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Abstract. In recent years, advances in natural language processing
(NLP) have broadened the traditional boundaries of proficiency in ar-
tificial intelligence considerably, particularly with respect to tasks de-
manding high levels of cognitive sophistication. While the evolution of
NLP has been impressive, a significant gap remains in the efficacy of
NLP with respect to the classification and exploration of semi-structured
data. These data comprise a blend of structured and unstructured fea-
tures, and hold considerable potential, especially when traditional NLP
classification tasks are complemented with structured meta-data.
A generic framework, called the Classification and Exploration of Semi-
structured Data (CESD) framework, is proposed in this article for en-
hancing the efficacy of classification tasks based on unstructured data
when including insights gleaned from accompanying structured data.
The versatility of the framework empowers users to modify it or to
add framework components, as per their specific requirements, with the
overarching goal of equipping users with a holistic understanding of the
best-performing classification models and to elucidate the inherent char-
acteristics of semi-structured input data sets based on their structured
and unstructured features.
A computerised instantiation of the CESD framework is validated by
applying it to a real-world data set. The case study data pertains to the
severity of software error logs in a production environment, and comprises
both structured and unstructured data describing these errors.

Keywords: NLP classification · Clustering · Semi-structured data.

1 Introduction

In the past, it was widely acknowledged that artificial intelligence surpassed hu-
man capabilities in data-driven decision-making processes. When it came to tasks
requiring cognitive sophistication and creativity, however, the general consensus
was that artificial intelligence seemingly lagged behind human competency [13].
Yet, over the past few years, there has been a remarkable evolution in language-
based artificial intelligence systems [18]. Significant progress has specifically been
observed in the realm of natural language processing (NLP), a sub-discipline of
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artificial intelligence aimed at enabling computers to interpret and generate lan-
guage in a manner akin to human cognition. Such advancements have necessi-
tated a re-evaluation of the widely held view that artificial intelligence leaves
much to be desired in automated technologies based on cognition. Today it is
recognised that the rise of NLP has undoubtedly marked a pivoting point in the
development of computational linguistics in particular, and artificial intelligence
in general.

During the 1990s, there was a notable convergence in the research community
towards empiricism and the application of probabilistic language models. This
shift allowed researchers to evaluate empirically the assertions made by Chom-
sky and others [12] that machines were incapable of the level of cognitive under-
standing of grammar achievable by humans, proving that many of these earlier
arguments, although persuasive on paper, did not hold up to empirical scrutiny
[48]. As a result, models based on probabilistic and statistical approaches dom-
inated NLP during the 1990s. Rather than NLP being considered a rule-based,
deterministic domain, neural networks and deep learning techniques today dom-
inate the field, which has enjoyed substantial growth of late [26]. The advent of
tools and techniques in NLP has not only expanded the boundaries of how we
perceive language understanding, but it has also been instrumental in devising
novel applications that serve real-world purposes.

One notable manifestation of the aforementioned growth is the ability of
NLP to classify unstructured text data. This capability is considered a corner-
stone achievement, providing solutions in areas ranging from sentiment analysis
[43] to document clustering and topic modelling [8]. In each case, the essence
lies in comprehending the inherent characteristics of textual information and
deciphering the underlying patterns, sentiments, or themes.

In parallel with these advances, structured data classification and exploration
remains a well-established discipline, often characterised by its strict adherence
to relational data structures and schemas [25]. Structured data sets, which pre-
dominantly contain categorical or numerical features, are considered easy to
process and analyse due to their inherently organised and predictable character-
istics.

As our environment transitions to a data-driven world, a conspicuous gap
has, however, emerged. Although there are numerous techniques available in
the literature for various classification and exploration tasks within the realms
of structured data and unstructured data, few methodologies prevail for sim-
ilar tasks in the context of semi-structured data1 [2]. The significance of this
gap in automated competency becomes apparent when one considers real-world
applications in which tasks requiring NLP classification are often accompanied
1 When reference is made to the amalgamation of structured and unstructured features

in a data set, the term semi-structured data is used to describe the result, conforming
to the definition of Marr [37], where semi-structured data may take the form of
a relational table, containing separate structured and unstructured features (with
the former often enriching the latter as meta-data). This choice of nomenclature
is not to be confused with another recognised definition according to which semi-
structured data are structured data in a non-relational unstructured format [54],
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by structured meta-data. If leveraged correctly, these meta-data may well pro-
vide valuable insight, potentially enhancing the classification process. In the
medical domain, for instance, a combination of the NLP classification of elec-
tronic health record free-text data accompanied by structured electronic health
record data has shown potential improvements in the diagnosis of conditions
such as non-valvular atrial fibrillation [16]. Similar benefits may be enjoyed in
consumer science, where product reviews, although primarily textual, may be
equipped with meta-data such as timestamps, user ratings, or geographic tags.
These meta-data may yield valuable insight into the characteristics of different
reviews, potentially changing the manner in which classification is performed. In
a similar vein, spam classification tasks related to the content of emails might
be greatly enhanced when informed by meta-data such as hosting addresses, file
sizes, and the geographical origins of emails.

These compelling applications underscore the potential utility of tasks that
require NLP classification in which an analyst has access to structured meta-
data. The premise in such an application not only pertains to the amalgamation
of structured and unstructured data forms, but also to the synthesis of insights
that may be drawn from structured attributes and their potential to improve
upon the classification accuracies achievable when the analyst only has access to
textual data elements.

