
EasyChair Preprint
№ 2067

Path Tracing in holonomic drive system with
Reduced Overshoot using rotary encoders

Divyanshu Tak, Ayush Jain, Paras Savnani and Akash Mecwan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 1, 2019

Path Tracing in holonomic drive system with

Reduced Overshoot using rotary encoders

Divyanshu Tak,

Electronics and

Communicaton Branch,

Institute of technology, Nirma

University, Ahmedabad, India.

16bec037@nirmauni.ac.in

Ayush Jain,

Electronics and

Communication Branch,

Institute of technology, Nirma

University, Ahmedabad, India.

mr.ayush141@gmail.com

Paras S Savnani,

Mechanical Branch,

Institute of technology, Nirma

University, Ahmedabad, India.

savnani5@gmail.com

Dr. Akash Mecwan,

Electronics and

Communication Branch,

Institute of technology, Nirma

University, Ahmedabad, India.

Akash.mecwan@nirmaun

i.ac.in

Abstract—This paper focuses on path tracing of a holonomic

three wheel Omni drive system. Any path (curved, linear) is first

sampled, where the coordinates of the path are stored in the

local memory, at particular sampling rate which are then

retrieved dynamically during the runtime to move the robot on

the similar path. The task of moving the drive system from one

coordinate to another is done by Deduced reckoning algorithm.

This paper also proposes algorithm for minimizing overshoot

(deviation from actual path) while moving in a curved

trajectory. The proposed algorithm helps in keeping track of the

robot very efficiently. The hardware employed to test the

proposed algorithm used consists of a three wheeled Omni base,

three high torque DC motors, three 6” Omni wheels, highly

efficient DC motor drivers, high precision rotary encoders and

a microcontroller powered by ARM® Cortex®-M3 processor.

The robot controlled by the proposed algorithm was tested on
wooden field while plying on curved paths.

Keywords—Omni Direction, IMU, Rotary Encoders,

Holonomic Drive, Deduced Reckoning.

I. INTRODUCTION

Holonomic drive systems[5] are primarily used in robotics
and Omni directional movement applications , as the robot can
move in any direction and also change its direction of motion
without changing its orientation beforehand , this feature
allows for better maneuverability in curved paths .This paper
presents integration of path tracing in holonomic drive[8] with
algorithm for minimum overshoot of the robot which provides
better solutions for applications where reconfiguring the path
of the robot, according to the changes in the conditions, is not
possible. Path tracing[8] is done in two steps, the first being
the sampling of the path where any path is broken down into
straight lines and the corresponding coordinates, orientation
and other metadata is stored. Then the robot is moved along
straight lines, coordinates of which were stored during
sampling along with other data using Deduced reckoning
algorithm which is integrated with minimum overshoot
algorithms to provide robustness and independence from any
changes in the surface of the path. Along with providing
robustness against changes the minimum overshoot algorithm
also provides smoothness and stability to the system, as
holonomic drives are prone to overshoot while changing
direction of motion. The algorithms were tested on a Three
wheel base made of mild-steel, electronic hardware involved
microcontroller [11], gyroscope [10], encoder, motors [2].The
existing methods involve the use of path/curve equations
which govern the heading of the bot along the curved path but
have a problem of overshoot due to slip, inertia and inability
of motors to suddenly accelerate and decelerate, this prevents
the bot to perform smooth path tracing. The seamless

integration of deduced reckoning and minimum overshoot
algorithm provide better results for most robotics applications
as it enables the bot to reduce overshoot by performing sudden
acceleration and deceleration where sharp turns are required.

THREE WHEEL OMNI DRIVE

A. Maneuverability

As the word ‘OMNI’ (meaning- everywhere) suggests, the
drive can move everywhere. But what stands out is the ability
to maneuver sharp turns with or without changing the
orientation. The drive developed as such can move in any
direction without changing the orientation as well as it can
move in a straight line while changing its direction, such that
when both of these properties are combined, the developed
drive system proves better performance around curved
trajectory along with straight trajectory and ability to move in
any direction.

B. Omni wheels

Holonomic drive systems requires special type of wheels ,
the wheels used in tank drive systems (commercial
automobiles) cannot be used as the wheels used in these drives
can be moved freely and without hindrance only in one
direction , i.e.: forwards , backwards not along the axis of the
wheels. Omni wheels are more suitable for holonomic
applications as these wheels have beads/rollers attached on the
circumference of the wheel to facilitate motion parallel to the
axis of the wheel as shown in figure 1. We shall use the term
‘rollers’ throughout the paper to maintain clarity and
conciseness. The rollers on the wheel rotate on their axis thus
allowing the wheel to move parallel to its axis. This type of
wheels can be acquired from any robotics shop or online
vendors.

