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Abstract—In order to avoid broadcast storms in wireless sensor
networks and improve the efficiency of information transmis-
sion, virtual backbone networks have been widely introduced
into network information transmission. In order to combine
the practical development needs, this paper devotes to the
optimization research on the construction of virtual backbone
network, optimizes the three aspects of routing path length,
backbone size and fault tolerance respectively, introduces the
GOC-CDS construction strategy and the αMOC-SCDAS con-
struction strategy, and designs an approximation algorithm for
the construction of the virtual backbone network based on the
two strategies. Through theoretical analysis, the algorithm can
obtain a (72ρ2 + 24ρ + m + 1)(2ρ + 1)2-approximate optimal
solution, where ρ = rmax

rmin
. After comparative experiments, it is

verified that the algorithm can maintain a smaller routing path
length of the network and a better fault tolerance of the virtual
backbone network, and at the same time, it can ensure that the
size of the backbone network is as small as possible.

Index Terms—Virtual backbone network, Connected dominat-
ing set, Fault tolerance, Routing cost constraint, Heterogeneous
wireless sensor network.

I. INTRODUCTION

Wireless sensor networks (WSNs) , with many features that
are different from traditional wired networks, have been widely
used in areas where it is difficult to install base stations in
the network. Since there is no fixed infrastructure, in order to
effectively address the high variability of network topology,
reduce unnecessary energy consumption caused by redundant
routing, and avoid information conflicts and broadcast storms,
Ephremides et al. [1] first introduced the concept of Virtual
Backbone Network (VBN). The message interactions between
any nodes in the network can be transformed into homolo-
gous operations on VBN, which greatly reduces the message
forwarding process, shortens the routing path search time to
a certain extent, reduces the routing table, and simplifies the
routing maintenance. In WSNs, the VBN construction method
based on the Connected Dominating Set (CDS) is a common
and competitive approach.

In practical scenarios, sensors in WSNs can have vary-
ing transmission ranges due to factors such as power and
transmission medium. This results in a network known as a
heterogeneous WSN, it can be modeled as a directed graph

where nodes have different transmission radius. Constructing
a virtual backbone network in a heterogeneous WSN can then
be transformed into the problem of constructing a Strongly
Connected Dominating and Absorbing Set (SCDAS) in graph
theory. Constructing an efficient virtual backbone has become
a research hotspot in the academic community.

Kim et al. [2] proposed another concept named Average
Backbone Path Length (ABPL) to evaluate the routing length.
However, researches have found that the ABPL of networks
using virtual backbones is often much greater than the original
path length, significantly increasing communication delay and
routing overhead. To ensure that the routing path between
any two points in VBN-based communication is as short as
possible, researchers have proposed virtual backbones with
routing cost constraint. By adding some backbone nodes, this
approach ensures that the routing path length between any
pair of nodes in the network does not exceed a constant
multiple α of the shortest path length in the original network.
This method reduces energy consumption and transmission
delay. Researches have found that this approach can achieve
a balance between routing cost constraint and the size of the
backbone network to some extent.

Since sensor networks are often deployed in harsh or hostile
environments, channel bandwidth frequently varies and con-
nectivity can be intermittent. Sensors often fail due to energy
depletion or damage. Consequently, topologies designed for
optimal energy efficiency in theory are often unsuitable for
practical applications. In practical applications, a reasonable
topology should retain some redundancy to cope with potential
channel and node failures, thereby ensuring a certain degree
of fault tolerance. Thus, the study of fault-tolerant virtual
backbones has garnered considerable attention to enhance
the robustness, resilience, and availability of the network. In
graph theory, this problem can be addressed by constructing a
(k,m)-CDS, which requires that each node outside the virtual
backbone is dominated by at least m nodes within the virtual
backbone, and there are at least k disjoint paths between any
pair of backbone nodes. This means that even if k − 1 nodes
fail, the virtual backbone can still function normally.

Based on the need to optimize routing path length in



heterogeneous networks as well as to improve the robustness
of virtual backbones, this paper proposes the problem of
constructing virtual backbones in heterogeneous WSNs while
simultaneously considering routing path length and fault tol-
erance of the backbone. This problem is transformed into the
(k,m)-α Minimum rOuting Cost Strongly Connected Dom-
inating and Absorbing Set ((k,m)-αMOC-SCDAS) problem
and an approximate construction algorithm is provided, which
uses routing cost constraint to reduce the communication path
length between nodes and enhances the fault tolerance of the
virtual backbone by constructing a (k,m)-SCDAS. Through
theoretical analysis and simulation experiments, it is verified
that the target set generated by the algorithm effectively
reduce redundant paths, save energy consumption, and also
improve the fault tolerance of the backbone to a certain extent,
prolonging the network lifespan.

