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Abstract. Current data in the literature, suggest that over the last decade, loss of 

control inflight (LOC-I) account for over 40% of all fixed wing fatalities [38]. 

This issue of LOC is also reflected in UK based data on the subject of General 

Aviation (GA) accidents causality [23, 48]. As discussed in  [24, 32, 38], the 

occurrence of upsets and LOC have predominantly been studied within the 

transport and commercial aircraft categories, FAA Title 14 Operations (Parts 

121; 135), leaving the GA, Part 91 operations category, a lot less examined  and 

relatively underdeveloped in comparison. This disparity motivates the current re-

search in that, given the propensity of Part 91 rules to be an equally high-risk 

enterprise, it is worthy of careful consideration regarding LOC-I and upset pre-

vention and recovery (UPR) research. This paper presents an overview of the 

FCM strategy, applied to the context of startle, their possible causes, and the po-

tential impact on performance, as a holistic approach to understanding and miti-

gating, the challenge of startle potentiated loss of control. 

Keywords: General Aviation Safety, Fuzzy Cognitive Maps, Startle, LOC-I. 

1 Introduction 

“Aircraft upset” events which have in instances, involved a loss of control in-flight 

(LOC-I) has been identified as a leading cause of in-line operation fatalities in the last 

two decades [25]. The LOC incident categorization based on accident and incident anal-

yses over the time period mentioned, has been shown to even surpass the Controlled 

Flight into Terrain (CFIT) accident category which once topped the accident/incident 

tables [4, 25]. This drives the current impetus to focus on developing solutions to this 

issue, particularly in the General Aviation (GA) category (Figure 1). The NTSB in 

America, suggest in their latest work, that over the last decade, the LOC problem is 

described to account for over 40% of all fixed wing fatalities [38]. This issue of LOC 

is also reflected in UK based data on the subject of GA accidents causality [23, 48]; 

with a key recommendation for improved training to tackle this trend. As discussed in  
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[3, 5, 23, 24, 38], the occurrence of upsets and LOC have predominantly been studied 

within the transport aircraft categories, i.e. FAA Title 14 Operations (Parts 121; 135), 

leaving the GA, Part 91 operations category, a lot less examined  and relatively under-

developed in comparison. This disparity thus motivates the current research; in that 

given the propensity of Part 91 operational rules, to be a very high-risk enterprise, just 

like the commercial category, it is also worthy of careful consideration regarding LOC-

I and upset prevention and recovery (UPR) research. The relative affordability of a 

modern flying experience and the continued push for progress in all things aeronautical 

safety related, this work proceeds to espouse perspectives which focus on a need, to 

tackle the LOC; particularly the startle potentiated LOC problem [47], within the con-

text of GA Visual Flying Rules (VFR), Part 91 operations. 

 

Fig. 1. - General Aviation Accidents [38] 

1.1 Aim 

We aim to provide an account of human-machine interaction characteristics, in the con-

text of unexpected occurrences, stemming from a pilot in control (PIC), being in a state 

of startle, or from the loss of situational awareness.   

This loss of situational awareness holds immense potential to exacerbate a critical ma-

neouvere, or alter an otherwise benign flight attitude into an upset attitude [6]. We as-

sume a coupling of the human; GA pilot, and the machine; Aircraft, with this position, 

and this forms the basis upon which the following discussion is presented. 
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1.2 Objectives 

This paper proposes the following objectives towards achieving the aim. 

1.  To provide an overview of the FCM methodology and apply this to the subject of 

startle analysis.  

2. To develop an FCM framework of startle causality, for the design of an experiment, 

to investigate and test a startle input to normal flight operations. 

3. To provide recommendations on outcomes and for further work in the domain. 

1.3 Structure of Paper 

The following section of this paper discusses pertinent literature and concepts on the 

issue of startle causality and the human factors associated with the phenomenon. A brief 

discussion on the nature of fuzzy set theory is also provided. Section 3 provides details 

of the FCM framework and the associated codification of the FCM for the current study. 

Sections 4 and 5 provides conclusions pertaining to the effectiveness of the FCM for 

representing startle causality and some final thoughts for future work in this regard. 

