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Abstract—Metaheuristic algorithms are essential for solving
complex optimization problems in different fields. However, the
difficulty in comparing and rating these algorithms remains
due to the wide range of performance metrics and problem
dimensions usually involved. On the other hand, nonparametric
statistical methods and post hoc tests are time-consuming, espe-
cially when we only need to identify the top performers among
many algorithms. The Hierarchical Rank Aggregation (HRA)
algorithm aims to efficiently rank metaheuristic algorithms based
on their performance across many criteria and dimensions.
The HRA employs a hierarchical framework that begins with
collecting performance metrics on various benchmark functions
and dimensions. Rank-based normalization is employed for each
performance measure to ensure comparability and the robust
TOPSIS aggregation is applied to combine these rankings at
several hierarchical levels, resulting in a comprehensive ranking
of the algorithms. Our study uses data from the CEC 2017
competition to demonstrate the robustness and efficacy of the
HRA framework. It examines 30 benchmark functions and
evaluates the performance of 13 metaheuristic algorithms across
five performance indicators in four distinct dimensions. This
presentation highlights the potential of the HRA to enhance the
interpretation of the comparative advantages and disadvantages
of various algorithms by simplifying practitioners’ choices of the
most appropriate algorithm for certain optimization problems.

Index Terms—Multi-Criteria Decision Making (MCDM),
Metaheuristic algorithms, Hierarchical Rank Aggregation, Rank-
Based Normalization, Robust TOPSIS, CEC2017

I. INTRODUCTION

Computational intelligence has emerged as a rapidly evolv-
ing field, with metaheuristic algorithms playing a crucial role
in solving complex optimization problems in various domains
[1]. These algorithms, inspired by diverse sources such as natu-
ral evolutionary processes, swarm behavior, and mathematical
constructs, have successfully tackled challenging optimization
tasks [2]. However, the No Free Lunch, or NFL Theorem,
states that no algorithm should consistently outperform all
others across all problem domains [3]. This fundamental
principle, coupled with the ever-growing number of meta-
heuristic algorithms-now exceeding 500 plus [2], underscores
the critical need for robust and comprehensive assessment
methods to compare and evaluate algorithm performance.

Traditionally, algorithm performance has been assessed us-
ing statistical and non-parametric techniques. Though applica-
ble, such evaluations are very much restricted in that they con-
centrate only on mean performance measures and would prob-

ably neglect other essential characteristics of how an algorithm
works. Pacheco et al. [4] presented the limitations of such
approaches and emphasized the fact that such procedures pri-
marily neglect the measures of dispersion, and in particular, the
standard deviation of the obtained results, which is very crucial
when analyzing performance and reliability of algorithms. This
concern implies that researchers and practitioners who desire
to utilize optimization methods or work on the improvement
of algorithm designs may, therefore, tend to underestimate a
certain algorithm in its capability and applicability. However,
in the last decade, more researchers have started employing a
systematic method for the problem of algorithm performance
by utilizing Multi-Criteria Decision-Making (MCDM) tech-
niques within algorithm evaluation based on multiple often
conflicting criteria.

The developments in MCDM and its applications in eval-
uating the algorithms can be highlighted in several contribu-
tions. In an early work by Peng et al. [5], MCDM methods
were combined to rank and compare classification algorithms,
among very few attempts of multi-criteria evaluation in ma-
chine learning. Kou et al. [6] extended this work by proposing
a framework based on Spearman’s rank correlation coeffi-
cient to resolve conflicting outcomes using multiple MCDM
methods. Later, in 2014, Kou et al. applied an MCDM-based
approach to rank popular clustering algorithms in financial
risk analysis, demonstrating the effectiveness of three MCDM
methods across six clustering algorithms and multiple real-life
datasets [7].

A significant contribution in employing MCDM techniques
to evaluate metaheuristic algorithms can be traced to 2015
when Krohling and Pacheco introduced A-TOPSIS [8]. This
new approach, similar to the Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) has been created to
fully resolve the issue of evolutionary algorithm comparison.
A-TOPSIS advances the use of mean and standard deviation
in the evaluation process, which improves the conventional
statistical tests and ranking strategies, particularly the Fried-
man test that only considers means for ranking. Krohling et
al. [9] made further developments in this area with Hellinger-
TOPSIS which employs the Hellinger distance for distance
measurement, within which it is possible to differentiate the
performance of algorithms under comparison.