The aim in this article is to explore the juncture between the contexts of
structured and unstructured data when performing classification tasks. More
specifically, a framework is put forward for the classification and exploration of
semi-structured data (CESD), hereafter referred to as the CESD framework. The
objective of the framework is to guide a user towards enhancing the accuracy
of classifying data objects exhibiting unstructured text features into similarity
classes by incorporating insight gleaned from additional, structured (numerical
and/or categorical) data features associated with the data.

A pivotal facet of the framework is that it facilitates a dynamic process during
which the user can choose between two different data streams — in isolation or in
combination — one for unstructured data and geared towards NLP classification,
and the other aimed at clustering structured data into similarity classes. The
framework is generic in the sense that the constituent components along any
of the aforementioned data streams may be populated with a diverse repertoire
of models, based on the subjective preferences of the user and tailored to the
particulars of the underlying empirical study at hand.

The framework accepts as input raw, unstructured textual data in con-
junction with structured data from any application domain. It offers guidance
throughout the entirety of the analysis process, starting with data preprocessing,
systematically proceeding along any or both of the two data-streams, and end-
ing with an appropriate aggregation and synthesis of the results obtained. The
ultimate aim is to provide the user with a comprehensive and concise overview
as to which classification model or combination of models performs the best in

such as extensible markup language (XML) and javascript object notation (JSON)
files.
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respect of classifying the semi-structured input data into similarity classes and to
provide the user with inherent characteristics of these data based on their struc-
tured and unstructured features. It thereby enables the user to extract pertinent
and actionable insights from the unstructured input data.

2 Literature review

Although no work directly related to the proposed framework exists according to
the authors’ best knowledge, there are a myriad of publications exploring the re-
lationship between structured and unstructured data. In some of these sources, it
is argued that there may indeed be valuable information in the synergy between
structured and unstructured data features which, when extracted appropriately,
might enhance both the accuracy and reliability of NLP classification models
[34]. A case in point is the work of Liu [34] in which improved accuracy and re-
liability of sentiment classification was demonstrated when the textual data set
was complemented by structured meta-data. Similarly, Tang et al. [56] explored
improvements in lung nodule classification when fusing structured and unstruc-
tured (images in this case) data. Khaleghi et al. [30], on the other hand, proposed
a tree-based approach for classifying semi-structured data. Furthermore, King
[31] proposed ensembling the outcomes of different classification model streams
handling structured and unstructured data, respectively.

The CESD framework employs pertinent algorithms from both the domains
of traditional machine learning and NLP. Various notions related to these algo-
rithms are discussed in the remainder of this section.

2.1 Preprocessing of structured data

Gathering data and subsequently converting them into an appropriate format,
suitable for either predictive or descriptive analyses, often proves to be a demand-
ing task [9]. Following initial data collection, it is important to scrutinise and
attempt to enhance the data quality before any analytic procedures are applied
— a process commonly known as data cleaning. Techniques for this process are
typically focused on recognising and adapting to outliers, rectifying erroneous
data entries, and imputing missing values in the data [41].

2.2 Data partitioning

In the context of machine learning, the data used to provide a model with ex-
perience is commonly referred to as the sample set. This sample set is typically
partitioned into three distinct subsets during model development, namely a train-
ing set, a validation set, and a test set. These data subsets collectively serve the
purpose of both training and evaluating machine learning models under consid-
eration for deployment [53]. While the training set facilitates the construction
of a model, the validation and test sets are utilised to gauge its efficacy [32].
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2.3 Hyperparameter tuning

The performance of a machine learning model is strongly influenced by the se-
lection of values for its hyperparameters. The often arduous process of choosing
appropriate values for these hyperparameters is referred to as hyperparameter
tuning. There are a wide variety of techniques available in the literature for
hyperparameter tuning, each with its own complexities, advantages and disad-
vantages. While state-of-the-art techniques may employ metaheuristics or prob-
abilistic methods for this purpose [6], traditional techniques typically include
manual search, grid search, and random search.

2.4 Evaluation metrics

A vast number of evaluation metrics are available in the literature for evaluating
the efficacy of classification and clustering tasks. The most popular metrics for
classification tasks are precision, recall, the F1-score, accuracy, the area under
the receiver operating curve (AUROC), and the area under the precision recall
curve (AUPRC) [17, 19, 33]. As for evaluating clustering quality, the most com-
mon metrics for gauging separation quality include the silhouette coefficient [49],
the Caliński-Harabasz index [11], and the Davies-Bouldin index [14], whereas the
adjusted rand index (ARI) [24] proves to be a popular metric for gauging simi-
larity between clustering partitions.

2.5 Supervised and unsupervised machine learning algorithms

The algorithms suggested for incorporation into the CESD framework may be
partitioned into three categories, pertaining to classification, clustering, and di-
mensionality reduction tasks.

In the realm of supervised learning, classification is a machine learning do-
main in which the objective is to assign each data record in a data set to one
of k pre-defined categories. The process involves the estimation of a function
mapping the data records to category labels or to a category membership prob-
ability distribution during a training process based on labelled (domain, range)-
examples. In the latter case, the probabilistic function outputs may be converted
to categorical assignments by a process of thresholding. The CESD framework
is capable of accommodating traditional, yet effective, classification algorithms,
such as decision trees [10], bagging decision trees [20], boosting decision trees
[50], logistic regression [7], and naïve Bayes classifiers [44].

