
EasyChair Preprint
№ 10635

Secured Information Transfer Power by Modified
and Optimized RSA Cryptosystem

Prashnatita Pal

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 30, 2023

Secured Information Transfer Power by Modified and Optimized RSA

Cryptosystem

Prashnatita Pal1*,
1,2Electronics & Communication Engineering, National Institute of Technology, Patna, India

*Corresponding Author & Email: prashnatitap@gmail.com

Abstract: Information are transferred through machines, the internet, and communications networks in the digital realm. In these kinds

of circumstances, data security and confidentiality are paramount. Through the application of cryptography, it can shield data from

unauthorized access. To enhance security, try to improve the RSA cryptosystem used in this research by introducing more prime numbers

and adjusting the public key. After modification, compared the original and modified RSA algorithms and demonstrated, via qualitative

and quantitative analysis, whether our modified algorithm is superior with respect to the original

Keywords – Information Security, Optimization, Modified RSA. Computational complexity, Keystream expansion

1. INTRODUCTION

Currently, we can observe that a significant quantity of data is being produced and sent through the internet due

to the fast progress and development of numerous multimedia technologies. This makes editing, changing, and

duplicating digital material relatively simple. Digital papers may also be duplicated and distributed quickly, which

exposes them to a variety of dangers and puts our essential data at risk. There must be a solution to this significant

privacy and security problem. As a result, privacy and security have become crucial.

We may use cryptography to safeguard our sensitive data and information while it is transferred over the internet.

Information security is becoming more and more crucial as a result of the internet and telecommunications

industries' fast and considerable expansion. The greatest method for safeguarding our confidential data and

information is cryptography. Through the art of cryptography, we can safeguard and secure our data and

information from unauthorized access. Data decryption & encryption techniques are the core concepts of

cryptography. By converting plain text into an unintelligible format that an outsider cannot read, encryption

reduces the likelihood that data may be attacked. Encryption is simply reversed during decryption. From the

encrypted data, it transforms back to our original data. Two categories of cryptography algorithms exist. The first

kind of decryption and encryption techniques are known as symmetric key type of cryptography. Second, there is

asymmetric key cryptography, which employs two main keys: a public key use for encryption and a private key

applicable for decryption.

The RSA cryptosystem has several benefits, which help explain why it is so widely used and well-liked in the

cryptography community. The following are some benefits of using the RSA cryptosystem:

i) Security: The mathematical hardness of factoring big prime numbers is the main part for RSA.

Because it is computationally impossible to broken RSA encryption without knowledge the private

key, it offers a high degree of protection. The difficulty of factoring enormous numbers into their

factors is the foundation of RSA's security.

ii) Asymmetric Key Encryption: RSA uses a pair of keys—a public key used for encryption and a

private key used for decryption—to achieve asymmetric key encryption. This makes it possible for

parties to communicate securely and confidentially without having to beforehand provide a secret

key.

iii) Key Distribution: Because each participant may independently create their own key pair, RSA does

not need a secure key distribution method. While the use of private keys is put away a secret, the

public keys may be freely disseminated. Because of this, RSA is especially helpful in situations

when secure exchange of key is unfeasible or difficult.

iv) Versatility: RSA has applications in key exchange, encryption, decryption, and digital signatures.

Due to its adaptability, it is a commonly used algorithm for a variety of cryptographic applications,

including secure email, secure file transfers, HTTPS-encrypted online surfing and secure

communication protocols like SSH.

v) Standardization and Support: Due to significant research, testing, and standardization, RSA has

gained broad acceptance in cryptographic protocols and libraries. It is simple to include RSA

encryption into programs since RSA technology is incorporated into many software libraries and

programming languages.

mailto:prashnatitap@gmail.com

vi) Performance: Despite the computationally demanding nature of RSA encryption and decryption

processes, the algorithm's performance may be enhanced by adopting effective implementations and

hardware acceleration methods. Furthermore, symmetric session keys—which are used to encrypt

the actual data effectively symmetrically—are often encrypted and decrypted using RSA.

Asymmetric and symmetric encryption working together to provide a balance between security and

speed.

It is important to know that RSA has flaws and restrictions, just like every other cryptographic method. Larger

key sizes could be needed to maintain the same degree of security as computational power increases. If not

properly designed and deployed, RSA is also vulnerable to attacks including side-channel attacks, padding oracle

attacks, and timing attacks. Nevertheless, when built and utilised securely, RSA continues to be extensively used

and trusted.

The RSA algorithm has been chosen as our preferred algorithm for implementation even though there are many

cryptography algorithms available. Rivest, Shamir, and Adlemen are the acronym for RSA, which falls under the

heading of asymmetric key cryptography. The most popular algorithm for creating security measures is this one.

To boost the security level of the method, Finally, using qualitative and quantitative analysis, we compared the

RSA and modified RSA algorithms.

The compares of standard RSA(SRSA) and Modified RSA(MRSA) algorithms fairly. Therefore, our goal is that

any data or information is transferring from source to destination must be safe and secure from unauthorized users.

So, we can do this using cryptography.

2. RELATED WORK

To provide readers with a broader understanding of the cryptography area, this part addressed the numerous

outcomes attained using other earlier techniques. Numerous scholars conducted in-depth investigations in this

area: Designing and implementing an RSA cryptosystem using Fernet cipher encryption was Babu and

Vijayalakshmi's [1] work. A sophisticated and intricate method of encryption is built using multi-layer encryption.

The research speeds up encryption and decryption by allowing message transmission across an unsafe network.