Yu et al. [10] presented for the first time a new framework



for assessing the performance of multiobjective evolutionary
algorithms, which was the first to demonstrate MCDM tech-
niques for complex problems with multiple performance mea-
sures. In the same direction, Barak and Mokfi [11] developed
an MCDM-based model focused on assessing clustering algo-
rithms, where group MCDM techniques and the Borda count
method are employed. This suggests new approaches to evalu-
ating algorithms in the fields of evolutionary computation and
data clustering. The adoption of MCDM for assessing meta-
heuristic algorithms as well as their components continues to
develop; for instance, Shadkam et al. [12] provide insight on
the ranking of metaheuristic algorithms using AHP, TOPSIS,
and AHP-TOPSIS combining techniques, while Balaji et al.
[13], employed the TOPSIS method to rank meta-heuristic
algorithms with a consideration of groundwater vulnerability
assessment as the application context. Tabassum and Akram
[14] introduced a Rank-based TOPSIS (RB-TOPSIS) approach
for evaluating the performance of metaheuristic algorithms,
contributing significantly to the field of MCDM in algorithm
assessment in their study applied CEC2017 benchmark.

The area of metaheuristic optimization has several limita-
tions concerning algorithm evaluation and comparison, some
more critical than others. These include the inability to
combine multiple performance metrics, the need to evaluate
performance on different problem dimensions, and the lack of
clarity regarding providing an overall ranking. Moreover, the
rapid increase in the number of algorithms and diversity in
the optimization problems calls for more rigorous evaluation
strategies.

The Hierarchical Rank Aggregation (HRA) framework pre-
sented in this paper addresses these challenges by providing a
systematic and multi-granular perspective of how metaheuris-
tic optimization algorithms should be evaluated or ranked. The
HRA utilizes the robust TOPSIS technique in a hierarchical
structure, making it possible to assess performance measures
from different problem dimensions. This assessment approach
increases the correctness of the relationships among algorithms
and makes it easier to understand the algorithm performance
on different levels of a given problem. To illustrate how
our proposed framework works, we utilized it to evaluate 13
metaheuristic algorithms against 30 benchmark functions as
part of the CEC 2017 competition dataset in four dimensions.
Based on this analysis, we intend to hand over to the compu-
tational intelligence community a robust algorithm assessment
methodology, enabling more rational algorithm selection and
development processes in the optimization domain.

The remainder of this paper is organized as follows: Sec-
tion II explains the components of the HRA framework in
detail step by step, incorporating the R-TOPSIS procedural
structure and hierarchical aggregation. The usage of the HRA
algorithm in the CEC’2017 competition dataset is demon-
strated in Section III, and a detailed discussion of the results
was presented. The Section IV summarizes present research
and describes the plans for the next one.

II. METHODOLOGY

This research, in particular, aims to develop an exhaustive
ranking system for the metaheuristic algorithms tested to
consider how successfully a particular algorithm performs
across various benchmark functions and problem dimensions.
Let us define:
A = {A1, . . . , Am} as the set of algorithms,
F = {f1, . . . , fn} as the set of benchmark functions,
D = {d1, . . . , dk} as the set of problem dimensions, and
P = {p1, . . . , pl} as the set of performance measures.
For each dimension d ∈ D, performance measure p ∈ P ,
algorithm A ∈ A, and benchmark function f ∈ F , we have
the performance values Xd,p,A,f of algorithm A on benchmark
function f under dimension d for performance measure p.
These values form a decision matrix m× n.

Our approach involves converting raw performance data
into ranks within each criterion of a decision matrix and then
creating a rank-based decision matrix. This approach is helpful
since relative performance is more critical than absolute value.
It also provides an additional advantage of avoiding scale
effects across evaluation criteria and biasing from the outlier
scores since ranks are used instead of raw scores.

The ranked data are then processed using the R-TOPSIS
method described by Aires and Ferreira [15]. This method
normalizes the performance measures and then ranks the
evaluated measures using a hierarchical structure, as shown in
Fig. 1, by ensuring robust and interpretable rankings reflecting
algorithm performance’s multifaceted nature across different
benchmarks.

A. The R-TOPSIS Method

TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) is a multi-criteria decision-making method
(MCDM) used to select the best alternative from a set of
options based on multiple criteria. It was initially proposed
by Hwang and Yoon in 1981 and is widely used in decision
analysis and operations research [16]. TOPSIS is a straightfor-
ward ranking method both in concept and in application. The
core principle of the standard TOPSIS method is to select
alternatives with the shortest distance from the positive ideal
solution (PIS) and the farthest distance from the negative
ideal solution (NIS). The ideal positive solution emphasizes
maximizing benefit criteria and minimizing cost criteria, while
the negative solution focuses on maximizing and minimizing
cost criteria. However, TOPSIS has faced criticism for its rank
reversal issue. Rank reversal is when the order of alternatives
changes after adding or removing an alternative from a previ-
ously rated group.