II. RELATED WORK

A. Strongly Connected Dominating Set

For a directed disk graph with unidirectional edges, its
virtual backbone can be modeled as a SCDS. Dai et al.
[3] proposed a local algorithm to construct a SCDS using a
marking process. Du et al. [4] proposed two algorithms to
construct the SCDS, using a Breadth First Search (BFS) tree
and the Minimum Steiner Number (MSN), respectively. Chou
et al. [5] proposed a centralized algorithm to construct a SCDS,
extending the results of [4]. The virtual backbone constructed
by their algorithm can provide efficient bidirectional data
transmission services between any two sensor nodes in the
network. Park et al. [6] proposed a constant approximation
algorithm and two heuristic approximation algorithms, ob-
taining an upper bound of 9.6(ρ + 12)2opt + 14.8(ρ + 12)2

for the Minimum Strongly Connected Dominating and Ab-
sorbing Set (MSCDAS) problem, this was the first study
on the MSCDAS problem. Wu [7] extended the concept of
the dominating set (DS) in unit disk graphs (UDG) to the
dominating and absorbing set (DAS) in disk graphs (DG), and
proposed a local algorithm for constructing a SCDAS. Li et
al. [8] presented a (3H(n− 1)− 1)-approximation algorithm
for the MSCDAS problem without making any assumptions
about transmission radius. This algorithm is applicable to the
MSCDAS problem in any directed graph. Later, Zhang et
al. [9] proposed a (2 + ϵ)-approximation algorithm for the
minimum DAS problem, which was the first algorithm to
achieve a constant approximation ratio for DAS, they also
proposed a (4 + 3ln(2 + ϵ)opt + ϵ)-approximation algorithm
for the MSCDAS problem.

B. Virtual Backbone with Guaranteed Routing Cost

In 2007, Li et al. [10] began studying the problem of
constructing diameter-bounded VBN in WSNs and proposed
a heuristic algorithm for constructing diameter-bounded CDS
with an approximation ratio of 11.4|MCDS| + 1.6. Kim et
al. [2] proposed an approximation algorithm for constructing
VBN using the minimum spanning tree algorithm, called CDS-
BD-C2. This algorithm can generate a CDS with bounded

backbone size and average backbone path length in undirected
graphs with the same node transmission radius, with an
approximation ratio of 6.906.

In 2010, Ding et al. [11] introduced the concept of minimum
routing cost virtual backbone (MOC-CDS). Routing via MOC-
CDS ensures that every routing path between any pair of
nodes is also the shortest path in the original network, thus
significantly reducing energy consumption and latency, the
approximation ratio of this algorithm is (1− ln2)+2lnδ, δ is
the maximum node degree in the network. Through simulation
experiments, it was found that the number of backbone nodes
in MOC-CDS was too large. In order to strike a balance
between VBN size and routing path length, Ding et al. [12]
proposed the α minimum routing cost connected dominating
set (α-MOC-CDS) problem in 2011. In 2016, Liu et al. [14]
studied the problem of α-MOC-SCBDS (α minimum routing
cost constraint strongly connected bidirectional dominating
set) for heterogeneous networks with different transmission ra-
dius for each node and proposed an approximation algorithm.
Later, Putwattana et al. [15] improved the algorithm of Liu
[14] by further reducing the constraint value of connectivity
paths. In 2016, Zhang et al. [16] studied the calculation of
MSCDAS problem under routing cost constraint, proposing
a polynomial-time approximation algorithm. In 2020, Liang
et al. [17] proposed two algorithms to solve the diameter-
bounded MSCDAS problem, called GOC-SCDAS and α-
GOC-SCBDAS, the experimental results outperform the al-
gorithm of Du et al. [4]. For general graphs, the known
approximability result is the research by Ding et al. [18], who
proposed several approximation algorithms for different values
of α, improving upon the approximation by Du et al. [19].

C. Virtual Backbone with Fault Tolerance

Dai and Wu [20] were the first to introduce the fault-tolerant
virtual backbone problem into the study of VBN. In 2007,
Shang et al. [21] introduced the concept of k-connected m-
dominating sets ((k,m)-CDS), where m > k, and proposed
three approximation algorithms.