2 Review of Literature 

On the subject of startle impacts on performance, current literature suggest that human 

errors are at the centre of the system dynamics [21, 29, 49]. The HFACS framework, 

[52] provides an analysis of the error phenomena, aggregating the unsafe acts of oper-

ators (i.e. pilots) into two main classifications,  

• Errors, which represent the mental or physical inputs which lead to undesir-

able outcomes. 

• Violations, suggesting a disregard for the safety rules which govern flight 

operations. 

To interpret a reasonable abstraction, of startle causality and its underlying dynamics, 

it is instructive to establish the key factors which drive the startle behaviour, as well as 

investigate what possible connections exist between them. The following sections pro-

vide a discussion on the Fuzzy Cognitive Mapping (FCM) method, for determining 

startle causality; establishing crucial foundations upon which future experimentation in 

a simulator are based. The Fuzzy Cognitive Map (FCM), is a method developed by 

Kosko in 1986  as an extension of cognitive maps,  and was originally created using a 

fuzzy logic viewpoint, for modelling causal knowledge [20, 46] . The map is repre-

sented as a diagraph, depicting a specification of concepts as the nodes of a map, and 

their causal edges, as the strength of each concept’s impact to the domain. [40] provides 

a detailed treatment of this representation.  These strengths are represented, as fuzzy 

weights of any connected concepts in the map. Therefore, outcomes of causality rely 
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on the relationship strength between nodes and define the weight matrix for each itera-

tion of the mapping process. 

 

Fig. 2. Diagram of FCM Example [46] 

The effectiveness of FCMs can be appreciated, on the basis that behaviours of systems 

can be studied quite successfully, by combining aspects of fuzzy logic, neural networks, 

and semantic network theories, in a structured and logical manner, with human expert 

input  helping to form a very rich and useful domain knowledge representation [15, 30, 

34]. In the current research, we seek to continue the trend of recent decades ,across 

various disciplines [2, 19, 20, 39], involving the use of FCMs. However, there is little 

representation as applied to the topic of startle analysis; more so within the GA arena. 

This could have wider positive implications with respect to the subject of flight simu-

lation training, and overall pilot safety.  To demonstrate the notion of fuzzy logic, in 

the sense that is applicable to the problem of investigating startle behaviour, consider 

that traditional logic, typically represents the output of a variable as a binary; True (1), 

or False (0) outcome. Fuzzy logic on the other hand, represents the value of such vari-

able anywhere between 0 and 1. For instance, the determination of a causal factor of 

startle in-flight, might be ascribed a value of say, 0.3 or 0.7 to mean partially true or 

false (i.e. in terms of being impactful to the elicitation of a startle reflex). This value 

provides an intuitive regard for the relationship strengths between concepts in the FCM. 

It also provides good foundation for considering causality, in terms of probabilistic 

thinking on the cause and effect conundrum, where indeterminacy and unpredictability 

are a mainstay [31]. As a knowledge representation and reasoning technique, the FCM 

can be used to effectively describe a dynamic system in a form close to how humans 

perceive it [39, 41, 42]. This characteristic proves to be vital in capturing the experts’ 

knowledge and any other available knowledge from data, in the form of rules empha-

sizing causal connections and map structure. The resulting fuzzy model is used to ana-

lyse, simulate, and test the influence of parameters in order to predict system behavior. 

Probabilistic thinking provides a basis, for determination of what level, or degree of 

truth, is ascribed to causal independent variables. Given a time-critical decision-making 
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situation, such as an unexpected escalating emergency for example, human factors in-

cluding automation bias, coupled with poor Aeronautical Decision Making (ADM), 

could force the pilot to maintain reliance on cues emanating from potentially failing 

sources [7, 8, 52]. Crucially, the perception of the pilot may also be greatly eroded by 

the unexpected event, further complicating the problem [12]. In such circumstances, it 

is possible for the startled pilot, to be further hampered by the pressure as per the evolv-

ing situation;  causing an instinctive  reactionary behaviour with a strong potential for 

a subsequent mishap [26, 29, 43]. The FCM framework provides a methodical way of 

codifying such. 