Aires and Ferreira [15] introduced R-TOPSIS as a solution
to address the issue in TOPSIS. To this end, the authors intro-
duced an additional input parameter, the domain, to describe
the range of possible values for each criterion. Furthermore,
the type of normalization adopted, whether Max-Min or Max
normalization, helped to maintain optimal solutions and the
stability of the normalized and weighted decision matrices,
even in case some adjustments were made to the original



decision problem. These improvements focused on increasing
the reliability and logic of TOPSIS while maintaining its user-
friendliness. The steps that will be used to apply the R-TOPSIS
method have been outlined below.
Step 1: Define a set of alternatives A = {ai}mi=1

Step 2: Define a set of criteria C = {cj}nj=1 and a subdomain
D = {dj}nj=1, where d1j is the minimum value and d2j is the
maximum value of Dj

Step 3: Estimate the performance rating of the alternatives as
X = {xij}m,n

i=1,j=1

Step 4: Elicit the criteria weights as W = {wj}nj=1, where
wj > 0 and

∑n
j=1 wj = 1

Step 5: Calculate the normalized decision matrix (nij)
Step 5.1: Max normalization

nij =
xij

d2j
, i = 1, 2, . . . ,m; j = 1, 2, . . . , n

Step 5.2: Max-Min normalization

nij =
xij − d1j
d2j − d1j

, i = 1, 2, . . . ,m; j = 1, 2, . . . , n

Step 6: Calculate the weighted normalized decision matrix
(rij) as:

rij = wj × nij , i = 1, 2, . . . ,m; j = 1, 2, . . . , n

Step 7: Set the negative (NIS) and positive (PIS) ideal
solutions

NIS = {r−j }
n
j=1, where r−j =

{
d1j

d2j
wj if j ∈ Benefit

wj if j ∈ Cost

PIS = {r+j }
n
j=1, where r+j =

{
wj if j ∈ Benefit
d1j

d2j
wj if j ∈ Cost

Step 8: Calculate the distances of each alternative i in relation
to the ideal solutions

S+
i =

√√√√ n∑
j=1

(rij − r+j )
2, i = 1, 2, . . . ,m

S−
i =

√√√√ n∑
j=1

(rij − r−j )
2, i = 1, 2, . . . ,m

Step 9: Calculate the closeness coefficient of the alternatives
(CCi) as:

CCi =
S−
i

S+
i + S−

i

, i = 1, 2, . . . ,m

Step 10: Sort the alternatives in descending order. The highest
CCi value indicates the best performance concerning the
evaluation criteria. Return sorted alternatives based on CCi.

In applying the R-TOPSIS method, we impose the domain
as [0,m+1]n, m being the number of algorithms, while n is
the number of criteria. A significant benefit of this specified
domain is that the Max and Max-Min normalization techniques
used in Step 5 of R-TOPSIS are equivalent, and there is
no reason to adopt either method and provide the rationale.

This simplifies the decision-making process when utilizing
R-TOPSIS because it guarantees uniform and dependable
normalization of performance indices across various criteria.

B. HRA: Detailed Algorithmic Steps

The following outlines the basic steps of the Hierarchical
Rank Aggregation (HRA) algorithm, which ensures a clear
assessment and robust ranking of alternatives.

1) Collect the performance measures Xd,p,A,f , which consti-
tute m×n matrices for each combination of dimensions d and
performance measures p, resulting in a total of l · k matrices.
Each matrix has m rows corresponding to the algorithms and
n columns corresponding to the benchmark functions. The
general form of these matrices is given by:

Xd,p =


Xd,p,A1,f1 Xd,p,A1,f2 · · · Xd,p,A1,fn

Xd,p,A2,f1 Xd,p,A2,f2 · · · Xd,p,A2,fn
...

...
. . .

...
Xd,p,Am,f1 Xd,p,Am,f2 · · · Xd,p,Am,fn


where each element Xd,p,Ai,fj represents the performance
value of algorithm Ai on benchmark function fj under dimen-
sion d for performance measure p. All benchmark functions
are considered equivalent and assign an equal weight of 1/n.

2) Apply the mean rank transformation on each column of the
matrices Xd,p ensuring comparability and robustness during
the application of RTOPSIS. The general form of the resulting
ranked matrices Rd,p is given by:

Rd,p =


Rd,p,A1,f1 Rd,p,A1,f2 · · · Rd,p,A1,fn

Rd,p,A2,f1 Rd,p,A2,f2 · · · Rd,p,A2,fn
...

