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Abstract—This study explored the development of a novel
self-healing framework for databases using meta-learning and
reinforcement learning techniques. The primary objective was
to address the challenges of real-time adaptability and minimal
retraining in dynamic workload environments. The proposed
approach integrated Model-Agnostic Meta-Learning (MAML)
with reinforcement learning to enable anomaly detection and
corrective actions that adapted swiftly to evolving database
conditions. Multi-objective optimization was employed to balance
performance, resource utilization, and cost efficiency during the
healing process. Graph Neural Networks (GNNs) were incorpo-
rated to model interdependencies within database components,
ensuring holistic recovery strategies. Data efficiency was en-
hanced through synthetic task augmentation and self-supervised
learning, enabling effective training in sparse data regimes.
To promote trust and transparency, explainable AI techniques
were integrated to provide interpretable insights into anomaly
detection and healing actions. Federated meta-learning further
enabled privacy-preserving adaptability in distributed database
environments. The framework demonstrated significant improve-
ments in adaptability, efficiency, and reliability, contributing to
advancements in database management and self-healing systems.

Index Terms—Self-Healing Databases, Meta-Learning, Model-
Agnostic Meta-Learning (MAML), Anomaly Detection, Graph
Neural Networks (GNNs), Reinforcement Learning (RL), Multi-
Objective Optimization, Cascading Failure Prediction, Dynamic
Workload Adaptation, Explainable AI (XAI), Database Depen-
dency Modeling, Recovery Optimization, Task Generalization,
Proactive Anomaly Prevention, Real-Time Adaptability, Scal-
able Database Systems, Federated Meta-Learning, Workload
Prediction, RL-Based Recovery, Database Management Systems
(DBMS)

I. INTRODUCTION

The self-healing database has received considerable interest
as a way of improving the dependability and performance of
the DBMS that runs under fluctuating workloads. Previous
works have highlighted the need to incorporate anomaly
detection and reconfiguration in management of databases.

Some of the existing techniques for handling such chal-
lenges include: Generative Adversarial Networks for Anomaly
detection [1], and reinforcement learning for self- adaptive
systems [2]. But historical models commonly take consider-
able retraining and do not retain their relevance in handling
new workloads promptly [3]. Model-Agnostic Meta-Learning
(MAML) is a meta-learning model that has recently been

explored to train a model that could help achieve fast task
adaptation with minimal training data [4]. It has been used
successfully in anomaly detection for dynamic systems [5]
as well as in few shot learning cases [6] thereby making it a
useful starting point for addressing the adaptability gap for self
healing systems. Also, it has been applied to improve learning
and developing of the recovery strategy in the distributed
system [7] and the multi-objective optimization method has
been adopted to minimize the trade-off between performance,
cost and resource utilization [8]. Despite these advancements,
challenges persist in handling sparse data environments and
modeling interdependencies within database components. Ap-
proaches using graph neural networks (GNNs) have been
proposed to capture cascading failures and dependencies [9],
while federated meta-learning frameworks have been intro-
duced to enhance privacy-preserving adaptability in distributed
systems [10]. Self-supervised learning methods have also
emerged as a promising avenue for leveraging unlabeled data
in anomaly detection tasks [11]. This work further expands
upon these bases by incorporating MAML to the existing
reinforcement learning methods in order to create an adap-
tation for a self-healing database framework set that does not
need much retraining when subjected to new workloads. Some
of the proposed innovations are multi-objective optimization
applied to general target system recovery, concrete dependency
graphical model, as well as synthetic task aggrandizement for
superior training in the least dense data situations. The features
presented in this paper are the key steps and mechanisms
that could become a foundation for further development of
the proposed approach, thus overcoming the existing systems’
drawbacks and introducing novel concepts for database man-
agement and self-healing[1, 2].

II. RELATED WORKS

Self-healing systems have been extensively studied to en-
hance system resilience through advanced anomaly detec-
tion and repair mechanisms. Generative Adversarial Networks
(GANs) have been explored as a powerful tool for anomaly
detection in high-speed systems, as demonstrated by Cao et
al., who used synthetic anomalous data to detect rare failure
modes [1]. While GAN-based methods achieved high accuracy
in anomaly prediction, their inefficiency in managing large



datasets and inability to adapt to dynamic workload pat-
terns limited their applicability in real-time database systems.
Furthermore, these approaches lacked sensitivity to evolving
workloads, which is critical in unstable and dynamic environ-
ments.