Assuming that the  fluid and complex  human decision-making process; during in-flight 

operations [3, 22], is granted; and can be coupled with the impact of startle on loss of 

control situations [21, 27, 29], the central principle for studying startle impact on per-

formance is manitained, and the FCM helps to derive a representation, as closely related 

to reality as possible. The application of an FCM presents a unique opportunity in the 

domain, to evaluate functional human factors, which are integral in the performance of 

a flight task, and which may ultimately influence the pilot’s reaction to a startling event. 

In the literature, various efforts have been made to establish a basis of cognitively mod-

elling and engineering the human factors of decision making and time pressures out of 

complex processes. Some of the tools which have been documented include the follow-

ing ACT-R; [14], and MIDAS [17, 50], for instance [18]. These models and frame-

works have been extensively studied and documented in the literature but are outside 

the scope of this submission. However, the FCM framework is deemed to be of greater 

significance for the present study; Primarily for its ease of use and its wide spread adop-

tion across various disciplines, but significantly this wide spread usage of FCMs is not 

the case within the aviation domain. This work thus presents the FCM as a viable addi-

tion to the study of in-flight human factors pertaining to the startling reactions of a GA 

pilot. It also provides an easily adaptable and flexible representation method for the 

uncertainty of modelling a process such as startle causality. 

2.1 Fuzzy Sets  

The mathematical abstraction of fuzzy logic can be summarized using the logic of fuzzy 

sets. Consequently; In a crisp set, membership or non-membership of an element, say 

‘x’ in a set A is described by a characteristic function 𝜇𝐴(𝑥), where µA(x) = 1 if x ϵ A 

and µA(x) = 0 if x ϵ A. Fuzzy set theory extends this concept further by defining partial 

membership. This means that a fuzzy set A on a universe of discourse U is characterized 

by a membership function that takes values in the interval [0, 1]. In essence, this set 

admits all uncertainties associated with the variable with a graded membership [11]. 
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2.2 FCM Reasoning 

For FCM reasoning process, a simple mathematical formulation is usually used. To this 

end, values of the concept Ci in time t are represented by the state vector Ai(k), and the 

state of the FCM construct as a whole can be represented by a state vector A(k) = [Ai(k), 

…, An(k)], which represents a point within what is called a fuzzy hypercube In = [0, 

1]n. Structurally, an FCM may be represented by what is termed a fuzzy directed di-

graph with feedback. In this form, it is akin to a collection of neural processing units 

and weighted relations which could be positive or negative, signifying levels of causal-

ity. Using this method, a system could conveniently be demonstrated in terms of the 

concepts (i.e. variables of the system) and the causal relations between these concepts. 

Each concept is characterized by its activation degree, which denotes to what extent, a 

variable is considered active in the system. 

There are three possible types of causal relationships between concepts Ci and Cj  that 

express the influence from one concept to another as follows: 

• a) wij > 0 indicates a positive causality, then an increase (decrement) on Ci 

will produce an increment (decrement) on the effect concept Cj with inten-

sity |wij |. 

• b) wij < 0 indicates a negative causality, then an increase (decrement) on Ci 

will produce a decrease (increment) on the effect concept Cj with intensity | 

wij |. 

• c) wij = 0 denotes the absence of a causal relationship between concepts Ci 

and Cj. 

3 Building the FCM 

For our case of studying startle events and its association with reduced performance, an 

event causality FCM serves two functions; explanatory and predictive.  This is achieved 

using a rule-based fuzzy inference system, interpreted from expert opinions. The cor-

relation of causal factors, during the execution of a high cognitive workload, is of key 

importance to how errors within ADM can be mitigated. This theory allows us to es-

tablish a Fuzzy cognitive map (FCM) upon which we can study the issue of a startled 

pilot. Two questions are considered to this end; would it be possible to determine a 

concepts (node) hierarchy generation process, based on a consideration of human fac-

tors, for a structured analysis of the case study? And from this generation process, does 

the subsequent aggregated study data provide a logical FCM model representation, to 

inform the testing of a GA pilot in VFR transitioning to unexpected IFR conditions. To 

illuminate the degree to which the startled mental model influences the effort of miti-

gating LOC-I, the flight simulator space provides an environment where these relation-

ships may be tested by pilots, safely and inexpensively. This allows exploration of the 
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hypothesis by the researcher and for the trainee pilot, development of cognitive and 

motor skills required, to successfully maintain safe operation of aircraft in a startling 

scenario. 