...
. . .

...
Rd,p,Am,f1 Rd,p,Am,f2 · · · Rd,p,Am,fn


where each element Rd,p,Ai,fj represents the rank of algorithm
Ai on benchmark function fj under dimension d for perfor-
mance measure p. All these matrices Rd,p can be visualized as
the leaves of a tree, constituting the fundamental component
of a hierarchical framework.

3) Apply the RTOPSIS method to the rank decision matrices
Rd,p (of size m× n) for the d-th dimension and p-th perfor-
mance measure: Cd,p = RTOPSIS(Rd,p, wF ) where Cd,p is
the resulting m×1 vector of ranks obtained. The weight vector
wF assigns equal importance to all the benchmark functions,
with each weight being 1/n for j = 1, . . . , n. The vector
Cd,p provides the aggregated ranks of the algorithms for the
specified dimension and performance measure, indicating their
relative performance. This information will be synthesized at
the next level of the hierarchy by grouping the performance
measures for each dimension (see Fig. 1).

4) Once the rank vectors Cd,p have been derived via the
TOPSIS method for each combination of dimension d and
performance measure p, these vectors are concatenated at
the second level of the hierarchical structure to create the
intermediate matrices Cd. Each intermediate matrix Cd =[
Cd,p1

Cd,p2
· · · Cd,pℓ

]
, encapsulates the performance
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Fig. 1. Tree structure of the Hierarchical Rank Aggregation (HRA) algorithm using RTOPSIS.

ranks for a particular dimension across all performance mea-
sures. Therefore, at this level of the hierarchical structure (see
Fig. 1), we have a total of k in numbers, Cd matrices, corre-
sponding to the number of function dimensions. Consequently,
we may examine the performance of the algorithms for each
dimension, considering the performance measures evaluated ℓ.

5) Apply the RTOPSIS method on the intermediate matrices
Cd for each dimension d to determine the definitive rank-
ing of algorithms per dimension. This procedure integrates
performance metrics to generate a unified ranking for each
dimension: C∗

d = RTOPSIS(Cd, wP), where wP the corre-
sponding weight vector.The outcome C∗

d is a vector m × 1,
which presents the overall ranking of the m algorithms for
dimension d ∈ D incorporating all performance metrics for
the specified dimension.

6) The final stage involves the construction of the decision
matrix D of size m × k, which constitutes from the rank
vectors C∗

d as D =
[
C∗

d1
C∗

d2
· · · C∗

dk

]
and apply the

TOPSIS method one final time. The overall ranking vector D∗

is obtained by: D∗ = RTOPSIS(D,wD). The weight vector
wD determines the relative importance of each dimension.

This thorough rating enables a full assessment of the algo-
rithms’ efficacy, reflecting their performance in a multidimen-
sional framework.

C. Tree Structure of HRA Algorithm

This process can further be understood from a hierarchical
perspective, which is a hierarchical tree in nature, if we
assume that we can design the RTOPSIS method within this
framework. Each tissue of leaf of the graph is a rank decision
matrix Rd,p, while edges bearing the title “RTOPSIS” show
the RTOPSIS application. These edges provide information
to form an intermediate matrix Cd of size m × ℓ for each
dimension d. Out of total of k, there are such matrices
pertaining to each dimension. The ranks aggregate that pour
all these matrices together are used to determine the decision
matrix for the ultimate ranking of the algorithms.

We can visualize this process as a tree to better understand
the hierarchical structure and the application of the RTOPSIS
method. Each leaf node represents a rank decision matrix Rd,p,
and the edges, labeled “RTOPSIS”, indicate the application
of the RTOPSIS method. These edges provide information
to form an intermediate matrix Cd of size m × ℓ for each
dimension d. We have a total of k such matrices, one for
each dimension. The aggregated ranks of these matrices are
then combined to form the final decision matrix for the overall
ranking of the algorithms.

Fig. 1 elucidates this process clearly and structured. Each
rank decision matrix Rd,p (where d represents the dimension
and p the particular criterion within that dimension) under-
goes the RTOPSIS transformation to produce a correspond-
ing ranking vector Cd,p. These vectors, which represent the
performance scores of the algorithms for each criterion, are
subsequently consolidated into an intermediate matrix Cd.
This intermediate matrix Cd has dimensions m × ℓ, where
m is the number of algorithms, and ℓ is the number of criteria
within dimension d.