 Figure 1 Omni Wheel

For higher controllability, the use of smaller wheels is advised,
whereas higher speeds can be achieved using bigger wheels
provided that the motors used can provide enough torque. We
observed that there is a trade-off between speed and
controllability, and the wheel size should be selected
accordingly. The robot used for testing and verification of this
paper uses a 6’ wheels for a combination of speed and higher
controllability.

C. Microcontroller

The controller will be responsible for all the calculations

and execution of commands by either issuing them to the

motor driver controller or by producing the desired PWM

outputs. The more number of motors in this structure

strains on the use of a motor driver with inbuilt

microcontroller which will accept the issued commands

and execute them.

The controller must be chosen according to the

specifications of the design and must have sufficient pins

and ports along with the hardware according to the

designed skeleton. For example, if the drive is being
controlled with an analog joystick, then the main

controller must have an inbuilt ADC, if the feedback of

angle is taken using Inter Integrated Circuit (I2C) then it

is preferable to use a controller with inbuilt hardware I2C

circuit. If the motor controller accepts commands using

some standard communication protocol, then the

hardware required for communication is also required to

be taken into consideration. Any oscillator generating a

clock above 1MHz will suffice for the calculations

required to drive and control the structure.

D. Gyroscope for feedback

Feedback is added in the system to correct the small errors

caused due to inertia or unbalanced system or unequal

rpm of the motors. This feedback helps in maintaining the

orientation of the robot while moving. The said feedback

is in terms of current angle. The control algorithm then

notes the current angle of the robot and makes the
adequate changes in the speed of individual wheels to

make the robot maintain its desired orientation. The

feedback is quite necessary for driving three-wheel Omni

drive and hence, the sensor providing the feedback must

be as accurate as possible.

The use of gyroscope for angle feedback has proved to be

very useful due to its accurate output and relatively error

free transfer of data (it does not send data using analog

values which will lead to quantization error). The

gyroscope used for verification and test purpose was
MPU6050 which works on I2C protocol for data transfer

giving the change in angle between consecutive fetch

cycles.

The new angle is calculated by adding the difference in

angle acquired from the gyroscope to the present angle as,

𝜃 = 𝜃 + 𝜕𝜃 (1)

II. DRIVE CONTROL

The control of three wheel Omni drive rests upon basic but
powerful trigonometric equations. In this drive system each
wheel has separate control equation which is responsible for
controlling the speed of that particular wheel relative to other
two wheels to make the robot move in a particular direction

A. Omni Drive

Equations are a must as far as we want to drive our robot
with/without control section embedded in it. These equations
are not as simple as one might think and neither are they very
hard to derive. Since our structure is not conventional with all
wheels parallel to each other, the equations must include
trigonometric components.

 Figure 2 Robot Structure and convention

As shown in figure 2, we shall regard the wheel in lower right

corner as wheel 1, the wheel in lower left corner as wheel 2

and the wheel on top as wheel 3. The axes are also shown

alongside the figure with θ measuring from x-axis to y-axis.

The convention is chosen for simplicity, one might

completely ignore this convention to adapt a new convention

and still, in essence, arrive at the same equations. For the

following derivation, we assume that the heading of robot

remains same and the equations can be tweaked for changing

the heading and orientation of the robot.

Let us assume that we want our robot to move at an angle θ

to x-axis with speed ‘V’ keeping its orientation unchanged.

The angle θ as well as the speed are variables and so we can

solve the equations without having to re-check them for

different values.

The velocity at an angle θ, when broken into components

along and perpendicular to wheel 3, resolves as 𝑉.𝑐𝑜𝑠θ î +

𝑉.𝑠𝑖𝑛θ ĵ, where î and ĵ are unit vectors along x and y axis

respectively. As these wheels cannot apply force
perpendicular to them, we shall equate them with components

parallel to them. Thus,

 𝑣3 = 𝑣 ∗ 𝑠𝑖𝑛𝜃 (2)

Where 𝑉3 is velocity of wheel three. Similarly, when we

resolve the along wheel 1 and 2, we get

 𝑣1 = 𝑣 ∗ cos (𝜃 + 30) (3)

 𝑣2 = 𝑣 ∗ cos (𝜃 − 30) (4)

These equations when simplified, give us three equations in

which we have to substitute the value of speed and the angle

at which the robot is supposed to move. The final equations

are:

𝑣1 = − (
1

2
) ∗ 𝑣 ∗ 𝑠𝑖𝑛𝜃 + (

√3

2
) ∗ 𝑣 ∗ 𝑐𝑜𝑠𝜃 (5)

 𝑣2 = (
1

2
) ∗ 𝑣 ∗ 𝑠𝑖𝑛𝜃 + (

√3

2
) ∗ 𝑣 ∗ 𝑐𝑜𝑠𝜃 (6)

 𝑣3 = 𝑣 ∗ 𝑠𝑖𝑛𝜃 (7)

(5), (6) and (7) are the ones commonly used and quite

efficient when used with feedback to stop the unwanted drift

in orientation.