As mentioned, the human factors that are considered within this study and that form 

the basis of the causal variables used for the questionnaire, are obtained from the 

HFACS taxonomy on human factors [44]. This work identified 6 major perspectives 

for the consideration of human factor errors; these include cognitive, ergonomic, be-

havioural, aeromedical, psychosocial, and organizational perspectives. Based on the 

application of the SEEV approach for visual attention allocation and performance out-

put analysis; the former being crucial to the task of piloting an aircraft, Figure 3 demon-

strates its applicability to the current research in the cognitive, behavioural, and organ-

isational perspectives of task execution driven primarily by the human vision system. 

However, a full treatment of this framework is outside the scope of this paper. Assur-

ances on the applicability can be taken from [16, 18, 51] in this regard. 

 

Fig. 3. SEEV Model – Expert Pilot [51] 

Provided a normalized weighting of the human factors’ variables (causal inputs) can be 

obtained, the visual comprehension of available information by pilots in a high stressed 

situation can be examined objectively. [28] provide inspiration from their startle and 

surprise process as described in figure 1 below. Focusing on the startle aspects specif-

ically, the model is used in conjunction with the Saliency – Effort – Expectancy – Value 

(SEEV) framework [18, 51] to develop the experiment format, in a way that assesses 

meta cognitive skills through task performance outputs and pupillometric information 

capture. The SEEV model provides a way to converge the ideas of cognitive task allo-

cation and execution, based on an expected value of visual scanning or attention allo-

cation. This establishes an understanding of the operator’s (Pilot) attention model and 

supports representation, on key criteria associated with core sub tasks of the “Aviate – 

Navigate – Communicate” decision making model. Assurances can be taken from 

These attentional representations are guided by Areas of Interest (AOI); Instrument 

Panels (IP); Outside World (OW); Cockpit Display of Traffic Information (CDTI), and 

Bandwidth (BW). Of interest in the present research, are the AOI, IP, and OW. These 

representations provide a sound foundation upon which the appropriate simulation en-

vironment can be developed; as it suggests that eye movements, can provide indications 
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of Pilot in-task attention and as such what is termed as a Stage 1 situational awareness 

(SA) assessed with the application of eye tracking. Descriptions and other discussions 

of how eye tracking was also used in this research is currently under development and 

shall be provided in a future paper. However, the use of such technology here, gives us 

the opportunity to review the visual acuity of a pilot, in relation to performing a task 

under unexpected circumstances. 

 

Fig. 4. - Startle - Surprise Process Pathways [27] 

The highlighted startle process of Figure 3, allows us to deploy a systematic and fit for 

purpose experimentation, based on attempting to stimulate a fast response in the active 

mental frame of the pilot, enough to be considered as “knee jerk”; while forcing a de-

pendency on reframing and managing the elicited stress impact. Using this model, we 

attempt a goal-based representation of the startle process, via the perception - fast ap-

praisal pathway, leading to the startle reflex being activated. This interaction is inves-

tigated in this research for the associated pupillometric features around correct visual 

processing of indicators for instance (i.e. visual acuity) and the extenuating environ-

mental situations in flight. All of these being achievable through the design of a flight 

simulation experiment activity around a typical in-flight task in a GA aircraft. Below 

is an interpretation of the present study highlighting the envisaged route to achieving a 

startling representation. The principle of this idea aims to decipher said startle through 

eye tracking data collected when the unexpected stressor event is introduced. 
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Fig. 5. - GA Startle Process Conceptualisation 

In keeping with the research aim, the suggested conceptualisation provides a mental 

framework for exploring the impact of a startle reaction, in the context of simulated 

training; and also, a way of contextualising the analysis of task outcomes from pilot 

actions when startled. The development of the causality factor FCM model is provided 

in the following sections.  

3.1 Codification 

For developing the FCM model of a startle, four key principles of expert based  con-

struction of FCMs according to [39], is relied upon to populate the map connections. 