Reinforcement Learning (RL) has been widely employed
in self-adaptive systems for its ability to refine task-specific
strategies. Studies have highlighted its potential to optimise
system performance by dynamically adjusting recovery actions
[2]. However, traditional RL approaches exhibited significant
limitations, including lengthy convergence cycles and reliance
on static learning models, which restricted adaptability to dy-
namic database environments. These shortcomings emphasised
the necessity for more flexible and efficient methods capable
of responding to evolving system states.

Automated Machine Learning (AutoML) techniques were
introduced to improve anomaly detection by automating model
selection and hyperparameter tuning [3]. Bahri et al. concluded
that AutoML demonstrated strong performance in static work-
load scenarios but struggled in dynamic environments where
workloads frequently shifted. This inability to adapt to chang-
ing patterns further reinforced the need for advanced solutions
capable of real-time anomaly detection and adaptation.

Meta-learning has emerged as a revolutionary paradigm
for task adaptation, with Model-Agnostic Meta-Learning
(MAML) being a significant advancement in this field. Finn et
al. demonstrated that MAML allows models to rapidly adapt
to new tasks with minimal retraining, making it highly suitable
for dynamic environments [4]. Chalvidal et al. extended this
concept by incorporating self-modifying networks, which en-
hanced adaptation efficiency and reduced computational over-
head [4]. In addition, meta-learning applications for anomaly
detection, as discussed by Ding et al., employed few-shot
learning to generalise across related tasks, effectively address-
ing the problem of limited labelled data [6]. Despite these
advancements, existing meta-learning frameworks have been
unable to adequately capture the complex interdependencies
required for cascade failure detection in distributed database
systems.

Graph Neural Networks (GNNs) have shown significant
promise in modelling interdependencies within distributed
systems. Studies, including [9], have demonstrated their ability
to predict cascading failures and model relationships between
database components such as queries, tables, and indexes.
However, traditional GNN-based frameworks have primarily
focused on reactive strategies, lacking the integration of proac-
tive anomaly detection techniques. This reactive approach of-
ten limits their ability to prevent failures before they propagate
across the system.

The incorporation of federated meta-learning frameworks,
as outlined in [10], has been instrumental in addressing
privacy concerns in distributed systems by enabling localised
learning without centralised data aggregation. However, these
frameworks face challenges such as node heterogeneity and
inconsistent model updates, which can hinder their scalability
and reliability. Multi-objective optimisation techniques for

resource allocation and recovery, as discussed in [8], have
provided structured methodologies for balancing performance,
resource consumption, and cost. Nonetheless, fixed optimi-
sation goals in these approaches restrict their applicability
to dynamic database environments where system priorities
frequently shift.

Self-supervised learning (SSL) has also been explored for
training anomaly detection models with unlabelled data, as
proposed by Kumagai et al. [11]. SSL improves data efficiency
and enables the development of models in sparse data regimes.
However, its effectiveness diminishes in low-density datasets
and scenarios where synthetic task augmentation, combined
with meta-learning techniques, can provide superior outcomes.

The proposed framework builds upon these prior advance-
ments by integrating multiple state-of-the-art techniques to
address the limitations of existing approaches. Synthetic task
augmentation leverages generative models to generate di-
verse workload patterns and unique failure modes, addressing
knowledge gaps highlighted in [1, 11]. Dependency mod-
elling with GNNs extends prior work in [9], enabling precise
identification and prevention of cascading failures in real-
time. Multi-objective meta-reinforcement learning introduces
adaptive trade-off schemes for optimising performance, cost,
and resource consumption during recovery actions, as outlined
in [7, 8]. Federated meta-learning extends the work in [10] to
enhance heterogeneity-aware mechanisms, ensuring consistent
performance across diverse database nodes.

Additionally, explainable AI techniques, inspired by [4, 7],
are integrated into the framework to provide transparency and
interpretability in anomaly detection and recovery processes.
This inclusion addresses the critical need for trustworthiness
in self-healing systems, particularly in scenarios where black-
box models have been traditionally employed.

The combination of these innovations creates a comprehen-
sive and scalable self-healing database framework capable of
addressing real-time adaptability, proactive anomaly preven-
tion, and efficient recovery optimisation. This work advances
the state-of-the-art by bridging critical gaps in scalability, ex-
plainability, and dynamic workload management, positioning
the framework as a robust solution for modern distributed
database systems.

