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Abstract. Coal, as a versatile natural resource fueling various indus-
tries, necessitates accurate identification of its maceral components for
mining and geological applications. However, automated segmentation
of coal macerals remains challenging due to the grayscale similarity be-
tween maceral components like liptinite and the background in coal pho-
tomicrographs. This study proposes SCAR-UNet, a novel improved net-
work architecture designed specifically for maceral image segmentation.
Our approach integrates channel attention, spatial attention, and a novel
loss function with the Residual UNet (Res-UNet) architecture, enabling
enhanced feature extraction and model performance. Evaluated on a
labeled Coal Maceral image dataset comprising 908 annotated images
containing vitrinite, inertinite, and liptinite macerals. The widely used
Intersection over Union (IoU) and Pixel Accuracy (PA) metrics were uti-
lized for assessing segmentation performance. The proposed SCAR-UNet
outperformed state-of-the-art segmentation algorithms.

Keywords: Coal Maceral Segmentation · Residual UNet · Attention
Mechanism· Loss Function · Deep Learning.

1 Introduction

As one of the most plentiful fossil fuels on the planet, coal occupies a prominent
place in the worldwide energy landscape [1]. Per the guidelines established by
the International Committee for Coal and Organic Petrology (ICCP) [2] and the
ASTM D2797-13 standard [3] stipulated by the American Society for Testing and
Materials (ASTM), three principal categories can be identified within the mineral
components of coal: these are (1) Vitrinite, (2) Inertinite, and (3) Liptinite.

Despite advancements, the conventional methodology for coal rock compo-
nent analysis continues to depend heavily on labor-intensive manual visual in-
spection techniques [4]. This method is not only devoid of automation but also
prone to individual biases [5].
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Recent studies have developed numerous image processing and machine learn-
ing techniques, enhancing the automation capabilities of coal rock microcompo-
nent segmentation. Li et al. improved the accuracy of target region segmenta-
tion in coal and gangue identification based on laser speckle image processing,
Gaussian filtering, and adaptive threshold segmentation techniques [6]. Improved
U-Net architectures can accurately identify and segment various components in
coal maceral micrographs [7]. Convolutional neural networks (CNNs) have suc-
cessfully analyzed coal maceral granularity features, providing more accurate
results than traditional approaches [8]. While these advancements showcase the
potential of deep neural networks for automated coal maceral component analy-
sis, existing deep learning models often fall short in capturing intricate structural
details and handling the inherent variability present in coal maceral microscopic
images. To address the challenges of complex coal maceral microscopic image
segmentation, our main contributions are as follows:
1) To better capture intricate details, we propose SCAR-UNet, an improved

segmentation network combining Res-UNet with Channel and Spatial At-
tention mechanisms for effective feature extraction in coal maceral images.

2) A novel loss function, BDL, is designed, combining Binary Cross-Entropy
(BCE) loss and Dice loss. The BDL loss function enhances model perfor-
mance on boundary localization tasks by emphasizing the Dice component
and automatically adjusting component weight contributions.

3) Our team has manually annotated a total of 131 coal maceral microscopic
images, and subsequently expanded it into a dataset of 908 images through
enhancement techniques, which includes Vitrinite, Inertinite, and Liptinite.
This high-quality annotated dataset provides valuable data support for coal
maceral component segmentation research.

2 Related Works

2.1 Res-UNet Network Model

Ronneberger and his colleagues unveiled the UNet model in 2015 [9]. This model,
characterized by an encoder-decoder design, can be effectively trained with a lim-
ited set of annotated samples [10]. The Res-UNet model combines ResNet and
UNet by integrating residual units before each encoding and decoding layer,
enhancing feature propagation and the stability of network training. It can over-
come the issue of vanishing gradients and converge rapidly [11].

2.2 Channel Attention and Spatial Attention Mechanism

With the continuous development of deep learning technology, attention mech-
anisms have gained significant attention due to their remarkable impact on im-
proving model performance. Channel Attention (CA) and Spatial Attention (SA)
are two main branches of attention mechanisms. By focusing on channel features
and spatial positions of the model respectively, they effectively enhance the ac-
curacy and robustness of segmentation tasks.
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Channel attention enhances network performance by emphasizing important
features within channels. By assigning different weights to different channels, it
significantly improves the representational power of features [12].

Fig. 1. Channel Attention for Enhanced Feature Representation.