These are as follows: 

• Choose the number N and kind of concepts Ci of the FCM – Based on the 

HFACS framework questionnaire aggregation. The top 5 factors are used 

for the discussion presented. 

• Determine the direction of relationships, and which concept influences an-

other one. 

• Use an inference rule to describe the relation between two concepts and in-

fer a linguistic fuzzy set (weight) for the interconnection between the con-

cepts. 

• Linguistic weights for every interconnection are combined, defuzzified and 

transformed in numerical weights. 

The following, adopted from the work of [11] provides definitions of a triangular fuzzy 

number concept, in order to facilitate linguistic variable associations, for the FCM 
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concepts. The triangulation set of fuzzy numbers, compliment the definitions of the 

fuzzy variable values (an indication of the expert’s judgment) discussed earlier. 

The triangulation represents a fuzzy number A denoted by (a1, a2, a3) with a member-

ship function defined as: 

𝜇𝐴(𝑥) =

{
 
 

 
 
𝑥 − 𝑎1
𝑎2 − 𝑎1

, 𝑓𝑜𝑟 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎3 − 𝑥

𝑎3 − 𝑎2
𝑗, 𝑓𝑜𝑟 𝑎2 ≤ 𝑥 ≤ 𝑎3

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 

The linguistic variables for the purpose of making judgements on startle causal factors 

can thus be represented by a value that is a not a crisp number and is associated with 

comprehensible natural language as the table below shows. 

Table 1. - Fuzzy Linguistic Ratings [11] 

Linguistic Rating Terminology 

(Judgement of Influence) 

Triangular Fuzzy Numbers 

(Numerical rating of factor) 

Very Low Influence 0, 0, 0.25 

Low Influence 0, 0.25, 0.50 

Medium 0.25, 0.50, 0.75 

High Influence 0.50, 0.75, 1.00 

Very High Influence 0.75, 1.00, 1.00 

 

Having been briefed on the basic aspects of what a startle constitutes, in relation to a 

piloting task, the expert(s) created a fuzzy correlation of the causal factors based on a 

linguistic representation of causal variables (See Table 2). The FCM structure is driven 

by a process in which the perception of stakeholders on a certain system (or problem) 

is uncovered and a representation of the system is thus created. A series of 19 concepts 

developed on extrapolating the HFACS framework, were deemed relevant to the human 

factor challenge of startle responses. A complete list of these causal concepts is pro-

vided in subsequent outputs. To manage dimensionality of the problem space however, 

the top 5 causal factors from experts’ judgments and rankings, for evoking a startle 

response, are as depicted in the table below. 
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Table 2. - Top 5 Causal Factors 

Co

ncepts 

Causal Factors (Inde-

pendent Variables) 
R1 R2 R3 R4 R5 

Ranking 

Aggregate 

C1 

Faulty/Uncalibrated In-

strument Readings 
1 0.75 0.75 

1 1 0.90 

C2 

Appraisal of Evolving 

Situation 
0.75 1 0.75 

1 1 0.90 

C3 
Communication (ATC) 1 0.75 1 

0.5 1 0.85 

C4 

Unskilled Pilot (Not 

rated for Aircraft Type for 

instance) 

0.75 1 0.75 

0.75 0.75 0.80 

C5 

Insufficient Training/ 

Lack of Concurrency 
0.75 0.75 0.75 

0.75 1 0.80 

 

 

Fig. 6. - GA Pilot – Top 5 Startle Human Factors Causality Chain 

3.2 Association 

Using the FCM Expert Software tool [35], we are able to create an associative map of 

the causal concepts. The figure below describes this relationship between the concepts 

and startle, considered in this case as a cognitive impairment characterized by defi-

ciency in information processing (visual acuity). The simulated parameters include the 

Kosko’s activation function rule with self-memory and a Sigmoid Transfer function 

[36], for managing the threshold; transformation of the concept at each step. The actual 

Kosko mathematical representation of FCMs assured by [40] takes the following form: 