III. METHODOLOGY

This research presents a novel self-healing approach
for databases by integrating Model-Agnostic Meta-Learning
(MAML) and Reinforcement Learning (RL), embedded with
Graph Neural Networks (GNNs) for dependency modeling and
multi-objective reformulation. The methodology is structured
around three core components: Rare Event Detection, Learning
through Meta-Learning, and Recovery from Disasters Using
RL with Multiple Objectives.

A. Anomaly Detection Using Meta-Learning
The anomaly detection module analyzes the current work-

load and performance indicators to detect anomalies in real
time. A MAML-based approach is employed to efficiently
adapt to generic tasks with limited data.



Fig. 1. Framework of the Self Healing Database using MAML, GNN and RL

1) The Problem Setup: Tasks are represented as T =
{T1, T2, . . . , Tn}, where each task Ti corresponds to a
database workload pattern defined by features x and labels
y, indicating the anomaly status. The objective is to train a
model fθ capable of rapid adaptation to new tasks Tnew with
minimal data, as demonstrated in prior meta-learning studies
[4, 13].

2) Meta-Learning with MAML: MAML is selected for
its effectiveness in enabling rapid adaptation with minimal
gradient steps [4]. For each task Ti, the task-specific loss
function is:

Li(θ) =
1

N

N∑
j=1

ℓ(fθ(x
(i)
j ), y

(i)
j ), (1)

where ℓ is the binary cross-entropy loss, x(i)
j are task inputs,

and y
(i)
j are the corresponding labels.

Two optimization steps are performed:
1) Inner Update (Task-Specific Update):

θ′i = θ − α∇θLi(θ), (2)

where α is the inner learning rate.
2) Meta-Update (Generalization Across Tasks):

θ ← θ − β∇θ

n∑
i=1

Li(θ
′
i), (3)

where β is the meta-learning rate.
This two-step process enhances adaptability in dynamic

environments, enabling the system to generalize across diverse
workload scenarios while reducing retraining time [4, 6, 13].

B. Dependency Modeling with GNNs

Graph Neural Networks (GNNs) are used to model interde-
pendencies among database components (e.g., queries, tables,
and indexes), extending approaches in [14]. Each database
system is represented as a graph G = (V,E), where V denotes
nodes (components) and E denotes edges (dependencies).
Node embeddings h

(l)
v at layer l are updated as:

h(l+1)
v = σ

W (l) ·
∑

u∈N(v)

h(l)
u + b(l)

 , (4)

where N(v) represents the neighbors of node v, σ is the
activation function, W (l) is the weight matrix, and b(l) is the
bias term.

This approach enables real-time detection of cascading
failures and interdependencies, significantly improving failure
prediction accuracy and latency [14, 19].

C. Adaptation and Multi-Objective Optimization

1) Multi-Objective Recovery: Recovery is formulated as a
multi-objective optimization problem, balancing:

1) Latency Minimization (O1):

O1 = min
1

T

T∑
t=1

L(t), (5)

where L(t) represents latency at time t.
2) Resource Utilization Minimization (O2):

O2 = min
1

T

T∑
t=1

R(t), (6)

where R(t) represents resource usage at time t.
3) Recovery Cost Minimization (O3):

O3 = min
∑
a∈A

C(a), (7)

where C(a) is the cost of action a in the set of recovery actions
A.

The Pareto front is used to balance these objectives, im-
proving upon earlier single-objective recovery strategies [7,
15, 17].

2) Reinforcement Learning for Recovery: An RL-based
approach develops an agent to recover from anomalies. States
s include workload conditions and anomaly status, while
actions a include recovery measures like query rerouting or
resource scaling. The reward function is defined as:

R(s, a) = w1O1(s, a) + w2O2(s, a) + w3O3(s, a), (8)

where w1, w2, and w3 are weights prioritizing the objec-
tives. This method dynamically adjusts weights to adapt to
evolving system priorities [7, 16].



D. Training and Deployment

1) Training Process: Meta-Training: The anomaly detec-
tion model fθ is trained on synthetic and real-world tasks using
MAML, leveraging augmentation techniques from [13, 19].
GNN Training: Dependency graphs are generated and used to
train the GNN for real-time dependency modeling, following
methods in [14]. RL Training: The RL agent is trained using
a reward function optimized for latency, resource usage, and
cost, adapted from [7, 15].

2) Deployment: The system is deployed in a real-time
monitoring environment with three key steps:

• Anomaly detection analyzes deviations from standard
workloads.