In the domain of unsupervised machine learning, clustering plays an im-
portant role and involves discerning specific features or patterns in a data set,
which can subsequently facilitate the formation of meaningful groups or clusters
[3]. The CESD framework requires distinct clustering configurations suitable for
distance-based clustering of mixed data — similar to those discussed by Van
de Velden et al. [58]. Mixed-data clustering techniques may adopt a variety of
distance metrics and typically incorporate some variation of the k-means algo-
rithm. Five quintessential clustering methods for mixed data clustering include
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the k-means algorithm [17], the k-medoids algorithm [28], the k-modes algorithm
[22], the k-prototypes algorithm [23], and the Gaussian mixture algorithm [40].

Dimensionality reduction techniques play a pivotal role in cluster visualisa-
tion and, in some cases, serve as a preprocessing technique to mixed-data cluster-
ing combinations. Prevalent techniques for dimensionality reduction in the realm
of clustering include principal component analysis (PCA) [1] for numerical data
and factor analysis for mixed data (FAMD) [42] along with uniform manifold
approximation and projection (UMAP) [38] for mixed data. These techniques are
frequently applied within the realm of clustering algorithms to facilitate a visual
representation of high-dimensional data clusters in two- or three-dimensional
spaces.

2.6 Natural language processing

The CESD framework facilitates the adoption of a very traditional NLP pro-
cessing pipeline combined with both traditional machine learning classification
algorithms, as well as transformer-based models such as BERT.

A number of preprocessing measures typically transpire in NLP applications
prior to performing tokenisation. Such measures encompass, though are not lim-
ited to, linguistic translation and the mapping of contractions — each bearing
its own set of implications for downstream NLP tasks [26].

Prior to conducting any form of computational analysis of a document, a
procedure must be in place for converting unstructured text data into a format
that is computationally intelligible. Each document essentially consists of an un-
structured sequence of sentences, varying in length. While humans might find
it relatively straightforward to interpret such unstructured text, computers are
only capable of recognising character strings — rendering the need for text to be
converted into a syntactic form that a computer can “comprehend.” Tokenisation
serves as one of the most pivotal steps in NLP tasks and involves the decompo-
sition of a text corpus into smaller pieces, commonly referred to as tokens, which
may be as rudimentary as words or as complex as subwords or phrases [26].

The data preprocessing stage subsequent to tokenisation in NLP tasks of-
ten involves a series of operations aimed at the normalisation and filtering of
tokens. These preprocessing steps are pivotal for enhancing the effectiveness of
downstream NLP tasks [4]. Extensive libraries exist for performing these steps
on English text, which emphasises the benefits of performing translation as a
pre-tokenisation processing step.

Normalisation encompasses a variety of sub-processes concerned with the
standardisation of text. This may include the conversion of text to lowercase,
rectifying spelling errors, and the application of stemming and lemmatisation
techniques [29] — all of which should be executed with care. The conversion
of tokens to lowercase might, for example, be deemed unnecessary for certain
model architectures, whereas the correction of spelling errors might lead to
malapropisms. Filtering generally refers to the elimination of irrelevant char-
acters or tokens, which may include special characters, numbers, or even entire
phrases that do not contribute to meaning in the task at hand [51].
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Vectorisation methods, responsible for converting textual data into a nu-
merical form, may be classified as being either context-dependent or context-
independent. There is, however, a strong correlation between context-independent
methods and count-based techniques (commonly exemplified by bag-of-words
(BOW)-like approaches), and between context-dependent methods and embed-
ding-based techniques (which include various types of word embeddings).

Context-independent text vectorisation methods provide a simple approach
to converting textual data into a numerical form, largely ignoring the syntac-
tic and semantic relationships between words. In the BOW model, for example,
documents are represented as unordered sets of their words, stripped of any
grammatical considerations [52]. Similarly, the term frequency-inverse document
frequency (TF-IDF) which, while capturing the relative importance of a term
within a corpus, remains oblivious to the surrounding textual context [47]. Tech-
niques such as word hashing [36] and the hashing vectoriser [27] also fall within
this scope, prized for their computational efficiency, but critiqued for the loss of
semantic complexity [59].

Context-dependent methods represent a more advanced type of text vectori-
sation, designed to capture some of the complex relational dynamics between
words — typically by employing sophisticated machine learning architectures.
Although most context-dependent methods utilise embedding-based approaches,
variations to count/presence based methods may introduce some degree of con-
text by considering higher-order n-grams, rather than singular terms (unigrams),
as document features. These n-grams represent sequences of adjacent words in
their original order [51]. Typically, most context-dependent methods are, how-
ever, embedding-based. An embedding is a vectorisation technique for converting
individual tokens within a corpus into vectors of real numbers. In this transfor-
mation, each dimension of the embedding vector corresponds to a latent feature
inherent to the respective token [60]. GloVe [45] and Word2Vec [39] are well-
known embedding algorithms. The pinnacle of context-dependent embeddings,
however, is considered to lie in transformer-based models such as BERT and
generative pre-trained transformers (GPT). These models have intricate archi-
tectures, reminiscent of attention mechanisms, and are capable of producing
embeddings that are sensitive to both syntactic and semantic nuances [15, 46].
The BERT model, developed by Devlin et al. [15], has undeniably come to be
recognised as a monumental advancement in the NLP landscape, particularly
for text representation.

BERT employs a deep transformer architecture, originally conceived by Vaswani
et al. [57], for pre-training language representations. Unlike traditional word
embeddings, BERT captures contextual information from both left to right and
right to left, thus being truly bidirectional as the name suggests. BERT has been
pre-trained on large Wikipedia and Bookcorpus data sets invoking two primary
tasks, namely masked language modelling (MLM) and next sentence prediction
(NSP). BERT consists of multiple layers of transformer encoders stacked on top
of one another, with the MLM being a cornerstone of its pre-training process
— randomly masking a fraction of the input tokens and then predicting these
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masked tokens based on the surrounding context. This bidirectional training
allows for the training of a unified model for a wide range of NLP tasks.