The process is repeated for all k dimensions, resulting
in intermediate k matrices Cd. Each of these intermediate
matrices Cd is then aggregated into a single decision matrix
D of size m × k. This final decision matrix D encapsulates
the performance of the algorithms across all dimensions.

In the final step, we reapply the RTOPSIS method to the
decision matrix D to obtain the overall ranking vector D∗.
This vector D∗ provides a comprehensive ranking of the
algorithms, reflecting their performance across all considered
dimensions and criteria.

Thus, as shown in Fig. 1, the hierarchical structure ensures a
systematic and thorough evaluation of the algorithms. It allows
for the incorporation of multiple dimensions and criteria,
facilitating a multidimensional assessment and yielding a final
ranking that is both holistic and robust.

When applying the RTOPSIS method in HRA, the weights
must be assigned to different criteria, represented as wF , wP ,



Algorithm 1 Hierarchical Rank Aggregation (HRA)
Require: Set of algorithms A = {A1, . . . , Am}, set of

benchmark functions F = {f1, . . . , fn}, set of dimen-
sions D = {d1, . . . , dk}, set of performance measures
P = {p1, . . . , pl}, performance values Xd,p,A,f

Ensure: Overall ranking vector D∗

1: for each dimension d ∈ D do
2: for each performance measure p ∈ P do
3: Collect performance metrics Xd,p

4: Rank them to obtain Rd,p

5: Apply RTOPSIS to Rd,p to get Cd,p

6: end for
7: Form intermediate matrix Cd from Cd,p vectors
8: Apply RTOPSIS to Cd to get C∗

d

9: end for
10: Construct decision matrix D from C∗

d vectors
11: Apply RTOPSIS to D to get overall ranking D∗

12: return D∗

and wD. Although the precise determination of these weights
can substantially impact the outcomes, we will not explore
the intricacies of this issue in the present work. One rough
method for estimating these weights is to give each criterion
equal significance, thereby employing equal weights.

However, this approach could result in a significant loss
of information if it does not consider the relative importance
of each criterion. In practice, it is reasonable to prioritize
the criteria by ranking them, as rankings are often simpler
to provide than precise numerical weights, which can be
challenging to quantify. One possible solution to this problem
is the surrogate weight approach, commonly used to determine
weights based on ordinal ranking [17], [18]. This method may
improve the prescription of solving several criteria problems in
evaluating algorithms, such as ensuring the inclusion of expert
opinion into the decision-making process and not needing
exact numerical values.

It is worth noticing that the HRA algorithm exhibits re-
markable computational efficiency; we can easily prove that it
achieves an overall time complexity of O(m logm), where m
denotes the number of algorithms under comparison. More-
over, it is characterized by a problem-dependent constant
c = 1+ k+ ℓk, where k represents the number of dimensions
and ℓ is the number of performance measures. This efficiency
is advantageous compared to pairwise comparison methods
O(m2). The tree-structured design of HRA not only supports
this time complexity but also allows potential parallelization
at each level, making it a practical tool for metaheuristic
algorithm comparison and ranking, especially when dealing
with a large number of algorithms or extensive datasets.

D. The CEC’17 Competition Dataset

The CEC’17 test suite, featured in the 2017 IEEE Congress
on Evolutionary Computation, comprises 30 distinct opti-
mization problems (denoted as f1 − f30) categorized into
four groups: 3 unimodal, 7 multimodal, 10 hybrid, and 10

composition functions. The competition’s objective was to
minimize these test functions f(x), where x ∈ Rd and
d ∈ {10, 30, 50, 100}. Detailed descriptions of these functions
are provided in the technical report by Awad et al. [19]. Thir-
teen metaheuristic algorithms were evaluated in the CEC’17
competition: jSO [20], MM-OED [21], IDEbestNsize [22],
RB-IPOP-CMA-ES [23], LSHADE-SPACMA [24], DES [25],
DYYPO [26], TLBO-FL [27], PPSO [28], MOS-SOCO2011
[29], MOS-SOCO2013 [29], LSHADE-cnEpSin [30], and
EBOwithCMAR [31]. Each algorithm was run 51 times in-
dependently for each function and dimension. To ensure the
reliability and reproducibility of our analysis, we collected
the raw data directly from the competition organizer’s GitHub
repository1.