• Dependency modeling predicts cascading effects in
databases.

• The RL agent executes optimal recovery actions based
on multi-objective optimization.

IV. RESULTS AND ANALYSIS

The proposed framework of self-healing databases was
tested against both synthetic datasets and real datasets. The
datasets used in this experiment include Google Cluster Data
[12] and TPC Benchmark Workloads [1]. The evaluation
focused on three key aspects: anomaly detection performance,
adaptability to new workloads, and the quality of recovery
actions executed. The results were evaluated based on detec-
tion precision, adaptation latency, resource usage, and recovery
cost.

A. Anomaly Detection Performance

The generalization potential of the MAML-based anomaly
detection module was evaluated using tasks derived from
unseen database workloads. The following metrics were used:

• Precision (P): The ratio of true anomalies correctly
identified to the total number of anomalies detected.

• Recall (R): True anomaly detection accuracy as a per-
centage of total anomalous behaviors.

• F1-Score (F1): The harmonic mean of precision and
recall.

Fig. 2. Feature Importance of Model Utilizing for the DB

TABLE I
ANOMALY DETECTION PERFORMANCE

Dataset Precision (%) Recall (%) F1-Score (%)
Google Cluster Data 91.3 89.8 90.5
TPC Workloads 92.1 90.5 91.3

The results showed a high accuracy of anomaly detection.
Compared to other methods, MAML produced superior per-
formance on unseen tasks using only a few labeled instances
[4, 6]

B. Adaptability to New Workloads

The framework’s flexibility was evaluated based on the time
taken for the anomaly detection module to adapt to new work-
load conditions. Adaptation latency, defined as the number of
gradient steps required for convergence, was measured.

Fig. 3. CPU Usage Distribution with Anomalies

TABLE II
ADAPTATION LATENCY FOR NEW WORKLOADS

Dataset Traditional Models Proposed Model
(Steps) (Steps)

Google Cluster Data 20 5
TPC Workloads 18 4

The MAML-based model required significantly fewer gra-
dient steps, demonstrating its ability to generalize across
tasks and adapt efficiently to new workloads. This addressed
drawbacks noted in previous studies [4].

C. Dependency Modeling and Failure Prediction

The dependency modeling module, based on GNNs, was
assessed for its ability to predict cascading failures. The met-
rics used were accuracy and Mean Time to Failure Prediction
(MTTFP).

TABLE III
DEPENDENCY MODELING AND FAILURE PREDICTION RESULTS

Dataset Accuracy (%) MTTFP (Seconds)
Google Cluster Data 88.5 5.2
TPC Workloads 90.1 4.8



Fig. 4. Confusion Matrix of the obtained results

The GNN module effectively modeled database depen-
dencies, improving failure prediction accuracy and reducing
latency compared to rule-based dependency models [9] .

D. Effectiveness of Recovery Actions

The performance of the RL-based recovery module was
evaluated based on three goals: latency reduction, resource
efficiency, and cost reduction. A multi-objective optimization
approach was used to compute the Pareto front.

TABLE IV
COMPARISON OF RECOVERY ACTIONS

Objective Baseline (%) Proposed Framework (%)
Latency Reduction 70.4 85.1
Resource Efficiency 65.3 80.7
Cost Reduction 60.1 78.2

The proposed framework outperformed baseline RL models
by dynamically optimizing recovery strategies based on system
priorities [7, 8].

E. Comparison with Existing Frameworks

The proposed framework was compared with existing ap-
proaches, including GAN-based anomaly detection [1], tradi-
tional RL recovery models [2], and federated meta-learning
[10].

The results below [Table 5] indicate that the proposed
framework addressed critical gaps in adaptability, scalability,
and multi-objective optimization, improving overall system
reliability.

F. Resource and Cost Analysis

Resource utilization and recovery costs were evaluated
using benchmarks provided by Google Cluster Data [12]. The
proposed framework achieved:

• 20% reduction in recovery cost due to dynamic resource
scaling and optimized actions.

• 15% improvement in resource utilization due to efficient
task allocation strategies.

