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Abstract The Riemann hypothesis is a conjecture that the Riemann zeta function
has its zeros only at the negative even integers and complex numbers with real part 1

2 .
In 2011, Solé and and Planat stated that the Riemann hypothesis is true if and only if
the Dedekind inequality ∏q≤qn

(
1+ 1

q

)
> eγ

ζ (2) × logθ(qn) is satisfied for all primes
qn > 3, where θ(x) is the Chebyshev function, γ ≈ 0.57721 is the Euler-Mascheroni
constant and ζ (x) is the Riemann zeta function. We can deduce from that paper, if
the Riemann hypothesis is false, then the Dedekind inequality is not satisfied for in-
finitely many prime numbers qn. Using this result, we prove the Riemann hypothesis

is true when (1− 0.15
log3 x

)
1
x × x

1
x ≥ 1+

log(1− 0.15
log3 x

)+logx

x is always satisfied for every
sufficiently large positive number x. However, we know that inequality is trivially
satisfied for every sufficiently large positive number x. In this way, we show the Rie-
mann hypothesis is true.

Keywords Riemann hypothesis · Prime numbers · Dedekind inequality · Chebyshev
function · Riemann zeta function

Mathematics Subject Classification (2010) 11M26 · 11A41 · 11A25

1 Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros
only at the negative even integers and complex numbers with real part 1

2 . In mathe-
matics, the Chebyshev function θ(x) is given by

θ(x) = ∑
p≤x

log p

F. Vega
CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
ORCiD: 0000-0001-8210-4126
E-mail: vega.frank@gmail.com



2 F. Vega

with the sum extending over all prime numbers p that are less than or equal to x [6].
We denote the nth prime number as qn. We know the following properties for the
Chebyshev function:

Theorem 1.1 For all n ≥ 2, we have [3]:

θ(qn)

logqn+1
≥ n× (1− 1

logn
+

log logn
4× log2 n

).

Theorem 1.2 For every x ≥ 19035709163 [1]:

θ(x)> (1− 0.15
log3 x

)× x.

Besides, we define the prime counting function π(x) as

π(x) = ∑
p≤x

1.

We also know this property for the prime counting function:

Theorem 1.3 For every x ≥ 19027490297 [1]:

π(x)> ηx

where
ηx =

x
logx

+
x

log2 x
+

2× x
log3 x

+
5.85× x

log4 x

+
23.85× x

log5 x
+

119.25× x
log6 x

+
715.5× x

log7 x
+

5008.5× x
log8 x

.

In mathematics, Ψ = n×∏q|n

(
1+ 1

q

)
is called the Dedekind Ψ function, where q | n

means the prime q divides n. Say Dedekind(qn) holds provided

∏
q≤qn

(
1+

1
q

)
>

eγ

ζ (2)
× logθ(qn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural loga-
rithm and ζ (x) is the Riemann zeta function. The importance of this inequality is:

Theorem 1.4 Dedekind(qn) holds for all prime numbers qn > 3 if and only if the
Riemann hypothesis is true [7].

We define H = γ−B such that B≈ 0.2614972128 is the Meissel-Mertens constant [5].
We know from the constant H, the following formula:

Theorem 1.5 We have that [5]:

∑
q

(
log(

q
q−1

)− 1
q

)
= γ −B = H.

We know this value of the Riemann zeta function:



Note on the Riemann Hypothesis 3

Theorem 1.6 It is known that [7]:

ζ (2) =
∞

∏
k=1

q2
k

q2
k −1

=
π2

6
.

We have the following result:

Theorem 1.7 For every x >−1 [4]:

x ≥ log(1+ x).

Putting all together yields a proof for the Riemann hypothesis using the Chebyshev
function.

2 Results

Theorem 2.1 If the Riemann hypothesis is false, then there are infinitely many prime
numbers qn for which Dedekind(qn) do not hold.

Proof If the Riemann hypothesis is false, then we consider the function [7]:

g(x) =
eγ

ζ (2)
× logθ(x)×∏

q≤x

(
1+

1
q

)−1

.