In [22], Wang et al. presented an approximation algorithm
for constructing a (2, 1)-CDS with an approximation ratio of
62.19. In [23], Shi et al. proposed a greedy-based algorithm for
constructing (2, m)-CDS and also pointed out an error in the
approximation ratio analysis of the (2, m)-CDS construction
algorithm by Shang et al. [21]. In 2013, Wang et al. [24] first
provided an approximation construction algorithm FT-CDS-
CA for (3, m)-CDS. They demonstrated that the approximation
ratio of this algorithm is 280 for constructing (3, 3)-CDS, 21r
for constructing (3, m)-CDS (k > 3), and r = 5 + 25

m when
3 ≤ k ≤ 5, and r = 11 when k > 5. In [25], Liu et al.
proposed an algorithm for (3, m)-CDS construction with an
even smaller approximation ratio using Tutte decomposition in
graph theory. In 2017, Wang et al. [26] introduced an approxi-
mation algorithm that can be used for constructing (3, m)-CDS
and (4, m)-CDS, and they provided the approximation ratio
of the algorithms. The above approximation algorithms are all
based on a specific value of k. For constructing (k,m)-CDS



for any value of k (2 ≤ k ≤ m), researchers such as Shi et
al. [27], Fukunaga [28], and Liu et al. [29] have conducted
research and proposed approximation algorithms.

The problem of constructing fault-tolerant VBN in hetero-
geneous WSNs was first introduced by Tiwari et al. [30],
where they transformed the problem into finding the (k,m)-
SCDAS problem in DG and gave the appropriate solutions.
In [31], Thai et al. transformed the problem into solving the
(k,m)-CDS problem in bidirectional link disk graphs, and
they proposed a (θ + lnθ + m + 2)(2k − 1)-approximation
algorithm, where θ represents the maximum number of inde-
pendent neighboring nodes for any node. In [32], Tiwari et al.
introduced a construction algorithm for (1, m)-SCDAS with
an approximation ratio of 2(θ(1 + 1

m ) + m + 1). Therefore,
as of now, there are no known approximation algorithms for
constructing (k,m)-SCDAS.

III. PROBLEM STATEMENT

A. Network Model

In wireless sensor networks, the transmission range of all
sensor nodes is uncertain. For any pair of nodes u, v, if node
v is within the transmission range of node u, it is assumed
that node v can accept messages from node u. Typically,
the above network can be described using a directed graph,
where V represents sensor nodes and E denotes whether direct
communication between sensor nodes is possible. For any pair
of nodes u and v, if u, v ∈ V , it indicates that node v can
receive messages from node u; if (u, v) ∈ E and (u, v) ∈ E,
it means u and v can exchange messages with each other.

B. Problem Definition

Given a directed graph G(V,E) and a set of nodes S ⊆ V ,
for any node u ∈ V , either u ∈ S , or there exists nodes
v, w ∈ S such that (u, v) ∈ E and (v, w) ∈ E, then the set
S is called a dominating and absorbing set of the graph G.
Let G[S] denote the induced subgraph by S, if for any pair
of nodes (u, v) ∈ S, there exists a directed path from u to v
in G[S], then G[S] is said to be strongly connected.

For a CDS, for any pair of nodes u, v ∈ V , let p(u, v)
represent the shortest path from u to v in G, and let d(u, v)
represent the length of p(u, v). Similarly, let pS(u, v) represent
the shortest path from u to v in G[S], and let dS(u, v) represent
the length of pS(u, v).

This paper considers the construction problem of (1,
m)-αMOC-SCDAS in directed DGs. Clearly, (1, m)-αMOC-
SCDAS is a type of SCDAS under specific constraint.
Therefore, the (1, m)-αMOC-SCDAS problem can be
formally defined as follows:

Definition 1. (1, m)-αMOC-SCDAS: Given a directed
DG G, a subset S is called a fault-tolerant α-routing cost
constrained SCDAS based on a m-DAS if it satisfies the
following conditions:
1) S is a SCDAS of G.
2) For a given constant α ≥ 1, ∀u, v ∈ V ,
dS(u, v) ≤ α× d(u, v).

3) All regular nodes in G are dominated and absorbed by at
least m backbone nodes in S.