Fig. 1 illustrates the utilization of average pooling and max pooling opera-
tions to extract spatial information from feature maps F c

avg and F c
max. These two

descriptors are then fed into a shared multi-layer perceptron network, generating
a channel attention map Mc ∈ RC×1×1. The network consists of a hidden layer
with a size of RC/r×1×1, aiming to reduce the number of parameters, where r
represents the dimension reduction ratio [13].

Fig. 2. Spatial Attention for Enhanced Image Segmentation.

Spatial attention enhances the spatial resolution capability of the model by
highlighting key regions in the image. It identifies and weights important lo-
cations in the image to focus the model’s feature processing on specific areas,
especially in complex backgrounds or noisy contexts, where this mechanism sig-
nificantly impacts image segmentation [14]. To obtain spatial attention, average
pooling and max pooling operations are first performed along the channel di-
mension to integrate feature descriptors. Based on the fused descriptors, a con-
volutional layer is applied to generate the spatial attention map, Ms ∈ RC×1×1,
allowing the network to adjust the intensity of specific spatial regions. We employ
two pooling operations to integrate the channel information of the feature maps,
resulting in two two-dimensional maps: F s

avg ∈ R1×H×W and F s
max ∈ R1×H×W .

Further details and the effectiveness of this model in image segmentation appli-
cations in complex environments will be explained in Fig. 2.

3 Methodology

This study is dedicated to addressing the challenges of segmenting coal rock
microscopic images, which often exhibit high complexity and heterogeneous dis-
tribution. To this end, an advanced deep learning model, SCAR-UNet, has been
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developed, and a novel loss function has been introduced to tackle these chal-
lenges. By conducting a comprehensive analysis of microscopic image features,
this model aims to significantly enhance the accuracy and stability of the image
segmentation process.

3.1 Architecture of SCAR-UNet

Selecting and designing an effective network architecture capable of addressing
the complexities of image segmentation and data imbalance is crucial for achiev-
ing precise image analysis. Addressing the detailed classification and segmenta-
tion issues of coal rock microscopic images, this paper introduces the innovative
network model, SCAR-UNet. This model integrates spatial attention mecha-
nisms, channel attention, and the powerful features of residual networks, aiming
to enhance the precision and efficiency of microscopic image analysis.

To provide a detailed description of the working mechanism of SCAR-UNet
and its application in microscopic image segmentation, we will now present its
schematic diagram, as shown in Fig. 3.

Fig. 3. The architecture of SCAR-UNet with novel loss LBDL.

As can be seen from Fig. 3, the SCAR units employ skip connections, which
facilitate selective filtration and transmission of features at various network lev-
els. The SCAR module amalgamates residual units with spatial and channel
attention mechanisms, thereby intensifying the model’s concentration on promi-
nent features. The incorporation of residual units guarantees that signal propaga-
tion remains unimpaired even with the escalation in network depth, safeguarding
information throughout multiple network layers. Concurrently, the spatial and
channel attention mechanisms adjust the spatial weights of feature maps and ac-
centuate critical channel features respectively. By integrating residual units with
channel and spatial attention units, the SCAR-UNet network demonstrates su-
perior efficiency and precision when handling images embedded with complex
textures and abundant detail information.

3.2 Innovative Hybrid Loss Function BDL

In the field of image segmentation, the loss function is a critical metric for eval-
uating model performance. To achieve precise segmentation of coal and rock
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micrographs, we propose a novel loss function, BDL, which integrates an im-
proved version of the Dice loss and the binary cross-entropy loss. BDL enhances
the model’s ability to recognize details, balances segmentation performance, and
comprehensively improves image segmentation outcomes. The formula is as fol-
lows:

LBDL = α ∗ L′
Dice + (1− α) ∗ LBCE (1)

In this formula, α is a weight parameter. Higher values of enhance the model’s
ability to capture edge details [19], while lower values improve the accuracy of
pixel classification [18]. Notably, through cross-validation on the training dataset,
we ultimately set α to 0.5 to ensure the model’s optimal performance in segment-
ing complex and imbalanced coal rock microscopic images.