G. Qualitative Analysis

The qualitative analysis revealed that the proposed frame-
work could interpret identified anomalies and recovery ac-
tions. Using SHAP values for Explainable AI (XAI), system
administrators were able to understand why anomalies were
highlighted and how recovery actions were prioritized. This
addressed trust and transparency issues raised in previous
studies [10, 11]

Moreover, the integration of XAI methods facilitated in-
teractive exploration of the model’s decision-making process.
Administrators could visualize feature contributions for each
detected anomaly and correlate these insights with observed
workload metrics. As a result, operational teams gained the
ability to verify whether the proposed corrective measures
aligned with expected outcomes, reducing the need for guess-
work during system maintenance. Ultimately, the incorpora-
tion of explainability through SHAP empowered stakeholders
to make informed adjustments, ensuring that performance
improvements, cost savings, and reliability gains were both
quantifiable and comprehensible.

V. REAL-WORLD USE CASES

The proposed self-healing database framework demonstrates
significant potential for real-world applications, particularly
in environments such as cloud-based databases, distributed
database clusters, and Database-as-a-Service (DBaaS) offer-
ings.

In cloud-based systems, where workloads are dynamic and
infrastructure is highly scalable, the integration of meta-
learning ensures rapid adaptation to evolving workload pat-
terns, enabling real-time anomaly detection and recovery with
minimal retraining [13]. For distributed database clusters, the
use of Graph Neural Networks (GNNs) enhances the frame-
work’s ability to model interdependencies among components,
such as data nodes, queries, and tables, enabling accurate
prediction of cascading failures and their mitigation [14].
This is particularly critical in high-availability systems, where
failure in one node can propagate across the cluster, disrupting
operations.

In DBaaS environments, the framework addresses chal-
lenges such as multi-tenancy and resource optimization by
leveraging multi-objective reinforcement learning (RL) to bal-
ance latency, resource utilization, and cost. For instance, dy-
namic query rerouting and resource scaling can optimize per-
formance while ensuring cost-efficiency for users. However,
scaling the system in these environments presents challenges,
such as managing heterogeneous workloads, ensuring consis-
tent performance across geographically distributed nodes, and
handling privacy concerns in multi-tenant settings. The incor-
poration of federated meta-learning mitigates privacy issues by
enabling decentralized learning without sharing sensitive data
across nodes [15].

To ensure scalability, the framework employs lightweight
meta-learning architectures and distributed GNN processing,
which reduce computational overhead and allow the system
to adapt to large-scale, high-frequency database environments



TABLE V
COMPARISON WITH EXISTING FRAMEWORKS

Metric GAN-Based Models Traditional RL Federated Meta-Learning Proposed Framework
Anomaly Detection F1 (%) 80.2 82.3 85.1 91.3
Adaptation Latency High Moderate Low Very Low
Recovery Effectiveness Moderate High High Very High

[19]. Future work can focus on integrating hybrid forecasting
models, such as Transformers, to predict workload trends in
real time, enabling proactive anomaly prevention and recovery.
By addressing these challenges, the framework demonstrates
its viability as a robust solution for modern, large-scale
database systems operating under dynamic and distributed
conditions.

VI. FUTURE DIRECTIONS

The advancement of self-healing database systems requires
addressing emerging challenges and leveraging technological
innovations to meet the demands of increasingly complex
and dynamic environments. A promising direction involves
the integration of hybrid predictive models, such as trans-
formers, with existing techniques like Graph Neural Networks
(GNNs) and reinforcement learning (RL). The combination
of sequential data analysis and dependency modelling has the
potential to enable proactive anomaly detection and recovery
strategies. These hybrid approaches have shown significant
potential in anticipating failures before they occur, minimising
system downtime, and enhancing operational resilience [4, 7,
13, 14].

Quantum machine learning (QML) represents a transforma-
tive area for improving self-healing database systems. The
unparalleled capabilities of quantum computing in solving
optimisation problems, particularly in multi-objective trade-
offs involving latency, resource usage, and cost, have been
documented in optimisation research [8, 15]. The integration
of QML with federated learning frameworks has the potential
to enhance scalability and efficiency while preserving data
privacy in large-scale distributed systems [10,17].

The incorporation of human-in-the-loop (HITL) frameworks
is gaining attention in critical applications. Collaborative sys-
tems that combine AI-driven self-healing mechanisms with
human decision-making ensure that recovery actions align with
organisational objectives. HITL frameworks are particularly
relevant in mission-critical environments such as healthcare
and financial systems, where interpretability, trust, and ac-
countability are crucial [9,18].

Bio-inspired algorithms, including ant colony optimisation
and swarm intelligence, have been extensively explored for
their decentralised and adaptive capabilities in distributed
database clusters. These algorithms, inspired by natural pro-
cesses, offer robust solutions for resource allocation and failure
recovery under varying workload conditions. Decentralised
decision-making, as demonstrated in distributed systems re-
search, has shown to improve system resilience and reduce
recovery time in high-availability infrastructures [9, 19].