The target set construction problem proposed by this defi-
nition is aimed at directed graphs with unidirectional edges.,
where the transmission radius of nodes are unequal. This
construction method differs from those used to construct CDS
in undirected graphs, the transmission radius of nodes is a
key factor in selecting nodes. Message routing through the
backbone composed of the target node set can ensure message
interoperability between any pair of nodes in the network, with
routing path length constrained within a certain range, and the
backbone itself possesses a degree of fault tolerance.

IV. ALGORITHM DESIGN AND THEORETICAL
ANALYSIS

A. Strategy and Algorithm Design

Firstly, in order to address the issue of excessively long
routing paths in networks routed through VB, we adopt
the approach of routing cost constraint to reduce redundant
paths. The problem of constructing a VBN with routing cost
constraint in graph theory is addressed by selecting a α-MOC-
CDS. Existing research has demonstrated that finding a α-
MOC-CDS is NP-hard. Some literatures address this problem
by proposing approximate algorithms for finding α-MOC-
CDS. Below, we provide theoretical support for this approach
through some strategies.

According to Lemmas 1∼4 in [13] and the theoretical proof
of the improvement of routing constraint values in [15], we
introduce the construction strategy for Guaranteed Routing
Cost Connected Dominating Set (GOC-CDS) as follows:

GOC-CDS Construction Strategy: In a connected graph
G, after obtaining a DS C of G , include all nodes from the
set C into S. For any pair of nodes u, v ∈ S, if d(u, v) ≤ 3,
add all nodes on the shortest path between them to the set S,
then for ∀u, v ∈ V , dS(u, v) ≤ 5d(u, v).

To enhance the fault tolerance of the VBN, we introduce m-
DAS to construct αMOC-SCDAS, with the specific strategy
as follows:
αMOC-SCDAS Construction Strategy: Building upon

the GOC-CDS construction strategy, we solve the minimum
DAS I1, I2, ..., Im of the set of regular nodes through an
iterative method and add them to the GOC-CDS. Through
m−1 iterations, we obtain the m-dominating αMOC-SCDAS,
ensuring that every regular node is dominated and absorbed
by at least m backbone nodes.

Based on the GOC-CDS construction strategy and the
αMOC-SCDAS construction strategy, we devise a three-stage
(1, m)-αMOC-SCDAS construction algorithm:

1) Stage One: Construct a minimum DAS as the initial
backbone node set.

2) Stage Two: Generate a SCDAS based on the GOC-CDS
construction strategy.

3) Stage Three: Generate the m-dominating αMOC-SCDAS
based on the αMOC-SCDAS construction strategy.



B. Detailed Algorithm Design
Inspired by Algorithm 1 in [18], we designs an algorithm

for constructing the minimum DAS of a graph. The algorithm
draws on the idea of the tricolor mark-and-sweep algorithm,
where initially, all nodes are colored white, during the execu-
tion of the algorithm, the selected backbone nodes are colored
as black, and their neighbours are colored as gray. The specific
algorithm process is outlined in Algorithm 1. The algorithm
employs a greedy strategy to greedily select nodes with the
maximum transmission range in the node set as backbone
nodes, ultimately forming a minimum DAS. For a directed
graph G, the direction of all directed edges is reversed to
obtain a directed graph G′ with the opposite direction of edge
sets, as indicated in the first line of Algorithm 1. In the first
stage, the algorithm proceeds by applying the greedy strategy
twice, separately operating on the graph G and G′, to generate
a minimum DAS C for the original directed graph G.

Algorithm 1 Construct DAS(G, Radius) algorithm
Input: A connected directed graph G = (V,E) with unidi-

rectional links.
Output: A DAS C of G

1: Generate a directed graph G′ by reversing the edges of
graph G, and color all nodes in both graphs G and G′

white
2: C ← ∅
3: while There is a White node in G do
4: Select a White node u having maximum Radius of

White nodes in G and color it Black
5: Color all the White nodes in N+(u) Gray
6: C ← C ∪ {u}
7: end while
8: while There is a White node in G′ do
9: Select a White node v having maximum Radius of

White nodes in G′ and color it Black
10: Color all the White nodes in N+(v) Gray
11: C ← C ∪ {v}
12: end while
13: return C

In the second stage of the (1, m)-αMOC-SCDAS algorithm,
it is necessary to construct a connected node set to connect
the DAS obtained in the first stage. In this stage, Strategy on
routing cost constraint is implemented. The description of the
second stage of the algorithm is illustrated in Algorithm 2.