 Ai (k + 1) = f(Ai (k) + Σ Aj (k)·eji) for j = 1….N  (1) 
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where f (·) is the threshold (activation) function. The equation calculates the values of 

concepts in the FCM. A Sigmoid threshold function gives values of concepts in the 

range [0, 1] and has a mathematical representation of: 

 f (x) = 1 / 1 + e-λ.x  (2) 

where λ is a real positive number and x is the value Ai
(k) on the equilibrium point. In this 

construct described and implemented in the FCM Expert tool,  concepts in the map are 

activated by making their vector element 1 or 0 ; in the range [0, 1]. The threshold 

function mentioned earlier, reduces the boundless weighted sum to a predetermined 

range, allowing for a qualitative comparison between and across concepts, thus repre-

senting the fuzzy linguistic associations in the graph. In the literature, there are three 

main threshold functions namely the Bivalent, Trivalent  and the Logistic Signal; a 

special case; (Sigmoid) functions [30]. The Sigmoid is chosen for the present work as 

it has been reported to offer significant advantages over the others especially where 

vision system performances and eye tracking is concerned [10, 39].  

The inference process which follows consists of computing the current state vector 

through time, for a set initial condition [1, 39]. For our case of investigating startle 

causality, a successive substitution method is preferred, which is implemented by ran-

domly updating the weight matrix of the map using a genetic learning algorithm. This 

algorithm computes any new state vectors, showing the effect of the activated concept. 

This occurs through iteratively multiplying the previous state vector by the relational 

matrix using standard matrix multiplication Ak = Ak-1 + (Ak-1 ·W). The iteration stops 

when a limit vector is reached, i.e., when Ak = Ak-1 or when Ak−Ak-1 ≤ e; Where e is a 

residual, whose value depends on the application type (and in most applications is equal 

to 0.001) [40]. Thus, a final vector Af is obtained, where the decision concepts are as-

sessed to clarify the final decision of the specific decision support system. 

The modification of the weight matrix of the FCM for what-if analysis is made possible 

using tried and tested learning algorithms [30, 39, 40, 46]. From the existing work on 

learning algorithms for FCM modelling, there are three main approaches for handling 

the task of FCM training [13, 39, 45]. These are Hebbian, evolutionary type and a hy-

brid (of the two) type of learning algorithms. The coverage of these algorithms is ex-

tensive in the referenced literature but are beyond the scope of this paper. 
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a. Startle is not a decision concept 

 
b. Startle not a decision concept and 

complex interactions between con-

cepts 1,2, 4, 5 

 
c. Richer Complexity Mapping 

 
d. Startle considered as only decision 

concept with randomised weight in-

put from other factors-rescaled 

Fig. 7. – FCM Mapping What-If Scenarios 

 

 
Map a convergence plot 

 

 
Map b convergence plot 
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Fig. 8. - What-If Scenarios; Convergence Plots 

The current research adopts the hybrid of these algorithms implemented in the FCM 

Expert Software [35], combining Hebbian and evolutionary based algorithms in its op-

eration.  This enhances the dynamic behaviour and adaptability of the model. What is 

noteworthy, is that although related in construct to the expert system philosophy, the 

FCM presents  a more flexible framework and possibly a more powerful vehicle for the 

representation of human knowledge as it moves away from the explicit IF/THEN rules 

of a traditional expert system. Having developed the map based on input from experts, 

enumeration of the mapping  is achieved using an algorithmic fuzzy protocol that de-

termines the discrete matrix manipulations, necessary between nodes of varying influ-

ences interacting in the map. 

The successive substitution inference mentioned earlier, indicates the FCM is free 

to interact and at each interaction step, concepts assume a new value based on the 

threshold formula and choice of learning algorithm. The present work invokes the Sig-

moid function of equation 4 above for this exercise. [36] discusses this in detail and is 

found to be useful for the development of the research. 