Addressing the growing demand for energy-efficient sys-
tems is another critical area of focus. Future research on
energy-aware meta-learning models and resource-efficient ar-
chitectures can reduce the environmental impact of database
operations. Studies on energy-efficient cloud-based systems
have emphasised the direct correlation between energy con-
sumption and operational costs, highlighting the significance
of incorporating sustainability principles into self-healing
frameworks [8, 16].

Real-time analytics dashboards represent an emerging trend
to improve the transparency and usability of self-healing
systems. Advanced visualisation tools for anomaly detection
and recovery insights allow system administrators to monitor
system performance and evaluate recovery actions effectively.
These dashboards, when integrated with explainable AI (XAI)
techniques such as SHAP and LIME, have demonstrated
improvements in trust and accountability by providing inter-
pretability in anomaly detection and recovery decisions [4, 7,
19].

By exploring these directions, self-healing database systems
can evolve into highly robust, scalable, and efficient solutions
capable of addressing the challenges of modern distributed
environments. Emphasising privacy preservation, energy effi-
ciency, interpretability, and proactive recovery strategies will
position self-healing databases as an integral component of
future infrastructure. Furthermore, the integration of advanced
computational paradigms such as QML and HITL frameworks
will ensure adaptability and resilience in mission-critical and
dynamic applications.

VII. CONCLUSION

This research introduced a novel self-healing database
framework that integrated Model-Agnostic Meta-Learning
(MAML) [4], Graph Neural Networks (GNNs) [9], and Rein-
forcement Learning (RL) [7] with multi-objective optimization
[8] to address key challenges in anomaly detection, real-time
adaptability, and recovery optimization in dynamic database
environments. The proposed framework demonstrated superior
performance in anomaly detection accuracy, workload adapt-
ability, cascading failure prediction, and recovery effective-
ness. By leveraging MAML, the framework achieved rapid
adaptation to unseen workload patterns with minimal data [4].
GNNs effectively modeled database dependencies, enabling
precise prediction of cascading failures [9], while the RL-
based recovery module dynamically balanced latency, resource
utilization, and cost [7,8]. These innovations bridged critical
gaps in scalability, explainability, and recovery optimization,



positioning the framework as a robust solution for self-healing
databases.

Despite its effectiveness, the framework exhibited certain
limitations. The meta-learning module required high-quality
task-specific pretraining datasets, which posed challenges in
environments with insufficient or biased data [4]. Dependency
modeling with GNNs relied on accurate graph construction,
making it less effective in cases of noisy or incomplete de-
pendency data [9]. The RL-based recovery mechanism, while
robust in multi-objective optimization, struggled to handle
highly conflicting recovery objectives in complex workloads
[7,8]. Additionally, the computational complexity of the meta-
learning and GNN modules introduced scalability challenges
in large-scale, high-frequency database environments [4,9].
Synthetic task augmentation for anomaly detection, while
effective, carried the risk of generating scenarios that did not
fully reflect real-world workload dynamics [1,11].

Future work can address these limitations by exploring
several directions. Enhanced pretraining methods for meta-
learning can incorporate transfer learning and domain adap-
tation to improve generalizability across diverse workloads
[4,11]. Dynamic graph construction techniques can be de-
veloped to handle noisy or incomplete dependency data,
improving the reliability of cascading failure predictions [9].
The framework can be extended to include proactive anomaly
prevention using hybrid forecasting models, such as Trans-
formers, to predict workload changes and implement preemp-
tive recovery measures [6,11]. Federated meta-learning can
be adopted to enable decentralized training across distributed
database nodes, addressing data privacy concerns while im-
proving scalability [10]. Explainability can be enhanced
through advanced Explainable AI (XAI) methods, providing
deeper insights into anomaly detection and recovery actions
[11]. Scalability can be optimized by employing lightweight
meta-learning architectures and distributed GNN processing
to reduce computational overhead [9]. Integration with real-
time database management systems can further validate the
framework under operational constraints and guide refinements
based on real-world feedback [12].

These advancements aim to extend the framework’s adapt-
ability, scalability, and efficiency, making it a comprehensive
solution for modern database systems operating in dynamic
and distributed environments. Through these improvements,
the proposed framework can serve as a foundation for next-
generation self-healing database management systems.
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