Algorithm 2 connects the DAS to form a SCDAS according
to the GOC-CDS construction strategy. It creates an initial
node set D, then computes a shortest path in G for any pair
of nodes u, v ∈ C satisfying d(u, v) ≤ 3, and includes all
intermediate nodes along the path in the set D, the final
obtained set D is a connected node set. Then, the union of
the minimal DAS C constructed in the first stage and the
connected node set D forms a SCDAS for the graph G.

The third stage extends the current SCDAS to m-dominating
and absorbing through an iterative method. It uses a FOR loop
for m − 1 iterations, where each iteration calls Algorithm 1

Algorithm 2 Construct Connected Set(G, C) algorithm
Input: A connected directed graph G = (V,E) with unidi-

rectional links, and a DAS C of G.
Output: A connected set D of G.

1: D ← ∅
2: D ← C
3: while There exist a pair of nodes u, v ∈ C which satisfy

d(u, v) ≤ 3 do
4: Find a shortest path p between the nodes u, v ∈ C
5: D ← D ∪ p \ {u, v}
6: end while
7: return D

to generate the minimal DAS Ii of the current graph, where
i = 2, 3, ...,m. Finally, taking S = S

⋃
I2

⋃
I3

⋃
...
⋃

Im
forms a (1, m)-αMOC-SCDAS for the graph G. The detailed
description of the third stage of the algorithm is illustrated in
Algorithm 3.

Algorithm 3 (1,m)-αMOC-SCDAS algorithm
Input: A connected directed graph G = (V,E) with unidi-

rectional links.
Output: A (1,m)-αMOC-SCDAS S of G.

1: C ← Construct DAS(G,Radius)
2: D ← Construct Connected Set(G,C)
3: S ← C ∪D
4: The set S is the SCDAS of G
5: for i = 1 to m− 1 do
6: Color all the Gray nodes in G and G′ White
7: S ← S ∪ Construct DAS(G,Radius)
8: end for
9: The set S is the (1,m)-αMOC-SCDAS of G

10: return S

C. Theoretical Analysis and Approximation Ratio Calculation
of Algorithm

Algorithm 3 extends the target node set to a (1, m)-αMOC-
SCDAS through an iterative approach. The final selected node
set still satisfies the corresponding routing constraint. The
specific theoretical analysis process is provided in Theorem
1 as follows.

Theorem 1. Let C be the minimal DAS constructed in the
first stage of the algorithm, and let S be αMOC-SCDAS
constructed in the third stage of the algorithm. For any node
u ∈ V , either it belongs to the set S or it is dominated and
absorbed by at least m nodes in the set S; and ∀u, v ∈ V ,
we have

dS(u, v) ≤ 5d(u, v) (1)

Proof. First, we prove that the set constructed in the third stage
of the algorithm is strongly connected. After the third stage of
the algorithm, since the (m−1)-SCDAS is strongly connected



before the m − 1 iterations, the remaining nodes are all in
a state of being dominated and absorbed, therefore, adding
any new backbone node can still ensure strong connectivity.
Going back to before the first iteration, the first and second
stages of the algorithm have already constructed a (1, 1)-
SCDAS, thus, the remaining nodes must have dominating
and absorbing neighbor nodes. After the first iteration, adding
some backbone nodes ensures that the set now satisfies 2-
dominating and absorbing. These newly added nodes were
previously dominated and absorbed nodes, so the current (1,
2)-SCDAS still ensures strong connectivity.

Next, we prove that the set constructed after the third
stage of the algorithm satisfies the property of m-dominating
and absorbing. This is evident because after each iteration
of the DAS construction algorithm, every regular node in
the network will be dominated and absorbed by at least one
additional backbone node. After m−1 iterations, the remaining
non-backbone nodes in the network will be dominated and
absorbed by at least m backbone nodes.

Furthermore, we prove that the set constructed by the
algorithm is still a αMOC-SCDAS. It is known that the
(1, 1)-MOC-SCDAS constructed in the second stage of the
algorithm in this paper satisfies dS(u, v) ≤ 5d(u, v). Since
regardless of how many iterations of the DAS construction
algorithm are performed, the newly added backbone nodes
are already dominated and absorbed, the SCDAS constructed
in the first and second stages of the algorithm is a αMOC-
SCDAS. Therefore, any pair of nodes can ensure the routing
cost constraint of α, and the iterative method of constructing
multiple-DAS only adds some backbone nodes to increase
the fault-tolerance of VB without affecting the routing cost
constraint.