A public key is used by the authors of [2] to propose an improved symmetric key cryptosystem that makes it

harder to decrypt the original communication. The key size in the symmetric key scheme was 512 bits. The present

ones, which are only effective for effectively transferring tiny quantities of information, are inefficient for

encrypting vast amounts of data. Another research from [3] adds jumbled textual randomization and the RSA

method to the electronic health record to assure improved encryption. By using the idea of scrambled

alphanumeric randomization, the approach suggested a safe way of data decryption and encryption to give users

a clear grasp of how the RSA works during encryption/ decryption process. Every letter is given a distinct

numerical or letter sequence using innovative alphanumerical procedures. This method's drawback is that it takes

longer to encrypt and decode data because of slower processing speed. The RSA Cryptosystem was used in the

text file Security by the authors of [4]. The goal was to create and then implement an alternative RSA

Cryptosystem ensuring the privacy of text files. The study is limited because it does not strengthen or offer RSA

protection against popular RSA attacks. An effective cryptographic technique for text message security against

brute force assaults was suggested in research by [5]. The goal of the study is to simplify and condense the

ciphertext of the key. The method also makes encrypting communications simple. Some assaults may not be

successfully resisted by the approaches. [6] created unique RSA algorithms for communicating via wireless

devices that use unexpected bio signals and one-time encryption keys. The premier number generator (TPRNG)

used in this design reduces the encryption key to a smaller, consumable RSA encryption key that is impossible to

know or predict using biological signals. Verilog is used to implement algorithms. Only a real-time environment

is appropriate for and suitable to the approach. Similar research in [7] suggested a strategy where the general key

is obtained using optimization methods. The highest point of the Signals as Noise ratio is used to assess the

optimization performance. The approach fends against statistical and differential assaults separately. The authors

of [8] used new encryption technology to provide effective security and produce the outer system as a waveform

so that the original data would not be modified or attacked. Timing attacks are resisted by the algorithm. The RSA

cryptographic algorithm was created by authors in [9] employing three keys, however, the research still needs

some protection to address the issue of information transfer from the server. The authors of [10] suggested a

framework that offers dual layer of security for the RSA; however, this security mechanism is not universally

applicable since the methods for key production have made the proposed system more complicated. [11] also

created an improved RSA cryptosystem design. Four huge prime integers are used in the procedure. The

computational and spatial complexity of the innovative system is greater than that of traditional RSA due to these

many primes. Multiplying two significant figures yields the general component of n. Four significant prime

numbers are multiplied to get the amount of encryption and decryption. Brute Forte Attack is resistant to the newly

developed algorithm. Additionally, the new method is much more effective than Classical RSA. Authors [12]

suggested a parallel method using a novel parallel type of data structure called a simultaneous search list of

character in blocks. The RSA Cryptosystem is intended to be executed at a faster pace, and its security is not

addressed by the system. Using the use of several keys for connection, the author [13] suggested an Optimized

type of CRT-RSA Method for safe and reliable transmission; the level of security was compared to traditional

RSA. The results of the experiments showed that the suggested algorithm increases security and reduces the

participation of outsiders in communication, but it has the disadvantage that it uses more resources than traditional

RSA. To increase security of data in the ambiance of cloud context, the results of [14] propose Quasai modified

levy flying distribution for the RSA. The encryption system developed by RSA handles safe key creation and data

protection, protecting data from unauthorized access. The suggested strategy [15] uses the Cuckoo Search

Algorithms (CSA) to protect and solve data integrity issues while introducing an effective RSA cryptosystem. To

prevent brute force attacks and improve key encryption, CSA is used. The suggested technique increases the

length of the private key while still operating more quickly than traditional RSA. In their work, [16] performed

double encryption utilizing both RSA and AES, encrypting the file twice. When compared to traditional RSA, the

approaches boost security since the appropriate keys are produced during algorithm execution. [17] proposes a

secured message transmission in the cloud utilizing the RSA method and an improved play fair cipher; the study's

goals are to protect the key and offer security for the data transferred. The suggested system encrypts the content

employing the play fair cipher in the first step, then conducts an XOR calculation on the text in the second stage,

then uses the RSA algorithm to complete the process in the third stage. Though more computationally intensive,

the suggested approach raises RSA's security level over traditional RSA. By combining the RSA and AES

techniques with confirmation from a third party, the author [18] adds an estimate and guarantees the

confidentiality of encrypted data. By preventing unauthorized access to the data, the system carefully managed

security and privacy concerns and ensured authentication.

The RSA cryptosystem has undergone several revisions and variations throughout the years with the purpose of

addressing different issues or adding new capabilities. Here are some examples of several RSA-modified

cryptosystems:

Chinese Remainder Theorem (CRT) RSA [19]: This update uses the CRT to accelerate the decryption of an RSA

key using the Chinese Remainder Theorem (CRT) RSA. To minimise the amount of modular exponentiation

necessary, it requires pre-calculating certain values during the key creation phase and employing them throughout

the decryption process.

Multi-Prime RSA [20]: This technique generates keys by employing numerous prime numbers, as opposed to

simply two very big prime numbers. The efficiency of decryption, key generation, and encryption, procedures

may increase because of this improvement.

Blinded RSA [21]: Blinded RSA employs randomization throughout the encryption and decryption procedures to

thwart side-channel attacks. Blinding, or randomization, conceals important information to prevent leakage via

auxiliary channels like time or power usage.

Multi-Exponent RSA [22]: In traditional RSA, encryption and decryption are accomplished using the same

exponent. Different exponents are utilised for encryption and decryption in multi-exponent RSA, enabling

optimised performance in certain circumstances. By carefully choosing the exponents, it may increase the

effectiveness of either encryption or decryption procedures.

Montgomery RSA [23]: The modular exponentiation processes in RSA may be accelerated using the montgomery

reduction approach. It speeds up computing by switching out the conventional modular exponentiation for a

sequence of multiplications and modular reductions.

Homomorphic RSA [24] is a modified version of RSA that enables calculations to be done directly on encrypted

data without having to first decode it. Using this characteristic, computations may be safely outsourced to

unreliable servers while maintaining data secrecy.

Balanced RSA [25] is a variant that seeks to equally split the computing workload between operations using the

public and private keys. By using many exponents with distinct mathematical features, it achieves this equilibrium.

It's important to remember that the security and applicability of these modified RSA cryptosystems might change

based on the implementation details, key sizes, parameter selections, and the application's cryptographic

objectives. When contemplating the implementation and usage of modified RSA schemes, careful study,

assessment, and adherence to best practises are required.

Due to various security flaws in RSA, including ciphertext attacks, brute-force attacks, typical modulus type

attacks, measuring attacks, and others, various researchers worked hard to introduce a variety of modified RSA

algorithms. Others RSA with different encryption techniques to address the flaws. However, several of the

suggested algorithms are still susceptible to certain assaults in one way or another, and some of the most effective

methods may have longer calculation times, use more memory, and use more computing resources.

2.1. Study motivation

The uncovered certain RSA flaws, which render RSA vulnerable to certain common attacks including a thorough

search, timed attacks, popular mod attacks, and a few gaps in the previous research, based on a comprehensive

assessment of the available publications. Therefore, the study is now focused on applying the suggested MRSA

to enhance RSA security without employing over three primes or lengthening the key while still providing

adequate security against a variety of attacks. To resist attacks on information security, this research provides an

enhanced stochastic bit-insertion method with a modified RSA.