We know the Riemann hypothesis is false, if there exists some x0 such that g(x0)> 1
or equivalent logg(x0)> 0 [7]. We know the bound [7]:

logg(x)≥ log f (x)− 2
x

where f is introduced in the Nicolas paper [6]:

f (x) = eγ × logθ(x)×∏
q≤x

(
1− 1

q

)
.

We know when the Riemann Hypothesis is false, then there exists a real number
b < 1

2 and there are infinitely many numbers x such that log f (x) = Ω+(x−b) [6].
Hence, if the Riemann Hypothesis is false, then there are infinitely many numbers x
such that log f (x) ≥ 1√

x . Since 2
x = o( 1√

x ), then it would be infinitely many x0 such
that logg(x0)> 0 [7].

The following is a key theorem.

Theorem 2.2

∑
q

(
1
q
− log(1+

1
q
)

)
= log(ζ (2))−H.
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Proof If we add H to

∑
q

(
1
q
− log(1+

1
q
)

)
then we obtain that

H +∑
q

(
1
q
− log(1+

1
q
)

)
= ∑

q

(
log(

q
q−1

)− 1
q

)
+∑

q

(
1
q
− log(

q+1
q

)

)
= ∑

q

(
log(

q
q−1

)− log(
q+1

q
)

)
= ∑

q

(
log(

q
q−1

)+ log(
q

q+1
)

)
= ∑

q

(
log(

q2

(q−1)× (q+1)
)

)
= ∑

q

(
log(

q2

(q2 −1)
)

)
= log(∏

q

q2

q2 −1
)

= log(ζ (2))

according to the Theorems 1.5 and 1.6. Therefore, the proof is done.

This is a new criterion based on the Dedekind inequality.

Theorem 2.3 Dedekind(qn) holds for all prime numbers qn > 3 if and only if the
inequality

∑
q

(
1
q
− (χ{x: x>qn}(q))× log(1+

1
q
)

)
> B+ log logθ(qn)

is satisfied for all prime numbers qn > 3, where χS is the characteristic function of the
set S (This is the function defined by χS(x) = 1 when x ∈ S and χS(x) = 0 otherwise).

Proof We start from the inequality:

∏
q≤qn

(
1+

1
q

)
>

eγ

ζ (2)
× logθ(qn).

If we apply the logarithm to the both sides of the inequality, then

log(ζ (2))+ ∑
q≤qn

log(1+
1
q
)> γ + log logθ(qn).

This is the same as

log(ζ (2))−H + ∑
q≤qn

log(1+
1
q
)> B+ log logθ(qn)
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which is

∑
q

(
1
q
− log(1+

1
q
)

)
+ ∑

q≤qn

log(1+
1
q
)> B+ log logθ(qn)

according to the Theorem 2.2. Let’s distribute the elements of the inequality to obtain
that

∑
q

(
1
q
− (χ{x: x>qn}(q))× log(1+

1
q
)

)
> B+ log logθ(qn)

when Dedekind(qn) holds. The same happens in the reverse implication.

This is the main insight.

Theorem 2.4 The Riemann hypothesis is true if the inequality

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.

Proof The inequality

∑
q

(
1
q
− (χ{x: x>qn}(q))× log(1+

1
q
)

)
> B+ log logθ(qn)

is satisfied when

∑
q

(
1
q
− (χ{x: x≥qn}(q))× log(1+

1
q
)

)
> B+ log logθ(qn)

is also satisfied. In the inequality

∑
q

(
1
q
− (χ{x: x≥qn}(q))× log(1+

1
q
)

)
> B+ log logθ(qn)

only change the value of

log(1+
1
qn

)+ log logθ(qn)

and
loglogθ(qn+1)

between the consecutive primes qn and qn+1. Hence, it is enough to show that

log(1+
1
qn

)+ log logθ(qn)≥ log logθ(qn+1)

for all sufficiently large prime numbers qn according to the Theorems 2.1 and 2.3.
Certainly, if the inequality

log(1+
1
qn

)+ log logθ(qn)≥ log logθ(qn+1)
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is satisfied for all sufficiently large prime numbers qn, then it cannot exist infinitely
many prime numbers qn for which Dedekind(qn) do not hold. By contraposition, we
know that the Riemann hypothesis should be true. This is the same as

log
(
(1+

1
qn

)× logθ(qn)

)
≥ log logθ(qn+1).