The original Dice loss function (LDice) is based on the Dice coefficient. Its
purpose is to maximize the overlap between the predicted segmentation area and
the actual segmentation area, making it particularly suitable for handling class
imbalances [16]. The Dice loss function is defined as follows:

LDice = 1−
2
∑N

i pigi + ϵ∑N
i pi +

∑N
i gi + ϵ

(2)

Where pi is the predicted probability for each pixel i , gi is its true label (0 or
1), N refers to the total number of pixels in the image, and ϵ is a small constant
used to prevent the denominator from becoming zero.

Although the original Dice loss function performs well in image segmenta-
tion tasks, it may not be sufficiently sensitive for some specific scenarios, such as
detecting small objects or achieving precise segmentation of edges [17]. There-
fore, we introduced a power factor γ. The expression for the improved Dice loss
function is as follows:

L′
Dice = (LDice )

1/γ (3)

By finely tuning the hyperparameter γ to 4
3 through ten-fold cross-validation

on the training set, we optimized the sensitivity of the improved Dice loss func-
tion. This adjustment enhances the model’s ability to detect and segment com-
plex regions in image data. The increased penalty weights for challenging areas
guide the model in recognizing difficult regions, providing a flexible error penalty
mechanism. This design mitigates the impact of class imbalances in coal rock
microscopic images, improving the model’s robustness and segmentation accu-
racy.

In Equation (3), LBCE denotes the Binary Cross Entropy (BCE) loss func-
tion. It measures the discrepancy between predicted probabilities and target
labels, compelling the model to make accurate classification decisions for each
pixel [15]. Its mathematical formula is defined as follows:

LBCE = − 1

N

N∑
i=1

[yi · log (ŷl) + (1− yi) · log (1− ŷl)] (4)

Where N is the total number of samples, yi is the true label of the ith sample.
In binary classification problems, yi takes the value of 0 or 1. ŷl represents the
predicted probability of the ith sample. When the true label yi is 1, the term
yi · log (ŷl) is active. When yi is 0, the term (1− yi) · log (1− ŷl) is active.
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4 Experiment

4.1 Construction of Datasets

Due to the current lack of publicly available annotated datasets for coal surface
microscopic images, this study has constructed a dataset suitable for training
and evaluating deep learning models using annotated images obtained from the
internet [20]. As illustrated in Fig. 4, the top row shows examples of the acquired
annotated coal maceral microscopic images. Image restoration techniques were
applied, yielding the clean images shown in the bottom row of Fig 4.

Fig. 4. Samples of Coal Maceral Microscopic Annotated Image (Top Line) and Anno-
tated Dataset (Bottom Line).

Using the calibration tool [21], we manually annotated 131 images in the
dataset, selecting 20 of them as the test set. The remaining 111 images were aug-
mented to 888 images through geometric transformations such as rotation and
noise injection. Figure 5 shows an example of the annotated coal petrographic
images. We used specific color coding to distinguish different categories: red rep-
resents the background, green represents the vitrinite group, blue represents the
inertinite group, and yellow represents the liptinite group. We employed a de-
composed approach, transforming the multi-class problem into several binary
classification problems.

Fig. 5. Coal Maceral Image Samples: Original Images (Left), Label Images (Right).
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4.2 Details of Implementation and Metrics for Evaluation

The evaluation of training results in this study employs Intersection over Union
(IoU), Pixel Accuracy (PA), Recall, and the Dice coefficient. IoU reflects the
model’s ability to accurately delineate the target boundaries. PA provides in-
sights into the model’s overall performance across all classes. Recall calculates
the proportion of true positives correctly identified among all actual positives.
The Dice coefficient evaluates the accuracy of the model in identifying the over-
lap between the predicted target areas and the actual target areas. The specific
calculation expressions are as follows:

IoU =
Vpred ∩ Vgt

Vpred ∪ Vgt
(5)

PA =
TP + TN

TP + TN + FP + FN
(6)

Recall =
TP

TP + FN
(7)

Dice =
2 ∗ TP

2 ∗ TP + FP + FN
(8)

Where Vpred represents the predicted result and Vgt represents the ground truth.
TP represents the true positive, TN represents the true negative, FP represents
the false positive, and FN represents the false negative.

4.3 Comparative Analysis of Loss and Pixel Accuracy

This section presents a comparative analysis of the loss and pixel accuracy (PA)
for four distinct segmentation models: Res-UNet, CAR-UNet, SAR-UNet, and
SCAR-UNet. The loss curves are illustrative of the model convergence behavior
during training, while the PA curves reflect the precision of pixel-level identifi-
cation across the testing dataset.