3. PROPOSED MODIFIED RSA (MRSA)

There have been several modifications and variants of the RSA cryptosystem proposed over the years. While these

modifications aim to address certain limitations or provide additional features, they can also introduce new

vulnerabilities or drawbacks. Here are some drawbacks associated with different types of modified RSA

cryptosystems:

1. Low Public Key Efficiency: Some modified RSA schemes, such as RSA with Chinese Remainder

Theorem (CRT), can improve the efficiency of decryption by using the CRT to speed up the modular

exponentiation process. However, these schemes often require additional parameters and computations,

which increase the size of the public key. This can lead to larger storage requirements and increased

transmission overhead.

2. Reduced Security Margin: Certain modifications to RSA, such as RSA with small public exponents (e.g.,

small Fermat primes), aim to improve efficiency by using smaller exponents. While this can accelerate

decryption and encryption, it can also reduce the security margin of the algorithm. Small exponents make

the encryption more vulnerable to attacks like the Wiener's attack, where an attacker can factorize the

modulus when the exponent is too small.

3. Vulnerability Attacks in Side-Channel: Some implementations or modifications of RSA may be

susceptible to side-channel attacks. Side-channel attacks exploit information leaked during the

cryptographic operation, such as power consumption, timing information, or electromagnetic radiation.

If proper countermeasures are not taken, sensitive data may be extracted via side-channel attacks.,

including the private key.

4. Incompatibility and Lack of Standardization: Modified RSA schemes often introduce variations in the

algorithm, parameter choices, or key formats. This can lead to compatibility issues between different

implementations or systems. Lack of standardization may result in interoperability problems and

difficulties in securely exchanging keys or encrypted data between different RSA variants.

5. Limited Adoption and Support: New modifications of RSA may lack the extensive testing, analysis, and

peer review that the original RSA algorithm has undergone. As a result, they may not have the same level

of trust, support, and available cryptographic libraries or tools. This limited adoption can make it more

challenging to integrate and deploy modified RSA schemes in real-world applications.

6. Increased Key Size and Computation Complexity: Some modifications of RSA aim to enhance security

by using larger key sizes or more complex mathematical operations. While this can provide additional

security, it also leads to increased computational requirements. Larger key sizes can impact encryption

and decryption performance, requiring more computational resources and potentially slowing down the

cryptographic operations.

It is the important to note that the specific drawbacks and vulnerabilities associated with modified RSA schemes

can vary depending on the variant and its implementation. When considering the use of modified RSA schemes,

it is crucial to thoroughly analyze their security, evaluate their performance implications, and ensure they meet

the required standards and best practices of secure cryptography.

This section explains the two-phased process utilized to secure and protect information. The fundamental principle

of our suggested approach (MRSA) is a multi-prime and subsequent stage of the MRSA encryption operations,

which is a bit insertion algorithm. The key generation technique (n, e, d) and encryption mechanism make up the

first step of encryption. rather than using the two prime numbers required by traditional RSA, the key preparation

process uses four different prime integers (p, q, r, and s) to generate both the public as well as private keys that

are used to encrypt and decrypt type of data, respectively. The result of our suggested approach (MRSA), which

has been transformed into text (Ciphertext), was acquired, and it was then converted to a binary type of format to

produce the ciphertext.

3.1. RSA algorithm modified.

Step 1: Choose four different significant prime integer numbers (p, q, r, and s) at random.

. # 1st Modification

Step 2: Calculate encryption and decryption, n. The n, is calculated as the multiplication of the four prime

numbers: n = p * q * r * s

Step 3: Calculate the totient function of n. The following formula is used to compute the totient function, φ (n):

: φ(n) = (p - 1) * (r - 1) * (s - 1) * (q - 1)

Step 4: Choose an integer e based on certain criteria. Choose an integer e.

such that: 1 < e < φ(n) GCD (e, φ(n)) = 1 (e and φ(n) are co-prime) e has a tiny bit-length

Step 5: Choose a random variable f. Let f = (e * a) + b # 2nd Modification (a, b are integers and value of

a, b is determined using PSO optimising technique.)

Step 6: Calculate the value of d. Calculate d such that: (d * e) Mod (φ(n)) = 1

Step 7: The public key is (f, n). The public key is composed of the modified value f and the modulus n.

Step 8: The private key is (d, n). The private key is composed of the calculated value d and

the modulus n.

For message encryption:

The sender encrypted message M using the following technique:

Cipher text message created after encryption: C = M^f Mod (n), where C is the ciphertext.

For message decryption:

The receiver decodes the encrypted text using the following technique: The original information, M = C^d Mod

(n).

3.2. Analysis of security and efficiency assessment of Modified RSA (MRSA)

a. Compare the amount of time required by various algorithms shown in table 1, we have contrasted the

outcomes of the various methods like Key Generation Time, Decryption Time, and Encryption Time,

described here. We applied 20-bit modules and 20-bit messages using python libraries. Figure 1, 2 and 3

shows the comparison between Key generation time, Decryption time Encryption Time, with respect to

20-bit messages of different algorithms.

b. Execution time: The effectiveness of any specific encryption and decryption approach is dependent upon

the speed at which a cryptographic algorithm is implemented, and the period of execution identifies the

algorithm's speed or slowness. Tables 2 show the encryption and decryption result compares of the

proposed algorithms MRSA and SRSA. It is evident from the findings in Tables 2 that the computational

complexity of both encryption and decryption on MRSA has a more advanced cryptosystem than SRSA,

indicating that it will be more complicated, and the attackers need considerably more time to breach easily

than that of the SRSA. Encryption and decryption graphical representations Figure displays the time of

the proposed MRSA and SRSA algorithms when plotted against the message sizes in bytes at Figure 4

and Figure 5 correspondingly. When plotted against the message, the graphical comparison of the

encryption times for the proposed algorithms MRSA and conventional RSA sizes are shown same bytes.

At Figure 7 and 8, the graphical comparison Comparing suggested Algorithm MRSA and SRSA's

decryption times as compared to the message sizes (measured in bytes).

c. Computational Complexity: Let’s examine each stage of the modified key creation, message encryption,

and text decryption procedure in terms of its temporal complexity.