That is equivalent to

log logθ(qn)
1+ 1

qn ≥ log logθ(qn+1).

Therefore, the Riemann hypothesis is true when

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.

Theorem 2.5 The Riemann hypothesis is true when the inequality

(1− 0.15
log3 x

)
1
x × x

1
x ≥ 1+

log(1− 0.15
log3 x

)+ logx

x

is satisfied for all sufficiently large positive numbers x.

Proof Because of the Theorem 2.4, we know that the Riemann hypothesis is true
when

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn. This is the same as

θ(qn)
1+ 1

qn ≥ θ(qn)+ log(qn+1)

which is

θ(qn)
1

qn ≥ 1+
log(qn+1)

θ(qn)
.

We use the Theorem 1.2 to show that

θ(qn)
1

qn > (1− 0.15
log3 qn

)
1

qn ×q
1

qn
n

for a sufficiently large prime number qn. Under our assumption in this theorem, we
have that

(1− 0.15
log3 qn

)
1

qn ×q
1

qn
n ≥ 1+

log(1− 0.15
log3 qn

)+ logqn

qn
.

Using the Theorems 1.1 and 1.3, we only need to show that

θ(qn)

logqn+1
≥ n× (1− 1

logn
+

log logn
4× log2 n

)

> ηqn × (1− 1
logn

+
log logn

4× log2 n
)

>
qn

logqn + log(1− 0.15
log3 qn

)
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for a sufficiently large prime number qn where

ηqn =
qn

logqn
+

qn

log2 qn
+

2×qn

log3 qn
+

5.85×qn

log4 qn

+
23.85×qn

log5 qn
+

119.25×qn

log6 qn
+

715.5×qn

log7 qn
+

5008.5×qn

log8 qn
.

Certainly, as the prime number qn increases, the value of (1− 1
logn +

log logn
4×log2 n

) gets

closer to 1 and the inequality ηqn ≫
qn

logqn+log(1− 0.15
log3 qn

)
starts to become trivially sat-

isfied, where the symbol ≫ means “much greater than” [7]. However, this implies
that

log(1− 0.15
log3 qn

)+ logqn

qn
>

log(qn+1)

θ(qn)

which is equal to

1+
log(1− 0.15

log3 qn
)+ logqn

qn
> 1+

log(qn+1)

θ(qn)

and finally, the proof is complete.

Theorem 2.6 The Riemann hypothesis is true.

Proof From the Theorem 1.7, we have that:

log(1− 0.15
log3 x

)+ logx

x
≥ log(1+

log(1− 0.15
log3 x

)+ logx

x
)

since
log(1− 0.15

log3 x
)+ logx

x
>−1

for every sufficiently large positive number x. We know that

log(1− 0.15
log3 x

)+ logx

x
=

log
(
(1− 0.15

log3 x
)× x

)
x

= log
(
(1− 0.15

log3 x
)

1
x × x

1
x

)
by the properties of the logarithm. This implies that

log((1− 0.15
log3 x

)
1
x × x

1
x )≥ log(1+

log(1− 0.15
log3 x

)+ logx

x
)

which is equivalent to

(1− 0.15
log3 x

)
1
x × x

1
x ≥ 1+

log(1− 0.15
log3 x

)+ logx

x

for every sufficiently large positive number x. This final result is a direct consequence
of the Theorem 2.5.
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3 Discussion

The practical uses of the Riemann hypothesis include many propositions which are
known as true under the Riemann hypothesis, and some that can be shown equivalent
to the Riemann hypothesis [2]. Certainly, the Riemann hypothesis is closed related to
various mathematical topics such as the distribution of prime numbers, the growth of
arithmetic functions, the Lindelöf hypothesis, the large prime gap conjecture, etc [2].
Indeed, a proof of the Riemann hypothesis could spur considerable advances in many
mathematical areas, such as the number theory and pure mathematics in general [2].
We consider that our paper has achieved this goal considered as the Holy Grail of
Mathematics by several authors [2].
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