The BERT for sequence classification model is a fine-tuned version of the
original BERT model, specifically tailored for tasks that involve classifying en-
tire sequences of text into predefined categories by adding a classification layer
on top of the transformer encoder. Unlike other fine-tuned models, the BERT
for sequence classification model is trained to understand not only individual to-
kens, but also the relationships and dependencies between these tokens in each
sequence — rendering it effective for tasks such as sentiment analysis, topic
categorisation, and document classification [55].

3 The CESD framework

The framework proposed in this section is intended to guide a user during the
process of classifying data records that exhibit both structured and unstruc-
tured free-text attributes into similarity classes. Although there are numerous
techniques available in the literature for the various classification tasks within
the realm of structured data or unstructured data separately, combining the two
is not common practice.

Figure 1 contains a high-level overview illustration of the CESD framework,
which comprises the following main components: A graphical user interface, a
central processing component, and a database. By interacting with the frame-
work through the graphical user interface, a user can provide input data, con-
figure framework settings, and make decisions about the system that is being
developed. The purpose of the database is to save pertinent data during the
system development and deployment processes when executing the framework.
The primary body of the framework is represented by its central processing unit,
depicted in Figure 1 by the shaded region. This unit is responsible for all of the
framework’s computing, modelling, deployment, and analysis tasks.

There is an arrow between the graphical user interface and the central pro-
cessing component, labelled raw data, which represents the user providing the
raw input data to which the classification system is to be applied. Although it is
assumed that the input data contain unstructured data (free-form text) as well
as structured data (representing potentially both continuous and categorical at-
tributes), no further assumptions are made in respect of the nature or domain of
the data. Along with the raw structured and unstructured input data, the user
is expected to provide the necessary labels as some of the components utilise
supervised learning algorithms.

Communication between the user and the various framework components
during the classification system development process is represented by the arrows
between the graphical user interface and the central processing unit, labelled
configurations & decisions. These arrows are drawn as solid lines, signifying that
user involvement is necessary rather than optional for the framework to function
properly during the system development process. The domain and type of the
input data, the model architecture, and the feature set utilised during model
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Fig. 1: A high-level overview of the CESD framework for classifying mixed data.

training all affect how well a machine learning algorithm performs in terms of
performing classification tasks. Since there is no “one-size-fits-all” strategy that
could conceivably be applied to all data sets, the objective of the framework
is to guide the user through the process of constructing a classification system
rather than to fully automate the process. Therefore, user involvement is required
during the system design process.

The storage and retrieval of data and other resources during the system
development process are represented by the arrows between the database and
the central processing unit, which are labelled data & resources. In addition to
preserving trained models for future use, this enables any component within the
central processing unit to access the data and the results produced by other
framework components.
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The final classification results produced by the system are presented to the
user via the arrow labelled information which leads from the central processing
unit to the graphical user interface. These results ought to be in the form of
actionable information that can be used by the system user to guide organisa-
tional or personal decision-making. That is, the system output results ought to
be presented in a clear and understandable manner, such as in the form of a
summary or visualisation. The remaining arrows between the various framework
components represent the transfer of data and results between them.

Four components make up the framework’s central processing unit. The first
of these is called data preprocessing, and entails translating, vectorising and
preparing the unstructured text data for use as input data to the subsequent
modelling components. Furthermore, the structured data also have to undergo
preprocessing, which includes dealing with missing data values and imbalanced
data classes. The framework’s model construction phase is collectively repre-
sented by two components — its natural language processing classification com-
ponent and its structured clustering component. The framework provides two
separate model development streams, which are illustrated by the pathways rep-
resented by the two arrows leaving the preprocessing component and later reunit-
ing at the analysis component. The purpose of these two streams, which relate
to the establishment of structured and unstructured data models, respectively,
is to provide the user with freedom to select a model formulation that is best
suited to his or her specific use-case. Due to the fundamentally different mod-
elling approaches embodied in the two model development streams, the model
development processes are further partitioned. The use of models specifically em-
ployed for NLP classification of the unstructured portion of the data constitutes
the first stream, feeding into the second component. The NLP component also
generates vector features based on the unstructured text, which are then sent
to a third component along the second stream of structured data. This third
component takes the structured data as input and applies different clustering
techniques to these data according to an exploratory descriptive approach, as
opposed to performing a classification task.

The two streams described above converge at a final component, called de-
ployment and analysis. This component serves the purpose of guiding the user
as to how the models established in earlier components should be applied to
new, unlabelled data, and how the results produced by these models should sub-
sequently be aggregated into a comprehensive summary or result visualisation
which can be viewed at various levels of detail by the user.

4 Case study

This section is devoted to a discussion on the application of the computerised
instantiation of the proposed framework to case study data pertaining to a pro-
duction environment, which have been anonymised for the purpose of this article.
The data pertains to the logging of errors in this environment, after which do-
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main specialists categorise errors into different classes of severity — an indication
of how time-sensitive the processes should be of resolving a particular error.

4.1 The data preprocessing component

The first step of the case study involved invoking the preprocessing component
of the CESD framework, tasked with the ingestion of the raw data and their sub-
sequent transformation into a usable data structure. The data subset utilised in
this case study contained 43 features and approximately 415 000 records. In this
data set, the feature of particular significance (the target feature) is error sever-
ity. This feature is categorical in nature, and may assume one of seven ordinal
values that serve as an indication of the severity levels associated with reported
errors. Moreover, the data set incorporates two unstructured text features, the
name and the description of each error, which are intended for utilisation in the
NLP classification component of the framework. As a result of many optional
data fields in the logging of each error, a considerable portion of the features
exhibited substantial quantities of missing values.