As shown in the left column of Fig. 6, the loss curves reveal a significant
decrease in the loss values for all models during the initial phase of training,
indicating that the selected learning rate facilitated an effective gradient descent
process. Subsequently, the loss curves gradually stabilized, suggesting that the
models began to converge, demonstrating the appropriateness of the set learning
rate. The red curve represents the SCAR-UNet model, which converged at the
fastest rate and ultimately achieved the lowest loss value among all models. This
indicates the SCAR-UNet model’s highly effective capability in extracting and
classifying features from coal rock microscopic images. Such rapid convergence
and low loss values typically signify that the model is highly stable during the
learning process, capable of capturing patterns and correlations in the data more
accurately, thereby enhancing the model’s generalizability and practicality.
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Fig. 6. Comparative Analysis of Loss(left) and PA(right) for four Models during Train-
ing.

From the right column of Fig. 6, it can be observed that the red curve not
only shows the fastest growth rate but also ultimately achieves the highest PA
value, demonstrating the exceptional performance of the SCAR-UNet in the
task of coal rock microscopic image segmentation. This performance reflects the
model’s high efficiency in accurately identifying and segmenting various coal rock
components, ensuring high classification accuracy and detail restoration.

4.4 Results and Discussion

Ablations In the ablation study, We conducted six models: RES-UNet, Res-
UNet with BDL loss, Res-UNet with spatial attention(SAR-UNet), Res-UNet
with channel attention(CAR-UNet), SCAR-UNet, and SCAR-UNet with BDL
loss, as shown in Table 1, where the best results are highlighted in bold.

According to the table, the SCAR-UNet+BDL model exhibited optimal per-
formance for Inertinite and Liptinite across the metrics PA, IoU, Recall, and
Dice. The respective values for these four evaluation metrics for Inertinite/Liptinite
were 0.985/0.922, 0.836/0.928, 0.845/0.925, and 0.910/0.962. The results indicate
that the SCAR-UNet+BDL model possesses superior segmentation capabilities
for complex coal rock micro-images. From the PA, IoU, and Dice metrics, it
is evident that SCAR-UNet predicts Vitrinite most effectively. This can be at-
tributed to the largest dataset proportion of Vitrinite, while BDL significantly
enhances prediction outcomes for Inertinite and Liptinite, which have smaller
dataset representations. Among the three coal rock categories, based on the
maximum values of the four metrics, Vitrinite generally ranks higher than Lip-
tinite and Inertinite, a result stemming from Vitrinite’s highest representation
in the dataset, whereas Inertinite has the lowest.

Comparison Experiments To demonstrate the advantages of incorporating
spatial and channel attention mechanisms as well as the BDL loss function in
our model, we conducted a series of comparative experiments. We selected four
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Table 1. Ablation Experiment: Comparison of the Prediction Results for Three Cat-
egories of Coal Maceral Images.

Metrics / Models RES-
UNet

RES-
UNet+BDL

SAR-
UNet

CAR-
UNet

SCAR-
UNet

SCAR-
UNet+BDL

PA
Vitrinite 0.972 0.975 0.978 0.982 0.989 0.986
Inertinite 0.969 0.980 0.978 0.982 0.981 0.985
Liptinite 0.980 0.982 0.981 0.983 0.991 0.992

IoU
Vitrinite 0.918 0.945 0.940 0.967 0.976 0.970
Inertinite 0.791 0.803 0.823 0.829 0.830 0.836
Liptinite 0.882 0.909 0.910 0.921 0.922 0.928

Recall
Vitrinite 0.920 0.945 0.940 0.960 0.965 0.970
Inertinite 0.790 0.810 0.830 0.840 0.840 0.845
Liptinite 0.880 0.905 0.910 0.920 0.920 0.925

Dice
Vitrinite 0.957 0.972 0.969 0.983 0.988 0.985
Inertinite 0.883 0.890 0.902 0.908 0.909 0.910
Liptinite 0.937 0.952 0.953 0.959 0.960 0.962

models for this purpose: U-Net, AG-UNet with attention gates, Res-UNet with
residual connections, and DeepLab-V3+ (DL-V3+).

Fig. 7. Comparison of Segmentation Results Among Four Models: U-Net, AG-UNet,
Res-UNet, DL-V3+ and SCAR-UNet.