A. Key Generation,

a. Producing the four unique randomized prime numbers that are p, q, r, and s Prime number

generation is required in this stage, and probabilistic techniques like the Miller-Rabin test used to

do this. Assuming that n is the key's bit length, the total amount of time complexity of creating each

prime may be expressed as O (n^2 * (log n) ^3). The overall complexity of time for this phase

would be around O (4 * n^2 * (log n) ^3) = O (n^2 * (log n) ^3) because we are producing four

primes.

b. Since the total amount of prime variables is constant, multiplication of the four prime integers to

get n = p * q * r * s may be performed in O (1) time.

c. Calculating (n) entails multiplying the variances of the prime components while deducting 1 from

each. This yields the Euler's totient functional (n). We have four prime factors, thus O (4) = O (1)

may be used to denote the temporal complexity of this step.

d. Calculating e: Obtaining an appropriate encryption exponent e requires meeting

several requirements and looking for a co-prime with n. The GCD procedure and iterating over

numbers are often used in this process. The temporal complexity is often expressed as O(n), which

is a small number.

e. Finding f = (e * a) + b: This stage requires basic arithmetic operations and takes O (n_e * n_a) or

O (n_e + n_b) depending on the dominant factor. Note that if 'e', 'a', and 'b' are not arrays but scalar

values, the time complexity remains O (1), O (1) time to complete.

Finding an integer that meets the criteria for (e * d) Mod (n) = 1 is required to calculate the decryption

exponent d. Algorithms like the enhanced Euclidean algorithm or its modular inverse may be used.

Depending on the method employed, the computational complexity for this phase is generally O (log n) or

O(n3).

The production of the four prime numbers (O (n^2 * (log n) ^3)) and the determination of d (O (log n) or

O(n^3)) would take most of the key generation process's time.

B. Message Encryption and Message Decryption:

Both encrypting and decrypting messages need modular exponentiation, which is possible with the help of

practical algorithms like the square-and-multiply technique. Modular exponentiation generally has a

temporal complexity of O(k^3), where k is the modulus n's bit length. As a result, O(k^3) is a good

approximation for the temporal complexity of the encryption and decryption procedures.

Algorithm for Big-O- Notation of MRSA

• Step1: randomly choose the four important prime p, q, r, and s. The technique used to test for primality

often determines how time-consuming it is to generate prime numbers. The average time complexity of

creating a prime number of bit length n is O(n3), supposing a probabilistic primality test like the Miller-

Rabin test is used. The temporal complexity for this phase is O(n3) increased by four since we are

separately producing four prime numbers, which reduces to O(n3).

• Step2: to determine the modulus, n, for encryption and decryption. This phase consists of a straightforward

multiplication operation with an O (1) time complexity.

• Step 3: Calculate n's totient function in step three. Because it just requires basic arithmetic operations,

computing the totient function using the above formula has an O (1) time complexity.

• Step 4: Based on certain criteria, choose an integer e. Depending on the technique used, selecting an integer

e has a temporal complexity. The worst-case time complexity, if we use a random search strategy to locate

an adequate e, would be O((n)). The search space for e is, however, often constrained, making the time

complexity O (1).

• Step 5: Pick a random variable f in step five. This phase consists of a straightforward arithmetic operation

with an O (1) time complexity.

• Step 6: Calculate the value of d in step six. A modular equation must be solved to calculate d. Using

techniques like the extension of Euclidean algorithm, determining the modular inverse of e modulo n has

an O(log(n)) or O(log(n)) time complexity.

• Step 7 and 8: Making public and private keys, both actions are O (1) since they both entail giving

variables values.

In conclusion, the time complexity of Step 1 (creating prime numbers) and Step 6 (calculating the modular

inverse) are the two steps that take up much of the key generation process' total duration. As a result, O(n^3)

for prime generation and O(log(n)) for computing the modular inverse have the highest time complexity. It's

crucial to remember that although encryption and decryption may be carried out several times for various

communications, key creation is normally carried out only once. As a result, the key generation process would

dominate the total time complexity of RSA.

The modified RSA technique has an O (n^2*(log n) ^3) time complexity for key creation, where n is the bit

length of the key, and an O(k^3) time complexity for encryption and decryption, where k is the bit length of

the modulus.

Table 1. Comparison table of algorithms using 20-bits modules size and 20-bits message size

S.N

o

Algorithm Time of key

Generation
(µsec)

Time of

Encryption
(µsec)

Time of

Decryption
(µsec)

1 RSA [30] 989 989 1998

2 Prime numbers

RSA [31]

988 1988 13992

4 Diffie-key-RSA
[32]

999 1000 999

5 IRSA [33] 905 985 2010

6 MREA [34] 1598 3174 3896

7. MRSA 1875 4057 14976

Key Generation Time (µsec)

MRSA (Our proposal)

IRSA

RSA-Diffie key exchange

RSA

0 500 1000 1500 2000

Time

Encryption Time (µsec)

4000

3000

2000

1000

0

Figure 1 shows that the outcomes Key Generation Time with
consedering 20-bit modules and 20-bit messages using python
libraries.

Figure 2 shows that the outcomes Encryption Time, described here with
considering 20-bit modules and 20-bit messages using python libraries.

Ti
m

e
in

 m
-s

ec

Table 2. Encryption and Decryption tine (m-Sec) of MRSA and RSA with distinct sizes(byte)

Size of

Message

Encryption

time
MRSA

Encryption

time SRSA

Decryption

time
MRSA

Decryption

time SRSA

20 4.35 3.12 41.67 4.51

30 3.43 3.15 44.00 9.96

40 2.95 3.39 27.67 11.65

50 3.77 3.4 20.16 12.99

60 3.65 3.51 18.5 14.57

70 3.5 3.67 17.67 15.98

5

4

3

2

1

0

20 30 40 50 60 70

Message Size

Encryption time of MRSA

Encryption time of RSA

50

40

30

20

10

0

20 30 40 50 60 70

Message Size

Decryption Time of MRSA

Decryption Time of RSA

Figure 4. Plotting the proposed MRSA and SRSA algorithms'
Encryption times versus message sizes in bytes.

Figure 5. Plotting the proposed MRSA and SRSA algorithms'

Decryption times versus message sizes in bytes

Table 3. Analysis of MRSA and Classical RSA algorithm with different parameter

Encryption

Technique

Complexity of

Encryption

Complexity of

Decryption

MRSA O(n^3) O(n^3)

RSA O(n^2) O(n^3)

MREA [34] O (n) O(n^3)

MRSA, a novel security method for messages, was created in this study. The outcomes demonstrated that the

computationally complex nature associated with the MRSA technique is greater compared to the algorithm used

by RSA because of the time required for execution suffered, which supports the notion that always exists a

compromise between protection and execution time. The difficulty indicator for the algorithm aids in assessing

Figure 3 shows that the outcomes Decryption Time, described here with considering 20-bit modules

and 20-bit messages using python libraries.