Next, we use the concept of circle packing [33] and intro-
duce virtual disks into the directed graph , whose radius is
rmin

2 , with the sensor nodes as the disk centers and the radius
rmin

2 as the transmission ranges. Since there are no real nodes
with a transmission radius of rmin

2 in G(V,E), it is virtual.
However, this virtual disk plays an important role in the proof
of the theorem for calculating the approximation ratio of the
algorithm.

Lemma 7 in [34] obtaining an upper bound on the number
of the independent neighbors of the node, then we can
calculate the upper bound of the minimal DAS generated
in the first stage of the algorithm. Putwattana et al. [15]
conducted theoretical analysis and computed the upper
bound of the size of SCBDS constructed by their algorithm.
Following their approach, we also conducted theoretical
analysis and computed the upper bound of the size of SCDAS
constructed by our algorithm, as detailed in Lemma 1.

Lemma 1. If a SCDAS is constructed by connecting the nodes
in C, where all intermediate nodes on a shortest path between
any pair of nodes in C are added to the set S, i.e., connected
by a path of length at most 3 hops, then the size of S is at most

2(6ρ+ 1)2(2ρ+ 1)2opt. (2)

Finally, we can calculate the upper bound of the target
node set constructed by our (1, m)-αMOC-SCDAS algorithm,
as stated in Theorem 2.

Theorem 2. The upper bound of the (1, m)-αMOC-SCDAS is

(72ρ2 + 24ρ+m+ 1)(2ρ+ 1)2opt (3)

where ρ = rmax

rmin
, and opt is the optimal solution for the

MSCDAS problem.

Proof. According to the basic idea of the third stage of
the algorithm, the final (1, m)-αMOC-SCDAS is obtained
by combining the (1, 1)-αMOC-SCDAS generated in the
second stage and (m− 1)-DAS obtained by iterative method.
From Lemma 1, the upper bound of the (1, 1)-αMOC-
SCDAS is approximately 2(6ρ + 1)2(2ρ + 1)2opt. Then,
combining Lemma 7 in [34] and the above Lemma 1, we
can calculate that the upper bound of the (1, m)-αMOC-
SCDAS is 2(6ρ+ 1)2(2ρ+ 1)2opt+ (m− 1)(2ρ+ 1)2opt =
(72ρ2 + 24ρ+m+ 1)(2ρ+ 1)2opt.

V. EXPERIMENTS AND ANALYSIS

A. Simulation Environment and Comparison Algorithms

We reproduced the relevant algorithms on MATLAB and
conducted experiments on a personal computer equipped with
a 3.50 GHz 13th Gen Intel(R) Core(TM) i5-13600KF proces-
sor and 32 GB of RAM.

In the simulation, we model a wireless sensor network as a
set of nodes randomly deploy in a 100×100 Euclidean plane.
The number of nodes varies among 100, 150, 200, 250, 300,
350 and 400. Each node has a fixed transmission range in
the range of [rmin, rmax]. rmin is set to 15 and 25, and
rmax = ρrmin where ρ varies among 1.25, 1.50, and 1.75.
In each simulated network, a directed edge from node u to
node v exists if and only if v is within the transmission
range of u. The directed DG corresponding to the simulated
network is then constructed according to the method described
in Section 2, and it is checked whether the graph is strongly
connected. If the graph is strongly connected, it is retained as
a candidate network graph; otherwise, the graph is discarded,
and the network and graph are regenerated. In order to avoid
chance, for each set of parameter settings (e.g., number of
nodes equals 100, rmin = 15, ρ = 1.25), 20 simulated networks
are generated randomly. Each kind of algorithm is tested 10
times on each simulated network, and the average result is
taken as the performance of the algorithm under that set of
parameter settings. For the comparison of the fault tolerance
of the VB constructed by different algorithms, each simulated
network is randomly disrupted by 10%, 20%, and 30% of its
nodes. Finally, the size of the VB, the average backbone path
length (ABPL), and the success rate of maintaining backbone



performance after partial node failures are used for comparing
the simulation results.