During the initial stage of preprocessing, the focus was directed towards the
target feature which, as mentioned, denotes severity across seven ordinal cate-
gories, namely 01-safety relevant, 02-breakdown occurs, 03-permanent unsatis-
factory, 04-deficient, 05-unsatisfactory, 06-customer irritated, and 07-customer
noticed. These seven classes were very unbalanced in terms of their occurrence
in the data subset.

The objective was to derive a binary feature from these categorical values,
serving as an indicator of severe or non-severe errors, with the former denot-
ing errors potentially carrying substantial cost implications during production.
The intent was to demonstrate the viability of automating the assignment of
this binary value to future errors, thereby flagging potentially severe issues for
closer scrutiny by a quality specialist. The need for such an approach arises from
the fact that the logging of new errors initially involves assigning severity lev-
els, oftentimes inaccurately. This leads to cases of severe errors initially going
undetected as these inaccuracies are only later rectified by specialists. As a re-
sult, a need was identified to partition the error severity values ordinally into
two distinct categories. Discussions with an expert in this domain corroborated
our approach of finding a splitting point among the seven error severity val-
ues. The eventual decision of where to establish this split was reinforced by the
skewed distribution of the classes, with a notable under-representation of more
severe errors. A method was devised to categorise errors in such a manner that
those in Categories 1–4 were deemed as severe, while those in Categories 5–7
were deemed as non-severe. This classification rationale aligns with the modified
class distribution illustrated graphically in Figure 2.

Given the ordinal nature of this categorisation, it was considered the most
balanced, meaningful binary representation attainable as a result of the inher-
ent class imbalances. In order to avoid model bias towards the majority class,
undersampling was applied to the majority class in pursuit of a balanced train-
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Fig. 2: The class distribution of the modified error severity feature in the data
subset, showcasing the composition of smaller classes.

ing subset. This was coupled with stratified sampling to ensure the inclusion of
representative proportions from the original classes.

The second phase of data processing pertained to the treatment of the un-
structured data. Table 5 in the appendix contains a summary of eleven vectori-
sation combinations employed in respect of the case study data within the NLP
classification component of the CESD framework. Due to the presence of two
distinct and identifiable text features in the data set — the name and descrip-
tion of each error — all model permutations were applied individually to both
cases. These combinations were undertaken with the aim of achieving optimal
classification outcomes. These algorithms are combined with word vectorisa-
tion techniques originating from both the rudimentary count-based domain, as
well as the more sophisticated BERT embedding approach. The last combina-
tion employs the transformer-based model BERT, accompanied by its distinctive
vectorisation technique.

As for data set integrity, it is noteworthy that no instances of absent name
or description features were observed. In accordance with the CESD framework,
the initial stage of preprocessing (before tokenisation) is aimed at achieving
translation. Approximately 30% of the ticket name and description features
were in languages other than English (also employing space delimiters). It was
therefore decided to translate all text to English due to extensive preprocessing
libraries existing for English [21, 35]. As for tokenisation, the NLTK Python
library was used to undertake word-level tokenisation on sentences for use by the
first five combinations in Table 5. For the manipulation of text in Combinations
6 through 11, Bert-base-uncased (BERT’s pre-trained base model trained on
lowercase text) was employed.
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Word level tokens necessitated additional preprocessing. Word clouds of un-
processed tokens revealed many application-specific acronyms, with the rationale
for their inclusion being somewhat unclear. Some of these acronyms denoted the
names of product components and processes involved in an error, therefore hold-
ing semantic relevance. The incorporation of these acronyms in the data could
be up for debate, but the possibility that specific acronyms pertained to cer-
tain severities of errors instilled confidence in the potential of their inclusion
manifesting discriminatory power. The word clouds also revealed the need for
stopword removal and filtering. After translation, contractions were expanded,
data underwent normalisation to lowercase characters, the elimination of special
characters and punctuation took place, and stop words were eliminated.

The third phase of the data processing pertained to the structured data. A
total of 38 features contained structured data and required additional processing
(all the features other than the error severity, name, and description features).
Initially, 31 features were categorical, six were numerical, two were date features,
and two were text features.

In light of the requirement for only categorical and numerical feature use
in the clustering component, it was decided to establish a numerical feature
denoting the duration over which an error remained unresolved from the differ-
ence between two date features. Furthermore, a feature mistakenly categorised
as a categorical attribute was engineered to a numerical feature, indicating the
maturity of level of the product. Another high-cardinality categorical feature,
containing many sub-features separated by commas, was engineered to a numer-
ical count feature.

A summary of the transformed features may be found in Table 6 in the
appendix.

The issue of missing values was addressed next. Given the modest propor-
tion of missing values for most features, two rather rudimentary (but effective)
methodologies were employed. For categorical features, the mode was used to
impute missing values, while k-nearest neighbour imputation was utilised for
numerical features. Furthermore, the high-cardinality feature, Feature 14, did
not exhibit characteristics enabling the numerical encoding thereof. The feature
was therefore excluded from the data stream feeding into the clustering compo-
nent.

4.2 The NLP classification component

For the first ten classification combinations in Table 5, the embeddings derived
by performing both TF-IDF and BERT vectorisation were utilised to train of
the five distinct algorithms in the table. The task of hyperparameter tuning was
performed, carrying out a grid search in conjunction with 5-fold cross validation.
The hyperparameter values subjected to the grid search are outlined in Table 7
in the appendix. Default values were used during the tuning process for all other
hyperparameters not expressly delineated in the table.