Decryption Time (µsec)

MRSA (Our proposal)

IRSA

RSA-Diffie key exchange

RSA

0 2000 4000 6000 8000 10000 12000 14000 16000

Input Encrypted File
Divide input file by same

block size

Generation of key

Decryption
Process

Combined File Decrypted File

Distributed

Divide File

the efficacy of MRSA for complexity. The algorithm's sensitivity to a little modification to Plaintext. As a result,

the greater the security level, the bigger the avalanche, which implies the MRSA algorithm is susceptible to even

a little change in terms of Plaintext by causing obvious modifications in the form of ciphertext.

4. Optimization of MRSA Decryption and Encryption process using Parallel of computing

resources technique

To address the MRSA algorithm's computational issue, it is suggested an innovative approach. As is well known,

calculating MRSA on a single computer takes longer to finish. Therefore, we suggested that they calculate the

MRSA algorithm in a portion of their sequence using a distributed computing approach. Our primary research

focuses on the MRSA algorithm's decryption and encryption processes. This method's fundamental concept is to

divide out the computing work involved in the decryption and encryption processes across several computers. The

job will then be conducted by those computer employees in parallel [26]. Therefore, the speed of encryption

Figure 6. Block diagram of Optimization technique of MRSA encryption process using Parallel Computing

Figure 7. Block diagram of Optimization technique of MRSA Decryption process using Parallel Computing

and decryption using this approach will be quicker. The RSA technique had a computational issue that made it

take longer to finish [27], hence in this study, it is developed a new way (Figure 6 and 7). It is suggested that the

MRSA algorithm be computed using a distributed computing technique in parts of their series [28]. We solely

work on the MRSA algorithm's decryption and encryption processes. The key concept is to divide out the

computing work involved in the decryption and encryption processes across a few machines [29].

Combined Encrypted
File

Optimization using Particle Swarm
Optimization (PSO) is a
metaheuristic algorithm

Encryption Process

Divide input file by predefined block size

Input Original data File

Worker1

Client1

Switch Worker2

Client2

Worker3

Depending on the size of the key used, the file that will be encrypted or decrypted will be divided into several

parts. A single computer that we dubbed broker is responsible for managing this procedure. Following that, a

group of computers (later referred to as workers) get the divided file (later referred to as pieces) and the produced

key. Then, using the same randomly generated key, each worker encrypts or decrypts those parts in

simultaneously. Broker should then combine encrypted or decrypted components into a finished file. On Figure 2

above, an illustration of our suggested methodology is shown.

To implement this technique, write a simple Python programmed. using Python XMLRPC. Additionally, it can

change the Python Encryption Library (Crypto) to support the MRSA algorithm. Every computer utilized had this

Python program running as a daemon. It is evaluated with a variety of file sizes, including 2MB, 10MB, 20MB,

and 100MB. The encryption and decryption processes must be assessed on every testing file. It can get the

completion time for each tested file. In the next step, compare that completion time against the completion time

of a single computer technique. However, to ensured that the specifications of this single computer were

equivalent to those of all other dispersed computers. The testing process log provides details on the completion

times for each testing file. Each procedure’s results are shown in Table 4.

Figure 8: Testbed

When implementing parallel computing methods for MRSA, it's important to consider the trade-offs between

computational speedup, communication overhead, and memory requirements. Additionally, ensure the security

of private keys, protect against side-channel attacks, and adhere to cryptographic best practices to maintain the

confidentiality and integrity of the MRSA system.

1. Modular Exponentiation:

• Break down the modular exponentiation operation, which is the most computationally intensive step in

MRSA, into smaller exponentiation tasks.

• Divide the exponent into chunks and distribute the computation across multiple processing units.

• Each processing unit independently performs the modular exponentiation for its assigned chunk.

• Use algorithms such as the square-and-multiply algorithm or the Montgomery ladder algorithm, which

are amenable to parallelization.

2. Parallel Prime Number Generation:

• MRSA relies on prime numbers for key generation.

• Implement parallel algorithms for prime number generation, as searching for large prime numbers can

be time-consuming.

• Techniques like sieving or primality testing can be parallelized to speed up the process.

• Divide the range of prime numbers to be generated among multiple processing units, with each unit

searching for primes independently.

• Utilize techniques like segmented sieves or parallelized primality tests to distribute the workload

effectively.

3. Task Partitioning:

• Divide the encryption and decryption operations into smaller tasks that can be processed independently.

• For encryption, break the message into blocks or chunks and assign each block to a separate processing

unit.

• Each processing unit independently performs modular exponentiation for its assigned block.

• For decryption, divide the ciphertext into blocks and distribute them among processing units to perform

the modular exponentiation using the private key.

4. Inter-process Communication:

• Develop efficient mechanisms for communication and synchronization between parallel processes.

• As MRSA operations involve modular reduction, ensure that intermediate results are shared and

combined correctly.

• Utilize techniques like shared memory or message passing to exchange data between parallel processes.

• For example, during modular exponentiation, each processing unit can compute its part of the

exponentiation and then share the intermediate result with other units for further computation.

5. Load Balancing:

• Distribute the workload evenly across the available processing units to ensure efficient utilization of

resources.

• Implement load balancing algorithms that consider the computational capabilities of each processing

unit.

• Monitor the progress and performance of each unit and dynamically adjust the workload distribution to

balance the computation.

6. Parallel Key Generation:

• MRSA key generation involves generating prime numbers and performing complex computations.

• Utilize parallel computing to speed up the key generation process.

• Divide the prime number generation and key computation tasks across multiple processing units to

generate keys in parallel.

• Apply parallel algorithms for prime number generation and utilize multiple units to perform the necessary

computations simultaneously.

7. GPU Acceleration:

• Graphics Processing Units (GPUs) are highly suitable for performing parallel computations.

• Utilize GPUs to accelerate modular exponentiation and other computationally intensive operations in

MRSA.

• Implement parallel algorithms using GPU libraries such as CUDA or OpenCL to leverage the parallel

processing power of GPUs.

