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Abstract Robin’s criterion states that the Riemann hypothesis is true if and only if
the inequality σ(n)< eγ ×n× log logn holds for all natural numbers n > 5040, where
σ(n) is the sum-of-divisors function of n and γ ≈ 0.57721 is the Euler-Mascheroni
constant. We show that the Robin inequality is true for all natural numbers n > 5040
that are not divisible by some prime between 2 and 1771559. We prove that the
Robin inequality holds when π2

6 × log logn′ ≤ log logn for some n > 5040 where
n′ is the square free kernel of the natural number n. The possible smallest coun-
terexample n > 5040 of the Robin inequality implies that qm > e31.018189471, 1 <
(1+ 1.2762

logqm
)×log(2.82915040011)

log logn + logNm
logn , (logn)β < 1.03352795481 × log(Nm) and n <

(2.82915040011)m×Nm, where Nm = ∏
m
i=1 qi is the primorial number of order m, qm

is the largest prime divisor of n and β = ∏
m
i=1

q
ai+1
i

q
ai+1
i −1

when n is an Hardy-Ramanujan

integer of the form ∏
m
i=1 qai

i .

Keywords Riemann hypothesis · Robin inequality · sum-of-divisors function ·
prime numbers · Riemann zeta function

Mathematics Subject Classification (2010) MSC 11M26 · MSC 11A41 · MSC
11A25

1 Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta func-
tion has its zeros only at the negative even integers and complex numbers with real
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part 1
2 . As usual σ(n) is the sum-of-divisors function of n:

∑
d|n

d

where d | n means the integer d divides n and d ∤ n means the integer d does not divide
n. Define f (n) to be σ(n)

n . Say Robins(n) holds provided

f (n)< eγ × log logn.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural
logarithm. The importance of this property is:

Theorem 1.1 Robins(n) holds for all natural numbers n > 5040 if and only if the
Riemann hypothesis is true [9].

It is known that Robins(n) holds for many classes of numbers n. Robins(n) holds for
all natural numbers n > 5040 that are not divisible by 2 [4]. We extend the indivisi-
bility property on the following result:

Theorem 1.2 Robins(n) holds for all natural numbers n> 5040 that are not divisible
by some prime between 3 and 1771559.

We recall that an integer n is said to be square free if for every prime divisor q of n
we have q2 ∤ n.

Theorem 1.3 Robins(n) holds for all natural numbers n > 5040 that are square
free [4].

In addition, we show that Robins(n) holds for some n > 5040 when π2

6 × log logn′ ≤
log logn such that n′ is the square free kernel of the natural number n. Let q1 = 2,q2 =
3, . . . ,qm denote the first m consecutive primes, then an integer of the form ∏

m
i=1 qai

i
with a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 is called an Hardy-Ramanujan integer [4]. A natural
number n is called superabundant precisely when, for all natural numbers m < n

f (m)< f (n).

Theorem 1.4 If n is superabundant, then n is an Hardy-Ramanujan integer [2].

Theorem 1.5 The smallest counterexample of the Robin inequality greater than 5040
must be a superabundant number [1].

Suppose that n > 5040 is the possible smallest counterexample of the Robin inequal-

ity, then we prove that qm > e31.018189471, 1 <
(1+ 1.2762

logqm
)×log(2.82915040011)

log logn + logNm
logn ,

(logn)β < 1.03352795481× log(Nm) and n < (2.82915040011)m×Nm, where Nm =

∏
m
i=1 qi is the primorial number of order m, qm is the largest prime divisor of n and

β = ∏
m
i=1

q
ai+1
i

q
ai+1
i −1

when n is an Hardy-Ramanujan integer of the form ∏
m
i=1 qai

i .
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2 A Central Lemma

These are known results:

Lemma 2.1 [4]. For n > 1:

f (n)< ∏
q|n

q
q−1

. (2.1)

Lemma 2.2
∞

∏
k=1

1
1− 1

q2
k

= ζ (2) =
π2

6
. (2.2)

The following is a key lemma. It gives an upper bound on f (n) that holds for all
natural numbers n. The bound is too weak to prove Robins(n) directly, but is critical
because it holds for all natural numbers n. Further the bound only uses the primes
that divide n and not how many times they divide n.

Lemma 2.3 Let n > 1 and let all its prime divisors be q1 < · · ·< qm. Then,

f (n)<
π2

6
×

m

∏
i=1

qi +1
qi

.