4 Conclusions 

This paper presented a discussion of the problem space regarding the challenge of star-

tle potentiated loss of control and in-flight operational performance deterioration. It 

also presents a discussion describing the basis of a conceptual cognitive model, map-

ping significant relationships between key variables of a simplified “startled” mental 

model, in the form of a fuzzy cognitive map. Using expert fuzzy judgement inputs, we 

determine from an abstraction of the HFACS framework the top 5 human factor con-

tributors to the startled process representation in an GA context. These contributors are 

crucial to understanding the symbiotic framework of our human-aircraft interaction 

system and help in guiding the development of simulation experiments. The use of an 

FCM model in this case is grounded on the vision of this work to contribute a fresh 

perspective into the current discussions in the GA community. Indeed, the goal, is to 

determine new ways of training and supporting optimal decision making during exigent 

 
Map c convergence plot 

 
Map d convergence plot 
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circumstances, which could progress into a LOC, or, the prompt resolution of a fully 

developed airplane upset in low or highly degraded vision environments should avoid-

ance become unattainable. 

From the logic of the [28, 51] models, and adopting an extrapolation of HFACS [3, 33, 

37] we provide a unique simplification map, to conceptualise a startle process path 

based on the top 5 factors determined; these are depicted in Figure 6. From the what-if 

scenarios developed (Figure 7 a – d), concepts 1, 2 and 5 consistently emerge as the 

key factors amongst the 5. Concept 2, i.e. poor situation appraisal, comes out on top in 

all the scenarios tested as shown in the convergence plots of figure 8 a-d. This provides 

impetus to design out this factor in Pilot training scenarios. In the same regard, there is 

potential for the use of modern artificial intelligence (AI) technologies to support the 

mitigation of such challenges. An experiment has been developed in a simulator envi-

ronment (See Figures 9 and 10 below), and is the subject of a subsequent paper, exam-

ining task execution trends, during “no external input”/standard flight conditions; and 

with an unexpected “external input”, in order to determine startled responses from nov-

ice pilots. This experiment focuses on capturing any deterioration of performance from 

the test scores as well as from the physiological outputs using an eye tracker. The prem-

ise driving this experimentation is that, a startled individual is more prone to applying 

instinctive reactions which might not be suitable in a situation where process and pre-

cise application of knowledge, are key to delivering a successful outcome [9]. 

 

Fig. 9. Simulation Test Platform for Startle effect experiments 
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Fig. 10. Head Mounted Eye Tracker capture of Visual Performance during experiment 

The FCM implementation, proved its usefulness for the current research within four 

key functions as discussed in [42]; these are explanatory, predictive, reflective and stra-

tegic. In the explanatory context, the FCM Expert tool [35]provides a flexible and ro-

bust means to reason out an objective representation and therefore, understanding of 

the causality conundrum, while highlighting any distortions and limits of the represen-

tation being investigated.  This goes a long way to solve a crucial issue of automating 

the construction of weights, enabling a wider and more ad-hoc scenario analysis. The 

predictive function, as the name suggests, provides a prediction of future decisions, 

actions and tendencies which justify any new instances of a concept. In the presented 

work, this describes the prediction of the concept which presents the most risk output 

by the FCM convergence plots.   This prediction function lends itself to the analysis of 

any experiment results collated based on the FCM. The reflective function of an FCM 

provides a means of judging the adequacy of a decision profile, while the strategic 

function can be used to generate a more accurate description of a complex scenario. 

5 Final Thoughts and Outlook 

Although this research currently ignores time dependent saliency of gaze patterns, con-

sidering this notion alongside the framework of the SEEV model, the current research 

presents a promising route to exploring novel training strategies which foster high lev-

els of adaptability in a GA pilot who might become startled. 

On a higher level of abstraction, three key agents are crucial to these studies; these 

included the Human Mental Model; Particularly in IFR/reduced visual conditions and 

task complexity, Aircraft Mental Model; Aerodynamic and Stability Behavior as a 

function of pilot inputs; and the Environment Dynamics; The physical world/Simulated 
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Environment. These key aspects are necessary considerations, when devising a fuzzy 

representation of the human factors, which influence the emotive startle reaction, when 

under pressure. Crucially, the effectiveness of the pilot’s visual information processing, 

in such circumstances can be significantly hampered. Therefore, the present work con-

tributes a fresh perspective to guide the provision of startling scenario training to the 

fledgling GA pilot. Finally, an added benefit of the FCM software implementation is 

that it helps to expeditiously adapt and test scenarios which interrogate if the null hy-

pothesis may be refuted or accepted. 
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