• Utilize techniques like data parallelism, where multiple threads or blocks of threads perform

computations simultaneously.

8. Thread-level Parallelism:

• Exploit thread-level parallelism within each processing unit.

• Use multi-threading to execute multiple threads within a single processing unit.

• Each thread can handle modular exponentiation for different blocks or chunks concurrently.

• Utilize multi-core processors or multi-threading capabilities to maximize parallelism and speed up the

computation.

Table 4. Result of Encryption and Decryption

File

Size

Time required for

Encryption process

Time required for

Encryption process

With

optimization

With out

optimization

With

optimization

With out

optimization

2 4 9 10 44
10 14 62 77 395
20 27 135 141 801

100 138 671 873 4552

The experiment results (as per table 4) demonstrated that using the distributed computing strategy resulted in a

three times quicker completion of the encryption procedure for the smallest test files. In 2 MB files, the suggested

technique completes the task in 4 seconds compared to 9 seconds for the single way. Additionally, the encryption

procedure is completed more quickly on bigger files. The suggested approach takes 138 seconds to process 100MB

files, compared to 671 seconds for the single method. Suggested solution completed the decryption procedure 4,4

times quicker than the minimum tested files. In 2 MB files, suggested way completes the task in 10 seconds as

Updating Particle

Best Position

opposed to 44 seconds for the single method. A greater file size also results in a higher completion rate for the

decryption procedure. Our suggested approach takes 873 seconds to process 100MB files, compared to 4552

seconds for the single method (it is around five times quicker). In conclusion, the completion time of the encrypted

data service has risen thanks to our suggested way.

Metaheuristic optimization algorithms are powerful optimization techniques that are used to solve complex

problems where traditional optimization methods may not be effective. They are inspired by natural or biological

processes and offer a flexible and efficient approach to finding high-quality solutions.

In summary, the choice of metaheuristic optimization algorithm depends on the specific problem characteristics

and requirements. Genetic Algorithms are suitable for large search spaces and multi-modal problems. Particle

Swarm Optimization excels in continuous optimization with smooth landscapes. Simulated Annealing is effective

for escaping local optima and handling problems with many local optima. Each algorithm has its strengths and

weaknesses, and it is recommended to experiment and compare their performance on the specific problem at hand.

Out of above algorithms suitable for this work is Particle Swarm Optimization (PSO). PSO is a metaheuristic

optimization algorithm inspired by the collective behaviours of bird flocks or fish schools. It mimics the social

interactions and movement patterns of particles in a search space to find optimal solutions. Here are the key

components and steps involved in PSO:

Figure 9: Block diagram for PSO optimization Technique

Process for PSO optimization:

1. Initialization:

• Define the search space, which consists of variables and their corresponding ranges.

• Initialize a population of particles within the search space.

• Assign random positions and velocities to each particle.

• Initialize the best-known position (pbest) for each particle as its initial position.

2.Fitness Evaluation:

• Evaluate the fitness of each particle based on its position in the search space.

• The fitness function represents the objective or cost function that needs to be minimized or maximized.

3.Updating Particle Velocity and Position:

• Update the velocity of each particle based on its previous velocity, cognitive component, and social

component.

• The cognitive component represents the particle's memory of its best-known position (pbest).

• The social component represents the influence of the best-known position among all particles (gbest).

• The velocity update equation typically includes inertia, cognitive acceleration coefficient (c1), and social

acceleration coefficient (c2).

• Update the position of each particle based on its new velocity.

4.Updating Particle Best Position:

• Update the best-known position (pbest) for each particle if its current fitness is better than its previous

best-known fitness.

5. Updating Global Best Position:

• Identify the particle with the best fitness value among all particles.

• Update the global best-known position (gbest) with the position of the best particle found so far.

Return the Best

Solution

Repeat Steps 3-6

Termination

Condition

Initialization

Fitness

Evaluation

Updating Particle
Velocity and

Position

6. Termination Condition:

• Check if the termination condition is met. This can be a maximum number of iterations, reaching a

desired fitness value, or other predefined criteria.

7. Repeat Steps 3-6:

• Repeat the velocity and position updates, as well as the updates of pbest and gbest, until the termination

condition is satisfied.

8. Return the Best Solution:

• Once the algorithm terminates, return the particle with the best fitness value (gbest) as the optimal

solution.

Figure 10: Code for PSO Optimization technique of MRSA

PSO is characterized by its simplicity and ease of implementation. It does not require gradient information and

can handle both continuous and discrete variables. Some variations of PSO, such as constriction coefficient PSO

or adaptive PSO, introduce additional mechanisms to enhance convergence speed and balance exploration and

exploitation.

However, PSO tends to converge the value a, b (as per indication at MRSA algorithm) to local optima and can

suffer from premature convergence to a minimum timing. It is having proposed hybrid approaches, such as

combining PSO with local MRSA methods. Careful parameter a, b are tuning for achieving good performance in

this problem domains.

PSO has been successfully applied to MRSA function optimization. It is particularly effective in continuous

optimization problems with smooth fitness landscapes and problems that require balancing exploration and

exploitation.

4. PROPOSED METHOD TO SECURE INFORMATION TRANSFER

The represents the block diagram of MRSA i.e., the Modified RSA algorithm where we send an image that

converts to a cipher type image and then vice versa. shown in figure 11. The proposed block diagram of the MRSA

Encryption Algorithm consists of three stages: i. Generation of Key, ii. Encryption process, iii. Decryption

process.

Each stage has its work. At first, we import data from the plain image, and from there we randomly generate four

prime numbers. Then we generate two keys i.e., the public key as well as the private key. Then we apply the

MRSA encryption algorithm and there we use the public key to get an encrypted image. We can see that we plain

image is changed into an encrypted or chipper image. From the encrypted image, we import data, and then we

apply the MRSA decryption algorithm and there we use the private key to get back our original plain image. We

can see that an encrypted image is converted back to a plain image.

Figure 11. Block representation of MRSA

6. CONCLUSION

Nowadays cyber-attack and stealing confidential digital data is a common crime that we face in various sectors

of life. So, it is important to secure our data from the cyber attacker and unwanted users. After a deep study of the

cryptosystem, we chose RSA, which is a part of the asymmetric cryptosystem, to complete our article as it is

more secure and advanced. It uses public and private keys to encrypt and decrypt the data, so it is more secure to

send data from one user to another via this encryption system. After choosing the encryption system, we worked

on the conventional algorithm and tried our modifications to make it more secure and reliable. After completing

the modification on the conventional cryptosystem, we compared both algorithms by performing a security

analysis by taking various image security analysis parameters. After the result analysis, it was observed that the

modified algorithm showed more satisfactory results and by comparing the various statistical data obtained from

the calculations, the modified algorithm proved to be more secure and reliable as compared to the conventional

algorithm.