B. Deduced Reckoning using rotary encoders

The holonomic drive is quite versatile due to its ability to

change its direction of motion without changing its

orientation and vice versa. But it is this versatility which

makes it quite difficult to precisely calculate its coordinates

using laser sensors and other non-contact based distance

measurement techniques as it would require the robot to

know its surroundings even before it sets sail. As the robot

turns the walls around it might change in unexpected manner

which shall require pre-known map of the surroundings as

well as some quite complex equations and very precise
measurements. To avoid this scenario altogether we have

used rotary encoders even if they have drawback of

incremental error along with the need to be continuously

polled for change. But these drawbacks are overcome by its

supreme advantage which is absolute reference which is

independent of change in surroundings.

For simplicity, we shall consider the orientation of the robot

to be constant while calculating the current coordinates of the

robot. For The calculation let us assume that ‘pulse_vert’ is

the number of pulses from the encoder facing the heading of
the robot and ‘pulse_horz’ is the number of pulses from the

encoder perpendicular to the heading of the robot. Thus, we

can write it as:

 ∆𝑑𝑖𝑠𝑣𝑒𝑟𝑡 = 𝑃𝑢𝑙𝑠𝑒_𝑣𝑒𝑟𝑡 ∗ 𝑑𝑖𝑠𝑝𝑒𝑟𝑝𝑢𝑙𝑠𝑒 (8)

 ∆𝑑𝑖𝑠ℎ𝑜𝑟𝑧 = 𝑃𝑢𝑙𝑠𝑒_ℎ𝑜𝑟𝑧 ∗ 𝑑𝑖𝑠𝑝𝑒𝑟𝑝𝑢𝑙𝑠𝑒 (9)

Where, 𝑑𝑖𝑠𝑝𝑒𝑟𝑝𝑢𝑙𝑠𝑒 is the distance travelled by the encoder

per pulse. It can easily be calculated as:

 𝑑𝑖𝑠𝑝𝑒𝑟𝑝𝑢𝑙𝑠𝑒 =
2𝜋𝑅

𝑃𝑝𝑟
 (10)

Where R is the radius of the encoder and PPR stands for Pulse

Per Revolution of the rotary encoder.

Now that we know about the distance travelled by robot in

the form of ∆𝑑𝑖𝑠ℎ𝑜𝑟𝑧 and∆𝑑𝑖𝑠𝑣𝑒𝑟𝑡 , we can update the current

coordinates of the robot by following equations

 𝑋𝑑𝑖𝑠 = 𝑋𝑑𝑖𝑠 + ∆𝑑𝑖𝑠𝑣𝑒𝑟𝑡 (11)

 𝑌𝑑𝑖𝑠 = 𝑌𝑑𝑖𝑠 + ∆𝑑𝑖𝑠ℎ𝑜𝑟𝑧 (12)

C. Travelling in Straight Line

Using (8),(9),(11),(12) we are able to get the current

coordinates of the robot travelling in any direction as the
vector addition of horizontal and vertical components will
always equal the distance travelled by the robot .

Now, let us assume that the robot is currently at coordinates
(X1, Y1) and the destination coordinates are (X2, Y2).

 Figure 3 Straight line path

Using the Triangulation method depicted in Figure 3, the

straight line between two coordinates represents the shortest

path and 𝜃 represents the heading of the robot for travelling

in straight line.

𝜃 = tan−1(
𝑌2−𝑌1

𝑋2−𝑋1
) (13)

The 𝜃 calculated from (13) can be substituted in (5), (6), (7)
to get the velocity values for individual wheels. By providing
the speed values to the wheels the robot can be moved in
straight line from (X1, Y1) to (X2, Y2).

D. Minimum Overshoot

Ideally, Speed and angle values calculated from (13), (5), (6),

(7) at the starting of motion will make the robot reach the

destination. But in Practical Scenario, because of irregularity

in surface, different friction values for each wheel and uneven

weight distribution the three wheel Omni drive system

becomes prone to instability and often deviates from the path

, this is where minimum overshoot algorithm comes into play.