This dataset includes the function error values (fi(x) −
fi(x

∗)) for each algorithm, function, and dimension. We de-
veloped a series of MATLAB scripts to compute and organize
the statistical measures for our analysis using these raw data;
the scripts are available in our GitHub repository2, process the
raw data to calculate five key statistical measures: best, worst,
median, mean, and standard deviation of the error values. The
processed data are stored in four Excel files, one for each
problem dimension:

• CEC2017_Dim_10.xlsx,
• CEC2017_Dim_30.xlsx,
• CEC2017_Dim_50.xlsx, and
• CEC2017_Dim_100.xlsx

Each Excel file contains five sheets, corresponding to the sta-
tistical measures P = {best,worst,median,mean, std}. Within
each sheet, we store a 30×13 table, where rows represent the
30 test functions F = {f1, . . . , f30} and columns represent
the 13 algorithms.

This structured approach to data collection and processing
not only provides a sound and thorough basis for our anal-
ysis, which is expected to follow but also helps meet the
requirements of the hierarchy of the HRA framework we are
proposing. Such a way of compiling the data corresponds
well with the multi-level approach to HRA since we create
performance measures-focused and dimension-based Excel
files with several sheets for different performance measures.
Further, this particular organization of the data makes the
execution of our algorithm quite straightforward, such that
RTOPSIS can be more efficiently called at all levels of the
hierarchy.

III. RESULTS AND DISCUSSION

This section presents the results of applying the HRA algo-
rithm to the CEC’2017 competition data. The implementation
of HRA (see Alg. 1) was performed in Matlab, and detailed
results are available in the repository3. In this study, at each
level of the decision tree, we have adopted equal weighting
for the weight vectors wF , wP , and wD.

1https://github.com/P-N-Suganthan/CEC2017-BoundContrained
2https://github.com/dgsotiropoulos/CEC-Benchmarks
3https://github.com/dgsotiropoulos/HRA/

https://github.com/P-N-Suganthan/CEC2017-BoundContrained
https://github.com/dgsotiropoulos/CEC-Benchmarks
https://github.com/dgsotiropoulos/HRA/


The hierarchical structure of the HRA, as shown in Fig. 1,
effectively combines multiple performance metrics in a struc-
tured way, which lets each method be evaluated thoroughly
and in a way that is easy to understand. The decision matrices
for various dimensions (10, 30, 50, and 100) are shown in
Tables I, II, III, and IV, respectively. Each matrix displays the
rankings given to the algorithms according to five performance
measures: best, worst, median, mean, and standard deviation.
These matrices summarize the performance of each algorithm
in a particular dimension, providing a precise representation
of their relative rankings. The decision matrix for dimension

TABLE I
DECISION MATRIX FOR DIMENSION d1 = 10

Algorithm Best Worst Median Mean Std
jSO 5 2 3 3 1
MM OED 2 4 2 2 4
IDEbestNsize 4 6 4 4 5
RB IPOP CMA ES 7 8 7 7 9
LSHADE SPACMA 6 6 6 5 2
DES 9 7 8 8 7
DYYPO 11 11 13 11 11
TLBO FL 13 12 12 13 12
PPSO 10 9 10 10 8
MOS SOCO2011 8 10 9 9 10
MOS CEC2013 12 13 11 12 13
LSHADE cnEpSin 3 3 5 6 6
EBOwithCMAR 1 1 1 3 3

10 (Table I) compares the 13 metaheuristic algorithms based
on the five performance measures. Each algorithm is ranked
from 1 to 13, with lower ranks indicating better performance.
EBOwithCMAR emerges as the best-performing algorithm
across all performance measures. It consistently ranks top (1)
in the best, worst, median, and mean performance categories.
Although slightly lower in the standard deviation category (3),
its overall ranking sum underscores its superiority. jSO and
MM OED indicating comparable overall performance. jSO
ranks second in the worst performance measure and third in
both the median and mean categories. In contrast, MM OED
indicate ranks second in the best and median categories.
These findings imply that both algorithms can produce reliable
results, with jSO showing a slight consistency advantage, as
seen in its higher ranking in the standard deviation category.

TABLE II
DECISION MATRIX FOR DIMENSION d2 = 30

Algorithm Best Worst Median Mean Std
jSO 4 2 2 2 1
MM OED 2 5 5 4 6
IDEbestNsize 7 6 8 6 5
RB IPOP CMA ES 6 8 7 8 8
LSHADE SPACMA 3 4 4 5 4
DES 8 7 6 7 7
DYYPO 13 13 13 13 13
TLBO FL 11 12 12 12 11
PPSO 12 9 11 10 9
MOS SOCO2011 10 10 9 9 10
MOS CEC2013 9 11 10 11 12
LSHADE cnEpSin 5 3 3 3 2
EBOwithCMAR 1 1 1 1 3