Not all hyperparameter combinations of the logistic regression model were
feasible due to inherent constraints. The process of conducting the grid search
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involved 5-fold cross-validation, as mentioned. According to this approach, the
training data were partitioned into varying subsets aimed at enabling iterative
training in respect of varying selections of these subsets while validating in terms
of the remaining data. This methodology renders it unnecessary to have a sep-
arate validation set.

The need, however, arose in the BERT model for a training and validation
subset. During the validation process, the objective was to evaluate the model’s
performance on unseen data, rather than tuning its weights. It is important
to underscore the reason why it was still necessary to have a further separate
test set. This was due to the validation accuracy, although not affecting model
weights, ultimately being used to determine appropriate values for parameters
such as the optimal training epochs.

The BERT model, implemented in Python as BertForSequenceClassifi-
cation, was instantiated with parameters specifying the number of distinct
classes and a dropout probability. Additional parameters included the AdamW
optimiser and the establishment of a linear warmup scheduler. Ultimately, the
training and validation cycles transpired across a total span of ten epochs, af-
ter which the test data set could be utilised to compute an unbiased accuracy
metric.

4.3 The clustering component

The underlying objective of the clustering component is to extract meaningful
insight from the data set. The focus therefore shifted to performing clustering
on specific error severity classes in the data set. This allowed for discerning nu-
ances such as the optimal number of clusters inherent to a given class. Analytic
instruments, such as word clouds, were then be employed to glean insight into,
and elucidate, the intrinsic characteristics of these clusters. The decision was
made to perform clustering on the structured data in an isolated fashion, be-
fore performing clustering on a combination of the structured data and BERT
embeddings, thus making it possible to draw comparisons between the differ-
ent results obtained. The clustering was therefore partitioned into parts, with
respective clustering combinations for each part as denoted in Table 1.

Table 1: Different combinations of distance metrics and clustering methods ap-
plied to the structured portion and the BERT embeddings of the error data set.

# Distance metric processing Clustering

1 Dimension reduction (FAMD) k-Means
2 Recode numerical features k-Modes
3 Dimension reduction (FAMD & PCA) k-Means

In the context of clustering combinations applied to the structured data, the
sheer size of the data set presented unique challenges. Most clustering algorithms
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employ distance metrics of relatively high time complexity, thereby limiting the
number of viable options. Given the computational demands, coupled with data
sensitivity concerns rendering the use of cloud-based computing infeasible, only
two clustering combinations were implemented (the first two entries of Table 1).
Combination 1, which utilised FAMD for dimensionality reduction, rendered the
use of k-means computationally feasible. Moreover, Combination 2, the k-modes
approach (tailored for the clustering of categorical data) utilised a matching
dissimilarity metric of low time complexity. Both these combinations proved to
achieve large ARI scores in the work of Van de Velden et al. [58].

In order to avoid the so-called cluster masking problem for combination 1,
an outcome in which the process of dimension reduction conceals the inherent
structure of the clusters, it was imperative to select an appropriate degree of
dimensionality reduction. This was performed by utilising the elbow method
to evaluate component variance, which indicated that 70% of variance was de-
scribed by 693 components. As for Combination 2, the numerical features were
subjected to discretisation before embarking on the clustering process. This in-
volved binning numerical features into a set of N bins, with categorical labels
being assigned based on the bin in which a value lies. The k-means algorithm
was used to optimise the bin selection per feature, allowing up to five bins. The
elbow method was again utilised to determine the optimal number of k-modes
clusters for Combination 2.

In the context of clustering applied to the combination of BERT embeddings
and the structured data, the sheer size of both data sets again presented unique
challenges. In light of computational constraints, an alteration of Combination 1
was performed — utilising the 693 FAMD features and 50-PCA-reduced BERT
description embeddings (attained through elbow selection at which 87% of the
variance was described). This clustering method is denoted as Combination 3 in
Table 1.

Furthermore, due to the addition of fifty numerical features, the application
of Combination 2 was considered computationally infeasible as this would entail
the addition of fifty categorical features to the structured data set — notwith-
standing the fact that discretising the PCA-reduced BERT embeddings would
almost inevitably lead to a significant loss of information.

4.4 The deployment and analysis component

In order to carry out a fair evaluation of the NLP classification models, they were
exposed to the unseen test data set. Although the models were not explicitly
trained on the validation set, it was used to make decisions about the values
of hyperparameters or, in the case of the transformer model, to determine the
number of epochs over which the model should be trained. Given the imbalanced
nature of the testing set, the AUC score was deemed an appropriate evaluation
metric. The corresponding scores achieved by the various model combinations
in respect of the name and description features are summarised in Table 2.

Several observations can be made. First, it is evident that the BERT model
exhibited superior classification performance in respect of both the name and de-
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Table 2: Test AUC scores for different classification model combinations in re-
spect of the name and description features of the processed error data set.