While doing the result analysis on the running time of both algorithms, it is showing that the modified algorithm

took more time to encrypt. This increase in time is because the modified algorithm is more complex than the

conventional one and the computational time has been increased in the modified algorithm.

REFERENCES

[1] D.S. Babu, Y. Vijayalakshmi, Enhancement of E-commerce security through asymmetric key Algorithm, Computer

Communication Elsevier, vol.153, pp. 125-134, 2020.

[2] Pandey K, Rangari KV, Shina K. An Enhanced Symmetric Key Cryptosystem Algorithm to Improve Data Security.

Int J Computer Application 2013;74 (20):29–33.

[3] Osamor VC, Edosomwan I. Employing Scrambled Alpha-numeric Randomization and RSA Algorithm to Ensure

Enhanced Encryption in Electronic Medical Records. Informat Med Unlock 2021; 25:1–10.

[4] Gong, Lihua, Kaide Qiu, Chengzhi Deng, and Nanrun Zhou. "An optical image compression and encryption scheme

based on compressive sensing and RSA algorithm." Optics and Lasers in Engineering 121 (2019): 169-180.

[5] Joshi A, Wazid M, Goudar RH. An Efficient Cryptographic Scheme for Text Message Protection against Brute

force and Cryptanalytic Attacks. Procedia Computer Sci 2015; 48:360–6.

[6] Yu H, Kim Y. New RSA Encryption Mechanism Using One Time Encryption Keys and Unpredictable Bio Signal

for Wireless Communication Devices. Electron MDPI 2020;9(246):1–10.

[7] Shankar K. An Optimal RSA Encryption Algorithm for Secret Images. Int J Pure Appl Math 2018;118(2):2491–

500.

Encrypted image
Import data

from

Encrypted

Image

Public Keys (F, N)

Key

generator

Apply modified

RSA Encryption

algorithm.

Private Keys (D, N)

Apply modified

RSA

Decryption

algorithm.

Decrypted image

(Original image)

Send plain

image.

Import data

from Plain

Image

Prime no.

generator

(P, Q, R, S)

[8] Bangera KN, Reddy NVS, Paddambail Y, Shivaprasad G. In: Multilayer Security using RSA Cryptography and

dual audio Stenography. Information and Communication Technology (RTEICT); 2017. p. 492–5.

[9] Stergio C, Kim KE, Gupta BG. Secure an Integration of IoT and Cloud Computing. Future Gener Comput Syst

2018;78(6):964–75.

[10] Abdulshaheed HR, Binti SA, Sadiq II. Proposed Smart Solution Based on Cloud Computing and Wireless Sensing.

Int J Pure Apl Math 2018, 2018,119 (18):427–49

[11] [18] Thangavel M, Varalakshmi P, Murrali M, Nithy K. An Enhanced and Secure RSA Key Generation Scheme. J

Inform Security Application 2015, 2015,20(4):3–10.

[12] Rawat A, Sehgal K, Tiwari A, Sharma A, Joshi A. A Novel Accelerated Implementation of RSA Using Parallel

Processing. J Discr Math Sci Cryptogr 2019;22(2):309–22.

[13] R. Abid, C. Iwendi, A. Javed, M. Rizwan and Z. Jaid ‘‘An Optimized Homomorphic CRT-RSA Algorithm for

Secure and Efficient Communication” Personal and Ubiquitous Computing Springer, 2021. http:/doi.org/10.1007/

500779-021607-3,

[14] Kaliyamoorthy P, Ramalingam AC. QMLFD Based RSA cryptosystem for Enhancing Data security in the public

cloud system. Wireless Personal Communication, Springer 2022;122:752–82.

[15] R. Shree, C. Chelvan and M. Rajesh ‘‘An Efficient RSA Cryptosystem by Applying Cuckoo Search Optimization

Techniques,” Concurrency and Computation: Practice and experience. Wiley Online Library, vol. 31, no. 12.

http:/doi.org/ 10.1002/cpe.4845, 2019.

[16] K. Jaspin, S. Selva, S. Sahana and G. Thamnas ‘‘Efficient and Secured File Transfer in Cloud through Double

Encryption using AES and RSA Algorithm.” International of Emerging Smart Computing and Informatics. IEEE,

pp. 791- 796, 2021. doi:/10.1109/ESCI50559.2021.9397005

[17] P. Hemanth, N. Raj and N. Yadva ‘‘A Secured Message Transfer Using RSA Algorithm an Improved Playfair

Cipher in Cloud Computing. ‘‘International Conference of Convergence in Technology I2CT” IEEE, pp.931-936,

2017. Doi:/ 10.1109/I2CT.2017.8226265.

[18] S. Almanaun, M. Mahmood and M. Amin ‘‘Ensuring the Security of Encrypted Information with Hybrid of AES

and RSA Algorithm with the Third-Party Confirmation,” 5th International Conference of Intelligent Computing and

Control System, IEEE, pp.337-343, 2021. Doi:/10.1109/ ICICCS51141.2021.9432174.

[19] . Chung-Hsien Wu, Jin-Hua Hong and Cheng-Wen Wu, "RSA cryptosystem design based on the Chinese remainder

theorem," Proceedings of the ASP-DAC 2001. Asia and South Pacific Design Automation Conference 2001 (Cat.

No.01EX455), Yokohama, Japan, 2001, pp. 391-395, Doi: 10.1109/ASPDAC.2001.913338.
[20] To cite this article: M Ghazali Kamardan et al Modified Multi Prime RSA Cryptosystem 2018 J. Phys.: Conf.

Ser. 995 01203

[21] Ueno, Rei & Homma, Naofumi. (2023). How Secure is Exponent-blinded RSA–CRT with Sliding Window

Exponentiation? IACR Transactions on Cryptographic Hardware and Embedded Systems. 2023. 241-269.