In Table II, concerning dimension 30, we observe the fol-
lowing key points: EBOwithCMAR consistently has the high-

est rank (1) in the best, worst, median and mean performance
measures with a slightly lower rank in the standard deviation
category (3), which does not significantly affect its overall
superiority. Therefore, EBOwithCMAR is the clear leader
in this dimension, while jSO is the second-best performer.
It ranks well in the worst, median, and mean categories,
indicating consistent and reliable performance. Its top rank
in the standard deviation category further underscores its
robustness. LSHADE cnEpSin ranks third with a total rank
sum of 16. This algorithm shows strong performance across
all measures, ranking particularly well in the worst and median
categories. Its consistent performance makes it a reliable
choice. LSHADE SPACMA and MM OED have similar per-
formance, but LSHADE SPACMA performs slightly better in
the best and median categories, while MM OED excels in
the best category but falls behind in the standard deviation
measure.

TABLE III
DECISION MATRIX FOR DIMENSION d3 = 50

Algorithm Best Worst Median Mean Std
jSO 2 1 3 3 1
MM OED 4 6 6 6 6
IDEbestNsize 8 8 8 8 7
RB IPOP CMA ES 7 7 7 7 8
LSHADE SPACMA 3 3 2 2 4
DES 6 5 5 5 5
DYYPO 11 13 11 10 13
TLBO FL 12 12 13 13 12
PPSO 13 10 12 12 9
MOS SOCO2011 10 9 9 9 10
MOS CEC2013 9 11 10 11 11
LSHADE cnEpSin 5 4 4 4 3
EBOwithCMAR 1 2 1 1 2

In Table III, concerning dimension 50, we observe that
EBOwithCMAR continues to demonstrate exceptional perfor-
mance across most metrics, securing top ranks in the best,
median, and mean categories. Despite its slightly lower rank
in the standard deviation category (2), we can easily see
from its total rank sum that it maintains its position as the
leading algorithm in dimension 50. jSO is a strong competitor,
and it leads in the worst and standard deviation categories
while consistently outperforming the best, median, and mean
categories. Its continuous performance highlights its strength
and reliability. Furthermore, LSHADE SPACMA achieves a
total rank sum of 14, showing solid performance in all metrics,
with emphasis in the best and median categories (3 and
2, respectively), indicating its effectiveness, although it is
slightly less consistent in the standard deviation category (4).
LSHADE cnEpSin ranks fourth with a total rank sum of 20
but shows some variability, as indicated by its ranks across
different categories.

When considering high-dimensional optimization problems
presented in Table IV, DES stands out as the best performer
since it achieves the highest rankings in both the median and
mean categories and consistently performs well in the best and
standard deviation categories. This highlights its robustness
and effectiveness in solving problems with a large number of
dimensions. LSHADE SPACMA ranks second overall with



TABLE IV
DECISION MATRIX FOR DIMENSION d4 = 100

Algorithm Best Worst Median Mean Std
jSO 4 4 5 5 4
MM OED 6 6 6 6 6
IDEbestNsize 8 8 8 8 7
RB IPOP CMA ES 7 7 7 7 8
LSHADE SPACMA 1 3 2 2 3
DES 3 2 1 1 2
DYYPO 11 12 11 12 13
TLBO FL 13 13 13 13 12
PPSO 12 9 12 11 9
MOS SOCO2011 10 10 9 9 10
MOS CEC2013 9 11 10 10 11
LSHADE cnEpSin 5 1 3 3 1
EBOwithCMAR 2 5 4 4 5

a total rank sum of 11 and performs exceptionally well in
the best, median, and mean categories but shows slightly less
consistency in the standard deviation category. Despite this, it
remains a strong contender in high-dimensional optimization
scenarios. LSHADE cnEpSin follows closely with a total rank
sum of 13 achieves the top rank in the worst category and
demonstrates strong performance across all other measures,
highlighting its reliability and robustness in handling high-
dimensional problems. EBOwithCMAR, which consistently
dominated lower-dimensional problems, shows a noticeable
decline in performance for d = 100. Although it ranks second
in the best category, it drops to fifth in the worst category and
fourth in the median, mean, and std categories.