The minimum overshoot algorithm comprises of mainly two
parts namely, Path Overshoot, Speed Control. This algorithm

is applied parallel to the perpetually running PID algorithms

with the angle provided from gyroscope as the error variable

to maintain the orientation of the robot during the motion and

not allowing the robot to spin along the perpendicular axis of

the wheel base.

1. Path Overshoot

 Figure 4 offset paths for straight line

 Offset paths 1 and 2 depicts the possible overshoot

that can occur during straight line motion. Taking help of

Triangulation method in Figure3 and (13) to calculate ∆ 𝜃

Which is the offset heading.

 𝜃 = 𝜃 − ∆ 𝜃 (14)

 𝜃 = 𝜃 + ∆ 𝜃 (15)

Now, if the robot is on the offset path 1 then offset heading

calculated can be substituted in (14) correct the path

overshoot making the robot move on actual path as shown in

Figure4 similarly , if the robot is on offset path 2 (14) can be

used to correct the path error.

For further decreasing the overshoot the above mentioned

correction method should be applied periodically or be placed
in the main loop where the drive velocity is controlled for

individual wheels , this will prevent path error to accumulate

over the period of the motion resulting in closest path to the

ideal straight line .

2. Speed Control

For speed control let us introduce some new variables

‘x_start’ , ‘x_end’ , ‘y_start’ , ‘y_end’ , ‘diff_x’ , ‘diff_y’.

 𝑑𝑖𝑓𝑓_𝑥 = 𝑥_𝑒𝑛𝑑 – x_start (16)

 𝑑𝑖𝑓𝑓_𝑦 = 𝑦_𝑒𝑛𝑑 – y_start (17)

As indicated by the names variables ‘x_start’ , ‘y_start’ are

updated at the starting of the main control loop using

(11),(12) and similarly ‘y_start’ , ‘y_end’ , ‘diff_x’ , ‘diff_y’

are calculated at the end of the loop using (11),(12),(16),(17).

The variables ‘diff_x’ and ‘diff_y’ represent the distance

travelled by the robot during the execution of the main loop

in programme, here time taken by the main loop in the

programme is taken as a reference, these variables are then

fed into PID algorithm as error parameter which will increase
or decrease the speed of the robot against the preset speed

limit, in the form of limit values of ‘diff_x’ and ‘diff_y’,

hence preventing the robot from fluctuating from desired

speed ,as depicted in the following flow chart.

The rotary encoders are enabled and the heading, required

speed, Kp, preset ticks are passed as input parameters to the

system. Current encoder ticks serve as initial ticks

(x_start,y_start) and as the flow of program progresses

different subroutines ,sensor updates and interrupt service

routines ,after this interval encoder ticks are again accepted
as final ticks (x_final,y_final).The error is calculated between

the preset ticks and the tick difference which is the difference

of final ticks and initial ticks, upon this error, PID is applied

and corrected speed is calculated.

 Figure 5 Flow chart for speed control

III. PATH SAMPLING

–––
The idea behind path sampling is that every curved path can
be formed from sequential juxtaposing of miniscule straight
lines. Figure 6 depicts the curve made by combination of
straight lines, the smoothness of the curve represented in
Figure can be improved by increasing the sampling rate which

reduces the length of the straight lines, removes sharp edges
and discontinuities hence resulting in a smooth curve.

 Figure 6 Curve made of straight lines

The segmentation of the curve in straight lines helps to

manoeuvre the robot into complicated curves by using simple
and efficient straight line equations which consumes less

computational power and provide reliability and robustness.

The path sampling is done by manually moving the robot

along a curve path while simultaneously storing the

coordinates using (11), (12) periodically at high frequency or

high sampling rate, to increase the resolution and accuracy of

the stored curve. After all the coordinates are stored

Triangulation method and (13) are used , in the same

sequence as the stored coordinates, to transform the distinct

coordinate pairs into miniscule straight lines which
eventually combine together to form a curve .

For applications with less memory constraints and more

computational capabilities orientation of the robot at each

coordinate and speed at each coordinates can also be stored

to bolster the accuracy and reliability of the sampling.

IV. PATH FOLLOWING

Path following is done in robot by sequentially hopping from

one straight line to another until the whole curve is traced.
The motion in straight is performed by employing deduced

reckoning algorithm along with reduced overshoot to

accurately mimic the straight line path which is sampled.