These models were used to perform semantic segmentation predictions on the
test set. To thoroughly evaluate the segmentation performance of the models,
we continued to use PA, IoU, Recall, and Dice as the core evaluation metrics.
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The comparative results are presented in Table 2, where the best results are
highlighted in bold. The segmentation outcomes of the four models on coal rock
micro-images can be visualized in Fig. 7.

From Fig. 7, it can be seen that the segmentation results obtained by SCAR-
UNet are closest to the ground truth images. Compared to the SCAR-UNet
model, the DeepLab-V3+ and AG-UNet model’s segmentation results lack some
fine details and occasionally fail to fully recognize certain features. In contrast,
the U-Net model’s predictions often contain more errors, such as predicting extra
coal rock components or missing some areas.

Table 2. SCAR-UNet Model Compared with Four Classic Models.

Metrics / Models U-Net AG-UNet Res-UNet DL-V3+ SCAR-
UNet(ours)

PA
Vitrinite 0.964 0.974 0.972 0.967 0.989
Inertinite 0.953 0.970 0.969 0.961 0.981
Liptinite 0.987 0.988 0.990 0.989 0.991

IoU
Vitrinite 0.917 0.928 0.918 0.920 0.976
Inertinite 0.796 0.786 0.791 0.798 0.830
Liptinite 0.872 0.901 0.882 0.890 0.922

Recall
Vitrinite 0.921 0.932 0.920 0.923 0.965
Inertinite 0.792 0.788 0.790 0.801 0.840
Liptinite 0.879 0.905 0.880 0.891 0.920

Dice
Vitrinite 0.925 0.938 0.957 0.927 0.988
Inertinite 0.798 0.790 0.883 0.805 0.909
Liptinite 0.881 0.906 0.937 0.895 0.960

From Table 2, we can observe that among the five models, SCAR-UNet model
exhibited the highest PA, IoU, Recall, and Dice scores across all three coal rock
categories. Specifically, for Vitrinite/Inertinite/Liptinite, SCAR-UNet showed
improvements over Res-UNet by 1.7%/1.2%/0.1% in PA, 5.8%/3.9%/4% in IoU,
4.5%/5%/4% in Recall, and 3.1%/2.6%/1.3% in Dice respectively. Compared to
DeepLab-V3+, SCAR-UNet demonstrated enhancements of 2.2%/2%/0.2% in
PA, 5.6%/3.2%/3.2% in IoU, 3.2%/3.9%/2.9% in Recall, and 6.1%/10.4%/6.5%
in Dice. These results indicate that the SCAR-UNet model possesses outstanding
performance in handling complex coal rock micro-image segmentation tasks.
This exceptional performance can be attributed to the integration of spatial
and channel attention mechanisms within the model structure. Additionally, the
results obtained from our calibrated dataset with DeepLab-V3+ were superior
to those reported in the referenced paper [22], with PA/IoU scores for Vitrinite
of 0.94/0.87, Inertinite of 0.79/0.71, and Liptinite of 0.95/0.83. This also proves
the reliability and accuracy of the dataset calibrated in this study.
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5 Conclusion

Segmenting and analyzing coal rock components in microscopic images play a
crucial role in characterizing coal properties and optimizing the coal utilization
process. However, existing methods often face difficulties in accurately depicting
complex structural details and handling the variability of coal rock images. To
address these challenges, this paper proposes a novel deep learning approach for
coal rock image segmentation based on an improved attention residual U-Net
(SCAR-UNet) architecture. Specifically, we have incorporated channel attention
and spatial attention into the Res-UNet, mechanisms that help the model more
accurately focus on key features within the images, thereby improving segmen-
tation accuracy. Additionally, we designed a new loss function, BDL, which is a
weighted combination of binary cross-entropy loss and mean intersection-over-
union loss. Compared to other state-of-the-art semantic segmentation models,
our approach achieves higher pixel accuracy (PA) reaching 98.8%, and mean
intersection-over-union (IoU) reaching 91.6%, significantly outperforming exist-
ing technologies.

Although the proposed method has already shown promising results, further
research could focus on integrating advanced attention mechanisms or exploring
multi-task learning frameworks to achieve simultaneous segmentation of multi-
ple categories and classification of coal rock components. Moreover, integrating
domain-specific knowledge or leveraging weak supervision techniques could en-
hance model performance and reduce dependence on large amounts of labeled
data.
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