TABLE V
FINAL DECISION MATRIX

Algorithm Dim10 Dim30 Dim50 Dim100
jSO 3 2 2 5
MM OED 2 5 6 6
IDEbestNsize 4 6 8 8
RB IPOP CMA ES 7 8 7 7
LSHADE SPACMA 6 4 3 2
DES 8 7 5 1
DYYPO 11 13 12 12
TLBO FL 13 12 13 13
PPSO 10 10 11 11
MOS SOCO2011 9 9 9 9
MOS CEC2013 12 11 10 10
LSHADE cnEpSin 5 3 4 3
EBOwithCMAR 1 1 1 4

The final decision matrix in Table V aggregates the perfor-
mance across all dimensions and reveals significant insight into
the algorithm performance. More specifically, EBOwithCMAR
emerges as the top performer, achieving the highest rank
(1) in dimensions 10, 30, and 50. However, its performance
drops slightly in dimension 100, ranking fourth; therefore,
while EBOwithCMAR is highly effective in problems of the
lower and medium dimensions, it faces challenges maintain-
ing its dominance in higher dimensions. jSO consistently
performs well across all dimensions, with ranks of 3, 2, 2,
and 5, respectively, highlighting its robustness and reliability
in various sizes of problems. This consistency makes jSO
a strong contender in lower- and higher-dimensional prob-
lems. LSHADE SPACMA and LSHADE cnEpSin achieve

a total rank sum of 15. LSHADE SPACMA shows excel-
lent performance in dimension 100, ranking second, while
LSHADE cnEpSin is consistently strong across all dimen-
sions, with its lowest rank being 5 in dimension 10. MM OED
performs exceptionally well in lower dimensions, particularly
dimension d = 10, where it ranks second; however, its
performance declines in higher dimensions, with ranks 5, 6,
and 6. This trend suggests that MM OED is more suitable
for lower-dimensional problems. DES displays an interesting
pattern, with moderate performance in the lower dimensions
(ranks 8 and 7) but a significant improvement in dimension
100, where it achieves the top rank. Its total rank sum of
21 indicates its potential for high-dimensional optimization,
making it a valuable algorithm for larger-scale problems.

TABLE VI
OVERALL RANKINGS OF ALGORITHMS BY HRA

Algorithm Score HRA CEC2017
jSO 0.7735 2 2
MM OED 0.6515 5 6
IDEbestNsize 0.5338 7 7
RB IPOP CMA ES 0.4822 8 8
LSHADE SPACMA 0.7198 4 4
DES 0.6082 6 5
DYYPO 0.1500 12 12
TLBO FL 0.0940 13 13
PPSO 0.2517 10 11
MOS SOCO2011 0.3571 9 10
MOS CEC2013 0.2373 11 9
LSHADE cnEpSin 0.7281 3 3
EBOwithCMAR 0.8497 1 1

We applied the TOPSIS method to the final decision matrix
to derive the overall rankings of the meta-heuristic algorithms.
The results presented in Table VI provide a comprehen-
sive view of the relative performance of each algorithm. At
the same time, for comparison purposes, we also include
the CEC2017 competition rankings to highlight similarities
and differences. The consistency in the top positions, par-
ticularly for EBOwithCMAR, jSO, and LSHADE cnEpSin,
underscores their reliability and effectiveness across various
dimensions. However, slight discrepancies, such as the rank
switch between MM OED and DES, highlight the influence of
different ranking methodologies. Moreover, Carrasco et al. in
[32] have validated our findings through their comprehensive
statistical study of the CEC’17 results using only the mean as
a performance measure. Their study provides robust evidence
supporting the conclusions we reached.

In this study, we employed equal weighting at each level
because the “true” weights of criteria are generally unknown
in practice. For future research, we plan to exploit the fact that,
especially for this specific problem, we can assume that rank-
ordering information is known at each level. This approach
may provide a more refined and accurate evaluation of the
algorithms.

IV. CONCLUSION

In this paper, we introduced the Hierarchical Rank Aggre-
gation (HRA) framework, which represents a new approach to
the multi-criteria decision-making problem of evaluating and



ranking metaheuristic optimization algorithms. HRA tackles
the time-consuming and complex task of comparing algo-
rithms by considering multiple performance metrics across
various problem dimensions. Therefore, it is a valuable tool
to assist researchers and practitioners in identifying the best
algorithm for a given class of optimization problems in a
single run. We demonstrated HRA’s efficacy using the CEC’17
competition dataset, where 13 metaheuristics algorithms were
evaluated on 30 benchmark functions with four dimensions
each. The framework was able to combine several perfor-
mance measures and rank algorithms in a way that showed
the relationship between problem dimensions and algorithm
performance.

Although the present work used equal levels of importance
among the hierarchies to keep the analysis straightforward,
future studies may test different levels of priority or imbal-
ance. In particular, integrating rank-ordering criteria weighting
methods, could improve the evaluation process without raising
concerns about the validity of the algorithm’s assessment.
The time complexity of HRA, which is O(m logm), would
classify HRA as computationally inexpensive for comparisons
of algorithms in large-scale studies.
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