10.46586/tches. v2023.i2.241-269.
[22] Takayasu, A., Kunihiro, N. (2014). Cryptanalysis of RSA with Multiple Small Secret Exponents. In: Susilo, W., Mu,

Y. (eds) Information Security and Privacy. ACISP 2014. Lecture Notes in Computer Science, vol 8544. Springer,

Cham. https://doi.org/10.1007/978-3-319-08344-5_12

[23] Venkatalakshmi, K & Gayathri, Pamuru & Likhitha, Tadakaluru & Shinde, Sushmitha & Kumar, MOV. (2022).

Design of Montgomery Multiplier – RSA Algorithm. Journal of Physics: Conference Series. 2325. 012022.

10.1088/1742-6596/2325/1/012022.

[24] Kiratsata, Harsh J. and Panchal, Mahesh, A Novel Homomorphic Encryption based RSA Algorithm for Machine

Learning (May 25, 2021). Proceedings of the International Conference on Smart Data Intelligence (ICSMDI 2021),
Available at SSRN: https://ssrn.com/abstract=3852596 or http://dx.doi.org/10.2139/ssrn.3852596

[25] Cherkaoui-Semmouni, M., Nitaj, A., Susilo, W., Tonien, J.: Cryptanalysis of RSA variants with primes sharing most

significant bits. In: Liu, J.K., Katsikas, S., Meng, W., Susilo, W., Intan, R. (eds.) ISC 2021. LNCS, vol. 13118, pp.

42–53. Springer, Cham (2021).

[26] Diaz J, Muñoz-Caro C and Niño A 2012 A urvey of parallel programming models and tools in the multi and any-

core era IEEE Transactions on Parallel and Distributed Systems

[27] Amalarethinam I G and Leena H M 2017 Enhanced RSA Algorithm with Varying Key Sizes for Data Security in

Cloud Proceedings - 2nd World Congress on Computing and Communication Technologies, WCCCT 2017

[28] Khanezaei N and Hanapi Z M 2014 A framework based on RSA and AES encryption algorithms for cloud

computing services Proceedings - 2014 IEEE Conference on System, Process and Control, ICSPC 2014

[29] Jadeja Y and Modi K 2012 Cloud computing - Concepts, architecture and challenges 2012 International Conference

on Computing, Electronics and Electrical Technologies, ICCEET 2012

[30] B. R. Ambedkar, S.S. Bedi, ‘A New Factorization Method to Factorize RSA Public Key Encryption’, International

Journal of Computer Science Issues, Vol. 8, Issue 6, No 1, Nov 2011.

[31] B.P. Urbana Ivy, P. Mandiwa, M. Kumar, ‘A Modified RSA Cryptosystem based on ‘n’ Prime Number’,

International Journal of Engineering and Computer Science ISSN: 2319-7242 Vol. 1 Issue 2 Nov 2012 pp. 63-66.

[32] S. Gupta and J. Sharma, ‘A Hybrid Encryption Algorithm based on RSA and Diffie- Hellman’, 2012 IEEE

International Conference on Computational Intelligence and Computing Research.

[33] A. Bhattacharjee, C. Khaskel, D. Basu, D. R. Vincent P.M., ‘Hybrid Security Approach by Combining Diffie

Hellman and RSA Algorithm’, International Journal of Pharmacy and Technology Dec. 2016 Vol. 8 Issue
No. 4 pp. 26560-26567.

[34] R. S. Dhakar A. K. Gupta and P. Sharma, ‘Modified RSA encryption algorithm (MREA)’, 2012 2nd International

Conference on Advanced Computing and Communication Technologies IEEE. pp. 426-429

http://dx.doi.org/10.2139/ssrn.3852596

[35] M Ganavi, S Prabhudeva, “A Secure Data Transmission using Modified RSA and Random Pixel Replacement

Steganography”, 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT),

IEEE Xplore, Coimbatore, India, November 29, 2018.

[36] Faten H. Mohammed Sediq Al-Kadei, Huda Abdalkaream Mardan, Nevart A. Minas, “Speed Up Image Encryption

by Using RSA Algorithm”, 2020 6th International Conference on Advanced Computing and Communication

Systems (ICACCS), IEEE Xplore, Coimbatore, India, April 23, 2020.

[37] Sudipto Majumder, Md. Mahfuzur Rahman, “Implementation of security-enhanced image steganography with the

incorporation of modified RSA algorithm", 2019 International Conference on Electrical, Computer and

Communication Engineering (ECCE), IEEE Xplore, April 4, 2019.

[38] Oluwakemi Christiana Abikoye, Haruna Ahmed Dokoro, Abdullahi Abubakar, Akande Noah Oluwatobi, "Modified

Advanced Encryption Standard Algorithm for Information Security" ResearchGate, December 2019.

[39] Sarjiyus, O., “Enhancing RSA Security Capability Using Public Key Modification”, International Journal of

Research and Scientific Innovation (IJRSI) | Volume VII, Issue IX, ISSN 2321–2705, September 2020

[40] M Ganavi, S Prabhudeva, “A Secure Data Transmission using Modified RSA and Random Pixel Replacement

Steganography”, 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT),

IEEE Xplore, Coimbatore, India, November 29, 2018.

[41] Faten H. Mohammed Sediq Al-Kadei, Huda Abdalkaream Mardan, Nevart A. Minas, “Speed Up Image Encryption

by Using RSA Algorithm”, 2020 6th International Conference on Advanced Computing and Communication

Systems (ICACCS), IEEE Xplore, Coimbatore, India, April 23, 2020.

[42] Sudipto Majumder, Md. Mahfuzur Rahman, "Implementation of security-enhanced image steganography with the

incorporation of modified RSA algorithm", 2019 International Conference on Electrical, Computer and

Communication Engineering (ECCE), IEEE Xplore, April 4, 2019.

[43] R.L. Rivest, A. Shamir, and L. Adleman, ‘A Method for Obtaining Digital signatures and Public-Key

Cryptosystems,’ Communications of the ACM, Feb. 1978 vol. 21(2) pp. 120- 126’.

https://ieeexplore.ieee.org/author/37086534394
https://ieeexplore.ieee.org/author/37086530535
https://ieeexplore.ieee.org/xpl/conhome/8536362/proceeding
https://ieeexplore.ieee.org/author/37088379091
https://ieeexplore.ieee.org/author/37088380124
https://ieeexplore.ieee.org/author/37088379860
https://ieeexplore.ieee.org/xpl/conhome/9058619/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9058619/proceeding
https://ieeexplore.ieee.org/author/37086810051
https://ieeexplore.ieee.org/author/37086332796
https://ieeexplore.ieee.org/xpl/conhome/8672433/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8672433/proceeding