There has been extensive research on the MCDS problem.
However, there are few studies on the MSCDAS problem that
incorporates routing cost constraint and fault tolerance. Upon
examination, CDS-BD-C2 [2] can generate a SCDS in directed
graphs with unidirectional edges, then we improve this algo-
rithm to SCDAS-BD-C2 to satisfy the SCDAS problem, and
included it as one of the comparison algorithms in our study.
CDS-BFS [4] generates a SCDS that only ensures bidirectional
communication between backbone nodes. We have modified it
to generate a SCDAS that ensures bidirectional communication
between backbone nodes and regular nodes as well. The
modified algorithm is named SCDAS-BFS and is compared
with the (1, m)-αMOC-SCDAS algorithm in our study.

Additionally, to address the problem of overly long paths
when routing communication through a VB, applying routing
cost constraint is a common solution. A good method for
this optimization goal is to select the intermediate nodes
on the shortest paths between all node pairs in the network
as backbone nodes. This approach was proposed by Ding
et al. [18], but they did not provide a good centralized
algorithm. Therefore, we designed a SCDAS construction
algorithm based on the shortest paths in the network, named
ShortestPath-SCDAS, as one of the comparison algorithms for
the (1, m)-αMOC-SCDAS algorithm.

B. Comparison and Analysis of Simulation Results

In this section, we conduct experiments to compare
and analyze the effectiveness of the algorithm (1, m)-
αMOC-SCDAS with SCDAS-BD-C2, SCDAS-BFS , and
ShortestPath-SCDAS. We evaluate the SCDAS generated by
each algorithm using three metrics: (1) ABPL, (2) SCDAS
size, and (3) SCDAS fault tolerance.

Figure 1 shows the performance of (1, m)-αMOC-SCDAS,
SCDAS-BD-C2, SCDAS-BFS, and ShortestPath-SCDAS in
terms of ABPL with rmin picked 15 and ρ picked 1.25, 1.50,
and 1.75, respectively. Homogeneously, Figure 2 presents the
experimental results with rmin = 25. As the figures show,
ABPL slightly decreases with the increase of the number of
nodes. It is reasonable because the shortest path of some pair
of nodes may decrease with the increase of the number of
nodes. While the number of nodes is small, the shortest path of
a pair of nodes may need many intermediate nodes. However,
while the number of nodes is large enough, the Euclidean
distance of the shortest path of a pair of nodes is close to the
Euclidean distance of the two nodes. Therefore, the length of
the shortest path will not decrease evidently while the number
of nodes is large enough. Additionally, Figures 1 and 2 demon-
strate that ABPL of the VB generated by (1, m)-αMOC-
SCDAS is slightly larger than that of ShortestPath-SCDAS,
which uses the shortest path in original graph. However, it is
smaller than that of the two algorithms that do not consider
routing cost constraint.

Figure 3 shows the performance of the four algorithms in
terms of SCDAS size with rmin picked 15 and ρ picked 1.25,

1.50, and 1.75, respectively. Homogeneously, Figure 4 presents
the experimental results with rmin = 25. From Figures 3 and
4, the average size of SCDAS slightly increases with the num-
ber of nodes for all algorithms. This situation arises because as
the total number of nodes increases, any algorithm will need
to add more backbone nodes to construct the SCDAS during
its execution. Our algorithm has a larger SCDAS size than
SCDAS-BFS and SCDAS-BD-C2 . However, its has a smaller
ABPL than these two algorithms, and significantly smaller
compared to ShortestPath-SCDAS, which directly utilizes the
shortest path to connect backbone nodes. Anyway, the SCDAS
size is bounded in our algorithm as Theorem 2 shows.