Proof Putting together the lemmas 2.1 and 2.2 yields the proof:

f (n)<
m

∏
i=1

(
qi

qi −1

)
=

m

∏
i=1

qi +1
qi

× 1
1− 1

q2
i

<
π2

6
×

m

∏
i=1

qi +1
qi

.

3 Robin on Divisibility

We know the following lemmas:

Lemma 3.1 [7]. Let n > ee23.762143
and let all its prime divisors be q1 < · · · < qm,

then (
m

∏
i=1

qi

qi −1

)
<

1771561
1771560

× eγ × log logn.

Lemma 3.2 Robins(n) holds for all natural numbers 101013.11485 ≥ n > 5040 [8].

Theorem 3.3 Suppose n > 5040. If there exists a prime q ≤ 1771559 with q ∤ n, then
Robins(n) holds.

Proof We have that f (n) < 1771561
1771560 × eγ × log log(n) for any number n > 101013.11485

since the inequality 101013.11485
> ee23.762143

is satisfied. Note that f (n)< n
ϕ(n) =∏q|n

q
q−1
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from the lemma 2.1, where ϕ(x) is the Euler’s totient function. Suppose that n is not
divisible by some prime q ≤ 1771559 and n ≥ 101013.11485

. Then,

f (n)<
n

ϕ(n)

=
n×q

ϕ(n×q)
× q−1

q

<
1771561
1771560

× q−1
q

× eγ × log log(n×q)

and

f (n)
eγ × log log(n)

<
1771561
1771560

× q−1
q

× log log(n×q)
log log(n)

=
1771561
1771560

× q−1
q

×
log log(n)+ log(1+ log(q)

log(n) )

log log(n)

=
1771561
1771560

× q−1
q

×

1+
log(1+ log(q)

log(n) )

log log(n)



So

f (n)
eγ × log log(n)

<
1771561
1771560

× q−1
q

×

1+
log(1+ log(q)

log(n) )

log log(n)


for n ≥ 101013.11485

. The right hand side is less than 1 for q ≤ 1771559 and n ≥
101013.11485

. Therefore, Robins(n) holds.

4 On the Greatest Prime Divisor

We know that

Lemma 4.1 [6]. For x ≥ 2973:

∏
q≤x

q
q−1

< eγ × (logx+
0.2

log(x)
).

Theorem 4.2 Let ∏
m
i=1 qai

i be the representation of n as a product of primes q1 <
· · · < qm with natural numbers as exponents a1, . . . ,am. If n > 5040 is the smallest
integer such that Robins(n) does not hold, then qm > e31.018189471.
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Proof According to the theorems 1.4 and 1.5, the primes q1 < · · · < qm must be
the first m consecutive primes and a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 since n > 5040 should
be an Hardy-Ramanujan integer. From the theorem 3.3, we know that necessarily
qm ≥ 1771559. So,

eγ × log logn ≤ f (n)< ∏
q≤qm

q
q−1

< eγ × (logqm +
0.2

log(qm)
)

because of the lemmas 2.1 and 4.1. Hence,

log logn− 0.2
log(qm)

< logqm.

However, from the lemma 3.2 and theorem 3.3, we would obtain that

log logn− 0.2
log(qm)

≥ 13.11485× log(10)+ log log10− 0.2
log(1771559)

> 31.018189471.

Since, we have that

logqm > log logn− 0.2
log(qm)

> 31.018189471

then, we would obtain that qm > e31.018189471 under the assumption that n > 5040 is
the smallest integer such that Robins(n) does not hold.

5 Some Feasible Cases

We can easily prove that Robins(n) is true for certain kind of numbers:

Lemma 5.1 Robins(n) holds for n > 5040 when q ≤ 7, where q is the largest prime
divisor of n.

Proof This is an immediate consequence of theorem 3.3.

The next theorem implies that Robins(n) holds for a wide range of natural num-
bers n > 5040.

Theorem 5.2 Let π2

6 × log logn′ ≤ log logn for some n > 5040 such that n′ is the
square free kernel of the natural number n. Then Robins(n) holds.

