOI : 10.1109/MS.2013.43 (2013).

12

9. Qiu Fang, Chenxi Zhang, Xin Ye, Jianqi Shi, Xiaoxian Zhang: A new approach for devel-
oping safety critical software in automotive Industry. In: 5th IEEE International Conference
on Software Engineering and Service Science (ICSESS), pp. 64-69. DOI:
10.1109/ICSESS.2014.6933515, INSPEC Accession Number: 14698700 (2014).

10. An article by Amir Ghahrai https://devqa.io/static-analysis-vs-dynamic-analysis-software-
testing/ last accessed on 8th January 2017.

11. Yahya Tashtoush, Mohammed Al-Maolegi, Bassam Arkok: The Correlation among Soft-
ware Complexity Metrics with Case Study. In: International Journal of Advanced Comput-
er Research, pp. 414-419. (ISSN (print): 2249-7277 ISSN (online): 2277-7970)Volume-4
Number-2 Issue-15 (2014).

12. Certification Authorities Software Team (CAST): Position Paper CAST-19 (Rev 2) Clari-
fication of Structural Coverage Analyses of Data Coupling and Control Coupling. Federal
Aviation Administration, USA (2004).

13. Maia, T., Souza, M.: A Practical Methodology for DO-178C Data and Control Coupling
Objective Compliance. In: International Conference on Software Engineering Research
and Practice, SERP’18, pp. 236-240. CSREA Press, ISBN: 1-60132-489-8 (2018).