The third evaluation criterion is the fault tolerance perfor-
mance of the VB generated by different algorithms. Setting
the random range of node transmission radius to [15, 30], and
then randomly disrupting 10%, 20%, and 30% of the nodes
for each simulated network, the probabilities of the VB con-
structed by different algorithms to maintain connectivity are
calculated. Figure 5 shows the fault tolerance performance of
the VB constructed by (1, 3)-αMOC-SCDAS, (1, 2)-αMOC-
SCDAS, (1, 1)-αMOC-SCDAS, SCDAS-BD-C2, and SCDAS-
BFS when the percentage of randomly disrupted nodes is
10, 20, and 30, respectively, it intuitively reflects the success
rate of the remaining backbone to maintain backbone perfor-
mance after random node disruptions, two criteria are set for
detecting backbone performance: (1) whether the remaining
VBN is strongly connected, and (2) whether regular nodes
are dominated by at least one backbone node and absorbed
by one backbone node at the same time. From Figure 5, it
can be observed that in the random input graphs with the
total number of sensor nodes ranging from 100 to 400, as
the number of disrupted nodes increases from 10% to 30%,
the success rates of maintaining backbone performance of
the SCDAS constructed by various algorithms all decrease.
This changing trend is evident because the fault tolerance
of the VB constructed by the algorithm is limited. As the
number of randomly disrupted nodes increases, the number
of original backbone nodes decreases accordingly, ultimately
some regular nodes may not be dominated by backbone nodes.
For construction algorithms that do not consider backbone
fault tolerance, they can only guarantee that regular nodes
are dominated or absorbed by at least one backbone node.
When a backbone node fails due to various factors, regular
nodes with only one backbone neighbor lose communication
with the network. This leads to the inability of the current
backbone to maintain VB characteristics, and the remaining
VBN cannot function properly. Therefore, it is necessary to
consider fault-tolerant VB construction strategies, and our (1,
m)-αMOC-SCDAS algorithm optimizes the fault tolerance of
VB construction.

For (1, m)-αMOC-SCDAS, Figure 5 shows the experimen-
tal results with m picked 1, 2, or 3, compared with the effects
of SCDAS-BD-C2 and SCDAS-BFS. It can be observed that
(1, m)-αMOC-SCDAS demonstrates a significantly higher
success rate in maintaining backbone performance after ran-
domly disrupting 10%, 20%, and 30% of the network nodes
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Fig. 1. ABPL versus node number with rmin = 15

(a) ρ = 1.25 (b) ρ = 1.50 (c) ρ = 1.75

Fig. 2. ABPL versus node number with rmin = 25
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Fig. 3. SCDAS size versus node number with rmin = 15

(a) ρ = 1.25 (b) ρ = 1.50 (c) ρ = 1.75

Fig. 4. SCDAS size versus node number with rmin = 25
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Fig. 5. Success Rate of Remaining VBN Maintaining Backbone Performance After Disrupting a Portion of Nodes

compared to the other two algorithms. Additionally, as m
increases, the success rate of maintaining backbone perfor-
mance improves notably. This is because any regular node is
dominated and absorbed by more than one backbone node,
if one neighboring backbone node fails, the remaining m-1
neighboring backbone nodes can still maintain the backbone
performance, ensuring the entire VBN continues to function
properly.

In summary, in a heterogeneous WSN with varying trans-
mission radius for sensor nodes, our algorithm (1, m)-αMOC-
SCDAS effectively addresses the construction of a VBN with
fault tolerance and routing cost constraint. This algorithm
enhances the robustness of the network and optimizes the
routing path length between nodes. As a result, the path
length for communication through the VB is significantly
reduced, while the fault tolerance of the VB is improved to
a certain extent. Compared to the other algorithms, (1, m)-
αMOC-SCDAS produces a SCDAS with a smaller backbone
size, shorter average backbone path length, and higher fault
tolerance. Overall, it demonstrates the best comprehensive
performance.

VI. CONCLUISON

The construction and optimization of virtual backbone net-
works have been a research focus for a long time. To address
the construction of virtual backbone networks in heteroge-
neous environments with varying node transmission ranges,
we designed a virtual backbone network construction scheme
that simultaneously optimizes the routing path length and the
fault tolerance of the backbone network, and proposed the (1,
m)-αMOC-SCDAS algorithm based on a strongly connected
dominating and absorbing set. Simulation experiments show
that the target node set generated by our algorithm results in
significantly lower routing overhead compared to SCDAS-BD-
C2 and SCDAS-BFS, and it offers substantially higher fault
tolerance. And as mentioned earlier, for any pair of nodes
u and v, we have dS(u, v) ≤ 5d(u, v). Additionally, our
algorithm can achieve a (72ρ2 + 24ρ + m + 1)(2ρ + 1)2-
approximate optimal solution, where ρ = rmax

rmin
.

The experiments in the paper were conducted in a simulated
environment. However, real-world networks are influenced by
various factors such as dynamic changes in nodes, signal

interference, and privacy protection. In our study, routing
information is utilized to establish a virtual backbone network.
However, in wireless networks, routing cost is usually unsta-
ble. Then, how to construct a virtual backbone network based
on these problems that will be encountered in the real situation
is a problem that needs to be considered in our subsequent
research.
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