Proof Let n′ be the square free kernel of the natural number n, that is the product of
the distinct primes q1, . . . ,qm. By assumption we have that

π2

6
× log logn′ ≤ log logn.
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For all square free n′≤ 5040, Robins(n′) holds if and only if n′ /∈{2,3,5,6,10,30} [4].
However, Robins(n) holds for all n > 5040 when n′ ∈ {2,3,5,6,10,15,30} due to the
lemma 5.1. When n′ > 5040, we know that Robins(n′) holds and so

f (n′)< eγ × log logn′

because of the theorem 1.3. By the previous lemma 2.3:

f (n)<
π2

6
×

m

∏
i=1

qi +1
qi

.

So,

f (n)<
π2

6
×

m

∏
i=1

qi +1
qi

=
π2

6
× f (n′)

<
π2

6
× eγ × log logn′

≤ eγ × log logn

according to the formula f (x) for the square free numbers [4].

6 On Possible Counterexample

For every prime number pn > 2, we define the sequence Yn =
e

0.2
log2(pn)

(1− 1
log(pn)

)
.

Lemma 6.1 As the prime number pn increases, the sequence Yn is strictly decreasing.

Proof This lemma is obvious.

In mathematics, the Chebyshev function θ(x) is given by

θ(x) = ∑
p≤x

log p

where p ≤ x means all the prime numbers p that are less than or equal to x. We know
that

Lemma 6.2 [10]. For x ≥ 41:

θ(x)> (1− 1
log(x)

)× x.

Lemma 6.3 [3]. For x ≥ 2278382:

∏
q≤x

q
q−1

< eγ × (logx+
0.2

log2(x)
).
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We will prove another important inequality:

Lemma 6.4 Let q1,q2, . . . ,qm denote the first m consecutive primes such that q1 <
q2 < · · ·< qm and qm > 2278382. Then

m

∏
i=1

qi

qi −1
< eγ × log(Ym ×θ(qm)) .

Proof From the lemma 6.2, we know that

θ(qm)> (1− 1
log(qm)

)×qm.

In this way, we can show that

log(Ym ×θ(qm))> log
(

Ym × (1− 1
log(qm)

)×qm

)
= logqm + log

(
Ym × (1− 1

log(qm)
)

)
.

We know that

log
(

Ym × (1− 1
log(qm)

)

)
= log

 e
0.2

log2(qm)

(1− 1
log(qm)

)
× (1− 1

log(qm)
)


= log

(
e

0.2
log2(qm)

)
=

0.2
log2(qm)

.

Consequently, we obtain that

logqm + log
(

Ym × (1− 1
log(qm)

)

)
≥ (logqm +

0.2
log2(qm)

).

Due to the lemma 6.3, we prove that

m

∏
i=1

qi

qi −1
< eγ × (logqm +

0.2
log2(qm)

)< eγ × log(Ym ×θ(qm))

when qm > 2278382.

We use the following lemma:

Lemma 6.5 [7]. Let ∏
m
i=1 qai

i be the representation of n as a product of primes q1 <
· · ·< qm with natural numbers as exponents a1, . . . ,am. Then,

f (n) =

(
m

∏
i=1

qi

qi −1

)
×

m

∏
i=1

(
1− 1

qai+1
i

)
.
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The following theorems have a great significance, because these mean that the
possible smallest counterexample of the Robin inequality greater than 5040 must be
very close to its square free kernel.

Theorem 6.6 Let ∏
m
i=1 qai

i be the representation of n as a product of primes q1 <
· · · < qm with natural numbers as exponents a1, . . . ,am. If n > 5040 is the smallest
integer such that Robins(n) does not hold, then (logn)β <Ym× log(Nm), where Nm =

∏
m
i=1 qi is the primorial number of order m and β = ∏

m
i=1

q
ai+1
i

q
ai+1
i −1

.

Proof According to the theorems 1.4 and 1.5, the primes q1 < · · · < qm must be
the first m consecutive primes and a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 since n > 5040 should
be an Hardy-Ramanujan integer. From the theorem 4.2, we know that necessarily
qm > e31.018189471. From the lemma 6.5, we note that

f (n) =

(
m

∏
i=1

qi

qi −1

)
×

m

∏
i=1

(
1− 1

qai+1
i

)
.

However, we know that

m

∏
i=1

qi

qi −1
< eγ × log(Ym × log(Nm))

because of the lemma 6.4 when qm > 2278382. If we multiply by ∏
m
i=1

(
1− 1

q
ai+1
i

)
the both sides of the previous inequality, then we obtain that

f (n)< eγ × log(Ym × log(Nm))×
m

∏
i=1

(
1− 1

qai+1
i

)
.