# Vectorisation Classification Name Description

1 TF-IDF Extra trees 0.74 0.77
2 TF-IDF Adaptive boosting 0.68 0.73
3 TF-IDF Random forest 0.73 0.76
4 TF-IDF Multinomial naïve Bayes 0.76 0.76
5 TF-IDF Logistic regression 0.76 0.77
6 BERT-base-uncased Extra trees 0.68 0.71
7 BERT-base-uncased Adaptive boosting 0.67 0.70
8 BERT-base-uncased Random forest 0.67 0.72
9 BERT-base-uncased

(normalised)
Multinomial naïve Bayes 0.65 0.63

10 BERT-base-uncased Logistic regression 0.69 0.72
11 BERT-base-uncased Bert 0.78 0.80

scription features. Furthermore, logistic regression emerged as the top performer
across both embedding combinations among the conventional models. It is im-
portant to underscore that the traditional models suffered a decrease in AUC
when combined with BERT embeddings — possibly stemming from the inherent
limitations of these models in terms of encapsulating the complexities of BERT
embeddings. Upon closer examination of the classification outcomes achieved in
respect of the description feature, a general trend was observed of a very slight
increase in AUC scores for all but Combination 9. This phenomenon can likely
be ascribed to the better encapsulation of class labels within the description
fields of errors.

For clustering Combination 1, silhouette scores were used to determine the
ideal values for k (the number of clusters). These silhouette scores may be found
in Table 3 for the non-severe and severe error classes, respectively.

Table 3: Silhouette scores for different values of k for clustering Combination 1,
and for the non-severe and severe error classes, respectively.

Clusters 2 3 4 5 6

Silhouette scores: Non-severe 0.122 0.119 0.055 −0.169 −0.179
Silhouette scores: Severe 0.157 −0.217 −0.187 −0.184 −0.183

For the non-severe error category, the silhouette scores indicated that values
of k = 2 and k = 3 appeared to yield the best numbers of clusters — with
k = 2 exhibiting marginal superiority. For the severe category, on the other
hand, k = 2 emerged as the singular logical option due to its positive silhouette
score. Upon evaluation of the silhouette scores for both categories, an overarching
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theme is discernable in which the clusters do not exhibit significant separation,
particularly when the value of k exceeds 3. The k-modes clusters emanating from
Combination 2 were therefore examined.

The silhouette score, which relies on measuring distances between data points
and cluster centroids, is not directly compatible with the distance metrics em-
ployed by the k-modes algorithm. Therefore, a different approach was adopted.
In the context of the k-modes algorithm, the cost denotes the cumulative dissim-
ilarities between objects and their respective cluster modes — quantifying the
dissimilarity between data points within a cluster and the central mode of that
cluster. Notably, as the value of k increases, the cost tends to decrease. The rate
of this cost decrease, however, starts to decrease at a certain juncture, resulting
in the formation of an elbow in the graph. This elbow represents a starting point
of diminishing returns with respect to the specific value of k. For both the severe
and non-severe error classes, it was observed that the most appropriate number
of clusters is k = 3. In order to gauge the quality of clusters, one may attempt
to visualise them in a three-dimensional space. While a dimensionality reduction
technique such as FAMD may not entirely capture the distance metric employed
by the k-modes algorithm, it might yield some insight into cluster quality. Fig-
ure 3 contains a three-dimensional visualisation of the two pairs of clusters, for
the severe and non-severe error classes, respectively.

(a) Non-severe errors (b) Severe errors

Fig. 3: Three-dimensional representations for clustering Combination 2, show-
casing cluster separation for both classes of error severity.

While these clusters do not appear to exhibit a substantial degree of sepa-
ration, certain discernible distinctions are apparent. The non-severe error class
seems to exhibit superior separation, with two larger clusters, depicted in purple
and turquoise, appearing to be right next to each other. The smaller yellow clus-
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ter, on the other hand, seems to lie some distance away from the other clusters.
As for the severe error clusters, the two larger clusters again exhibit some degree
of separation, running in the directions of principal components 1 and 2. The
third, smaller yellow cluster, does not appear to exhibit good separation from
the other clusters. As previously noted, it is worth considering that the FAMD
may not entirely capture the extent of variance accounted for by the k-modes
distance metric — hence this depiction should not serve as the sole determinant
of good separation. Due to a good amount of literature endorsing the overall
effectiveness of the k-modes method both in terms of capturing categorical data
clusters and being extended to mixed data, especially considering that a majority
of the features were initially categorical, further investigation into these clusters
was required [5, 58]. This task was carried out by observing the respective word
clouds. The word clouds for the different clusters exhibited a prevalence for cer-
tain groups of tokens and acronyms, potentially providing insight to production
specialists.

Lastly, for clustering Combination 3, silhouette scores were used to determine
the ideal value for k, the number of clusters. These silhouette scores may be found
in Table 4 for both the non-severe and severe classes.

Table 4: Silhouette scores for clustering Combination 3 and for different values
of k.

Clusters 2 3 4 5 6

Silhouette scores: Non-severe 0.542 −0.109 −0.134 0.051 −0.113
Silhouette scores: Severe 0.121 0.023 −0.210 −0.213 −0.193

In both cases, the silhouette scores indicated that a value of k = 2 emerged
as the singular logical option due to markedly positive corresponding silhouette
scores. Upon evaluation of the silhouette scores for both categories, it is possi-
ble to discern an overarching theme according to which clusters do not exhibit
significant separation when k exceeds 2, similarly to the observation made for
the silhouette scores of clustering Combination 1. The reason for this may pos-
sibly be due to the complex and diverse information captured by the structured
portion of the data. Figure 4 contains a graphical representation of the two sets
of k-means clusters in the form of three-dimensional plots obtained upon having
performed a further PCA on the 743 component embedding (the amalgamation
of the 693 FAMD components and the 50 PCA components). This illustration
demonstrates a commendable degree of separation — more than that of Combi-
nation 1 — between the clusters of both error classes, both of which exhibit two
clusters greatly varying in size — a phenomenon particularly pronounced in the
case of the non-severe error clusters and potentially shedding light on the large
silhouette score obtained in Table 4.
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(a) Non-severe errors (b) Severe errors

Fig. 4: Three-dimensional representations for clustering Combination 3 showcas-
ing cluster separation for both classes of error severity.