V. RESULTS

The algorithms were tested on a Three wheel base made of

mild-steel, electronic hardware involved microcontroller

[11], gyroscope [10], encoder, motors [2]. Li-PO batteries

(22.5V, 4500mAh).The surface involved a ply wood floor
with metal/oil paint.

The robot weighed approximately 30 Kg. The initial tests

involved analysis of performance without the use of

algorithm, the robot was made to follow a ‘S’ shaped path,

where sudden acceleration and deceleration were required for

smooth direction change, but the robot could be accelerated

from 0 to its maximum speed of 5 m/sec which required

2 sec pickup time due to slip of Omni wheels and low

friction between wheels and floor, maintenance of desired

constant speed was difficult. Upon implementation of

Reduced Overshoot algorithm the pickup time and
maintenance of constant desired speed was dramatically

improved and the robot was able to decrease it’s speed

from 5m/sec to 2m/sec in 1 sec during direction change and

thus reducing the considerable effects of inertia easily in

situations where sudden acceleration and deceleration are

required like curve tracing.

 Figure 6 Software model and Real implementation

VI. CONCLUSION

The proposed algorithms when tested on specified hardware

and structure provided improved results by damping the

effects of inertia while changing paths and resulted in smooth

motion of the robot throughout the curve. Our approaches

were mainly focused on motion of three wheel Omni

framework, but the proposed algorithms for speed reduction

and curve tracing methods can also be implemented on other
holonomic frameworks .The integration of proposed

algorithm and three wheel framework along with specified

hardware finds applications in various scenarios like

industrial automation, domestic application robot for carrying

payloads from one place to another irrespective of the path

between the two places. Another major benefit of the

proposed method is that any path can be traced by only

sampling the path once then the robot can adjust to the

variations and changes that take place in the route

dynamically in real time and without any reprogramming.

 REFERENCES

[1] VexRobotics.com, ‘Vex 6” omni directional wheel with Dual

VersaKey Pattern’, 2014. [Online]. Available:
https://content.vexrobotics.com/vexpro/pdf/217-2585-

Drawing20140818.PDF. [Accessed: 14 - Sept – 2017].

[2] -Maxon Motors, “Re 50, ø50, Graphite Brushes, 200W”, May 2009.

[3] Dimensionengineering.com, ‘Sabertooth 2x32 dual channel motor
driver’.[Online].Available:https://www.dimensionengineering.com/da

tasheets/Sabertooth2x32.pdf . [Accessed: 23 – December – 2016].

[4] A. Pandey, S. Jha and D. Chakravarty, "Modeling and Control of an
Autonomous Three Wheeled Mobile Robot with Front Steer," 2017

First IEEE International Conference on Robotic Computing (IRC) ,
Taichung, 2017, pp. 136-142. doi: 10.1109/IRC.2017.67.

[5] H. Shah, K. Mehta and S. Gandhi, "Autonomous Navigation of 3
Wheel Robots Using Rotary Encoders and Gyroscope," 2014

International Conference on Computational Intelligence and

Communication Networks, Bhopal, 2014, pp. 1168-1172.

[6] Liu Peng-yu, He Yong-yi, "Omni-directional opera robot motion

planning based on wavelet", International Conference on Artificial
Intelligence and Education, pp. 525-528, Oct 29–30 2010.

[7] S. Ziaie-Rad, F. Janabi-Sharifi, M. M. Danesh-Panah, A. Abdollahi, "A

practical approach to control and self-localization of Persia omni
directional mobile robot", International Conference on Intelligent

Robots and Systems, pp. 3473-3479, Aug 2–6 2005.

[8] Mark Ashmore, Nick Barnes, "Omni-drive Robot Motion on Curved
Paths: The Fastest Path between Two Points Is Not a Straight- Line",

Proc. 15th Australian Joint Conference on Artificial Intelligence
Canberra, pp. 225-236, Dec 2–62002.

[9] M. H. Moradi, "New techniques for PID controller design,"

Proceedings of 2003 IEEE Conference on Control Applications, 2003.
CCA 2003., 2003, pp. 903-908 vol.2. doi:

10.1109/CCA.2003.1223130.

[10] L. Abraham and M. A. Babu, "Analysis of MEMS gyro sensors
ADXRS 450 and ADXRS 649 using LabVIEW," 2014 First

International Conference on Computational Systems and
Communications (ICCSC), Trivandrum, 2014, pp. 144-149.

[11] NXP semiconductors - nxp.com, ‘LPC1769 32-bit ARM Cortex-M3

microcontroller’, May – 2017. [Online]. Available:
https://www.nxp.com/docs/en/data-

sheet/LPC1769_68_67_66_65_64_63.pdf.