If n is the smallest integer exceeding 5040 that does not satisfy the Robin inequality,
then

eγ × log logn < eγ × log(Ym × log(Nm))×
m

∏
i=1

(
1− 1

qai+1
i

)
because of

eγ × log logn ≤ f (n).

That is the same as

m

∏
i=1

qai+1
i

qai+1
i −1

× log logn < log(Ym × log(Nm))

which is equivalent to
(logn)β < Ym × log(Nm)

where β = ∏
m
i=1

q
ai+1
i

q
ai+1
i −1

. Therefore, the proof is done.
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Theorem 6.7 Let ∏
m
i=1 qai

i be the representation of n as a product of primes q1 <
· · · < qm with natural numbers as exponents a1, . . . ,am. If n > 5040 is the smallest
integer such that Robins(n) does not hold, then (logn)β < 1.03352795481× log(Nm),

where Nm = ∏
m
i=1 qi is the primorial number of order m and β = ∏

m
i=1

q
ai+1
i

q
ai+1
i −1

.

Proof From the theorem 4.2, we know that necessarily qm > e31.018189471. Using the
theorem 6.6, we obtain that

(logn)β < 1.03352795481× log(Nm)

due to the lemma 6.1 since we have that Ym < 1.03352795481 when qm > e31.018189471.

Theorem 6.8 Let ∏
m
i=1 qai

i be the representation of n as a product of primes q1 <
· · · < qm with natural numbers as exponents a1, . . . ,am. If n > 5040 is the smallest
integer such that Robins(n) does not hold, then n < (2.82915040011)m ×Nm, where
Nm = ∏

m
i=1 qi is the primorial number of order m.

Proof According to the theorems 1.4 and 1.5, the primes q1 < · · · < qm must be the
first m consecutive primes and a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 since n > 5040 should be an
Hardy-Ramanujan integer. From the lemma 6.4, we know that

m

∏
i=1

qi

qi −1
< eγ × log(Ym ×θ(qm)) = eγ × log log(NYm

m )

for qm > 2278382. In this way, if n > 5040 is the smallest integer such that Robins(n)
does not hold, then n < NYm

m since by the lemma 2.1 we have that

eγ × log logn ≤ f (n)<
m

∏
i=1

qi

qi −1
.

That is the same as n < NYm−1
m ×Nm. We can check that qYm−1

m is monotonically de-
creasing for all primes qm > e31.018189471. Certainly, the derivative of the function

g(x) = x

 e

0.2
log2(x)

(1− 1
log(x) )

−1


is less than zero for all real numbers x ≥ e31.018189471. Consequently, we would have
that

qYm−1
m < g(e31.018189471)< 2.82915040011

for all primes qm > e31.018189471. Moreover, we would obtain that

qYm−1
m > qYm−1

j

for every integer 1 ≤ j < m. Finally, we can state that n < (2.82915040011)m ×Nm
since NYm−1

m < (2.82915040011)m when n > 5040 is the smallest integer such that
Robins(n) does not hold.

We know the following results:
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Lemma 6.9 [5]. For x > 1:

π(x)≤ (1+
1.2762
logx

)× x
logx

where π(x) is the prime counting function.

Lemma 6.10 If n > 5040 is the smallest integer such that Robins(n) does not hold,
then p < logn where p is the largest prime divisor of n [4].

Theorem 6.11 Let ∏
m
i=1 qai

i be the representation of n as a product of primes q1 <
· · ·< qm with natural numbers as exponents a1, . . . ,am. If n > 5040 is the smallest in-

teger such that Robins(n) does not hold, then 1 <
(1+ 1.2762

logqm
)×log(2.82915040011)

log logn + logNm
logn ,

where Nm = ∏
m
i=1 qi is the primorial number of order m.

Proof Note that n < (2.82915040011)m×Nm when n is the smallest integer such that
Robins(n) does not hold. If we apply the logarithm to the both sides, then

logn < m× log(2.82915040011)+ logNm.

According to the lemma 6.9, we have that

logn < (1+
1.2762
logqm

)× qm

logqm
× log(2.82915040011)+ logNm.

From the lemma 6.10, we would have

logn < (1+
1.2762
logqm

)× logn
log logn

× log(2.82915040011)+ logNm.

which is the same as

1 <
(1+ 1.2762

logqm
)× log(2.82915040011)

log logn
+

logNm

logn

after of dividing by logn.
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