These clusters were again further investigated by observing the respective
word clouds, which again revealed interesting trends in terms of clusters con-
taining certain words.

5 Conclusion

Based on the aforementioned analysis, the top-performing classification model,
BERT, achieved an impressive AUC test accuracy of 80% for the target variable
when applied to the description feature. Just short thereof, both the logistic
regression and extratrees algorithms achieved AUC scores of 77%. These clas-
sification results attest to the efficacy of the CESD framework with respect to
implementing NLP classification.

Moreover, the clustering component of the framework revealed valuable in-
sights pertaining to the target variable of the data set. The approach based on
clustering a combination of the BERT embeddings and structured data achieved
a noticeable increase in silhouette score over the approach based solely on struc-
tured clusters — identifying clusters that varied considerably in size.

Although it is stressed that experts within the particular manufacturing do-
main may be able to interpret the corresponding word clouds appropriately,
potentially extracting valuable practical insights from them, an attempt was
made to uncover exemplars of these insights. The analyst is afforded consider-
able freedom when it comes to the task of how (s)he prefers to use the outputs
of the clustering component. Based on words appearing only in specific clusters
for the respective classes of severity, for example, an analyst might glean insight
affecting the preprocessing steps pertaining to the NLP classification compo-
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nent. It may be argued that tokens which appear prominently in both classes be
removed from the text corpus, as it might confuse NLP models. Alternatively,
the analyst might choose to use the clusters as some sort of filtering criteria for
model training, perhaps even determining stratified sampling weights within er-
ror severity classes (larger clusters might contain words that are proportionately
more important). This suggestion is illustrated in Figure 5, in which the training
undersampling process has been replaced with stratified sampling of the cluster
ratios (from Combination 3) for the larger non-severe error class. The large sil-
houette score of the non-severe clusters emanating from Combination 3, being
upward of 0.5, indicates that these clusters are very well separated, and may
perhaps improve upon model generalisation if incorporated into the training set
ratios.

(a) Non-severe clusters from Combination 3 (b) Stratified undersampling proposal

Fig. 5: Cluster-weighted stratified sampling proposal for training data.
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A Appendix

This appendix contains tabulated information pertaining to the case study, ref-
erenced in §4.

Table 5: Different combinations of vectorisation and classification methods em-
ployed.

# Vectorisation Classification

1 TF-IDF Extra trees
2 TF-IDF Adaptive boosting
3 TF-IDF Random forest
4 TF-IDF Multinomial Naive Bayes
5 TF-IDF Logistic regression
6 BERT-base-uncased Extra trees
7 BERT-base-uncased Adaptive boosting
8 BERT-base-uncased Random forest
9 BERT-base-uncased

(normalised)
Multinomial Naïve Bayes

10 BERT-base-uncased Logistic regression
11 BERT-base-uncased BERT
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Table 6: Error data set feature information, after the processing of structured
features.

Feature Mean Std Cardinality Missing % Data type

Feature 1 689 0.06% Categorical
Feature 2 3 1.56% Categorical
Feature 3 5 1.23% Categorical
Feature 4 11 0.04% Categorical
Feature 5 5 0.05% Categorical
Feature 6 604 0.00% Categorical
Feature 7 9 286 6.36% Categorical
Feature 8 23 0.03% Categorical
Feature 9 119 0.03% Categorical
Feature 10 4 0.71% Categorical
Feature 11 4 0.00% Categorical
Feature 12 11 0.00% Categorical
Feature 13 421 1.73% Categorical
Feature 14 74 198 0.38% Categorical
Feature 15 40 0.03% Categorical
Feature 16 7 4.33% Categorical
Feature 17 3 14.18% Categorical
Feature 18 2 0.00% Binary
Feature 19 2 0.00% Binary
Feature 20 2 7.10% Binary
Feature 21 2 0.00% Binary
Feature 22 2 1.01% Binary
Feature 23 2 0.00% Binary
Feature 24 2 7.09% Binary
Feature 25 2 0.00% Binary
Feature 26 2 20.98% Binary
Feature 27 2 0.00% Binary
Feature 28 2 0.22% Binary
Feature 29 1.274 19.322 6.06% Numeric
Feature 30 0.001 0.143 0.00% Numeric
Feature 31 628.474 250.981 2.26% Numeric
Feature 32 0.003 0.056 0.00% Numeric
Feature 33 0.105 1.058 0.00% Numeric
Feature 34 0.014 0.131 0.00% Numeric
Feature 35 441.847 72.133 31.58% Numeric
Feature 36 9.851 11.085 0.00% Numeric
Feature 37 364.488 266.027 0.00% Numeric
Name 0.00% Text
Description 0.00% Text
Error severity 2 0.00% Binary
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Table 7: The hyperparameter grid values considered for each model during the
classification tasks performed on the error data set.

Algorithm Hyperparameter Possible Values

Number of estimators 5, 10, 15
Extra trees Maximum depth None, 5, 10

Maximum features sqrt, log2, None

Maximum depth of base estimator 3, 5, 10
AdaBoost Number of estimators 5, 10, 15

Learning rate 0.1, 0.5, 1.0

Number of estimators 5, 10, 15
Random forest Maximum depth None, 5, 10

Maximum features sqrt, log2, None

Multinomial naïve bayes Alpha 0.1, 1.0, 10.0

C 0.1, 1.0, 10.0
Logistic regression Penalty l1, l2, elasticnet

Solver newton-cg, lbfgs,
saga


