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Abstract. Electronic manufacturing is one of the dynamic industries in the world in 

terms of leading in technological advancements. At the heart of electronic assembly 

lies the 'soldering technology' and the 'solder joints' between electronic components 

and substrate. During the operation of electronic products, solder joints experience 

harsh environmental conditions in terms of cyclic change of temperature and 
vibration and exposure to moisture and chemicals. Due to the cyclic application of 

loads and higher operational temperature, solder joints fail primarily through creep 

and fatigue failures. This paper presents the creep-fatigue behaviours of solder joints 

in a ball grid array (BGA), soldered on a printed circuit board (PCB). Using finite 

element (FE) simulation, the solder joints were subjected to thermal cycling and 
isothermal ageing. Accelerated thermal cycling (ATC) was carried out using a 

temperate range from 40℃  to 150℃,  and isothermal ageing was done at 

−40, 25, 75 and 150℃ temperatures for 45 days (64,800 mins). The solders studied 

are lead-based eutectic Sn63Pb37 and lead-free SAC305, SAC387, SAC396 and 

SAC405. The results were analysed using the failure criterion of equivalent stress, 

strain rate, deformation rate, and the solders' strain energy density. The SAC405 and 

SAC396 are found to possess the least stress magnitude, strain rate, deformation rate, 
and strain energy density damage than the lead-based eutectic Sn63Pb37 solder; 

they have the highest fatigue lives based on the damage mechanisms. This research 

provides a technique for determining the preventive maintenance time of BGA 

components in mission-critical systems. Furthermore, it proposes developing a new 

life prediction model based on a combination of the damage parameters for 
improved prediction. 
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1. Introduction 

Solder joints exhibit both creep and fatigue behaviour that is strongly dependent on the 

thermal environment, solder joint configuration, and the solder alloy properties even at 

room temperature. Ensuring the reliability of solder joint in electronic devices is 

fundamental for the operational performance of electronics systems used in safety-

critical applications such as aerospace, defence, oil, & gas drilling, underhood of 

automobiles, medical devices, and power grids. Many parameters assess the reliability 

of solder joints: shear strength, creep resistance, drop shock, thermal fatigue, and 

vibration resistance. Due to the implementation of the Restriction of Hazardous 

Substances (RoHS) directives on July 1, 2006, by the European Union (EU), there have 

been new progress and developments in lead-free solders as a replacement for the 

conventional lead-based solders for application in the electronics manufacturing 

industries [1], [2]. 

Electronic device loading during field operations can be modelled using thermal cycling 

and isothermal ageing. Thermal ageing of solder joints produces changes in solder 

microstructure which triggers creep failure [3]. Temperature cycling makes thermal 

stress in the solder joints, which culminates in fatigue failure. Solder alloy materials are 

extensively used in electronic packaging because they have low melting temperature and 

excellent wetting properties. During electronic devices service life, a mismatch of 

thermal expansion coefficient (CTE) of different materials bonded together in the 

assembly causes cycling stresses and strain in their solder joints. The solder joints also 

deteriorate due to creep response, which depends on temperature, ageing, stress, strain, 

and solder grain size. The response is modelled using a variety of creep relations based 
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on the Garofalo model. Constitutive models employed for solder alloys have been 

reported by Basaran et al. [4] and Gomez and Basaran [5]. An analysis of the models 

shows that a solder alloy's creep behaviour depends on age, stress, and temperature and 

solder grain size. Fatigue is dominant during cycling between the extremes why creep is 

dominating mechanism during the dwelling period and at high temperature. The effect 

of ageing on the cyclic stress-strain, the degradation of isothermal failure resulting from 

ageing and thermal fatigue life has been investigated in this paper for lead-based eutectic 

Sn63Pb37 and four lead-free solders (SAC305, SAC387, SAC396 and SAC405). 

     As temperature cycling drives fatigue failure of solder joints in electronic modules, 

characterisation of the thermal fatigue response of different solder alloy formulations in 

BGA solder joints functioning in mission-critical systems has become crucial. Four 

different lead-free and one eutectic lead-based solder alloys in BGA solder joints are 

characterised against their thermal fatigue lives (TFLs) to predict their mean-time-to-

failure for preventive maintenance advice. Five finite elements (FE) models of the 

assemblies of the BGAs with the different solder alloy compositions are created with 

SolidWorks. Plastic strain, shear strain, plastic shear strain, and accumulated creep 

energy density responses of the solder joints are obtained and inputted into established 

life prediction models – Coffin Manson, Engelmaier, Solomon and Syed – to determine 

the fatigue lives of the solder alloys considered in this work for low cycle fatigue (LCF).  

2. Methodology 

2.1 Mesh Convergence and Independent study 

Mesh convergence  study is carried out using the three steps below: 

Step 1: Create a mesh using the fewest, reasonable number of elements and analyse the 

model. 

Step 2: Recreate the mesh with a denser element distribution, re-analyse it, and compare 
the previous mesh results in step 1. 

Step 3: Keep increasing the mesh density and re-analysing the model until the results 

converge satisfactorily [Fig 1].  

 
Fig. 1: Trend line of convergence vs simulation solve time for Deformation and Von 

mises Stress of lead-free SAC305 solder alloy showing the asymptotic line 

 

2.2 Finite element modelling (FEM) 

    The FEM utilising finite element analysis (FEA) has been widely and successfully 

employed to carry out research investigations on thermo-mechanical reliability of 

electronic components mounted on PCB. This section presents the modelling procedure 

implemented in carrying out the study.  

 

2.2.1 Materials properties and model equations 

     The BGA assembly materials and their mechanical properties are presented in author 

publications [6]–[8]. In addition, the material properties are obtained from several high-

impact peer-reviewed literatures. The assembly's critical component material includes 

solder alloys, Copper (Cu) pad, epoxy-resin board, mask, and silicon (Si) die. All the 

materials were modelled as linear elastic and isotropic substances except the PCB, and 

the solder alloys, simulated using the orthographic material properties and Garofalo 

creep relations. The thermo-mechanical behaviour of the silicon (Si) die, epoxy-resin 

board, Copper (Cu) pad and mask were modelled as isotropic, linear elastic and 

temperature independent. To limit the simulation time for accurate results and fewer 

errors, only the solder joint alloys were modelled as non-linear behaviour. 

Furthermore, the available published constitutive properties of lead-free solder alloys 

are limited, and validation of some existing models is still ongoing. For this study, lead-

based solder alloy's creep behaviour is assumed to obey the Garofalo-Arrhenius creep 

constitutive law. The materials properties and constants could be accessed in the authors' 

publications [7], [8]. 



The Garofalo Hyperbolic Sine Law [9] is stated thus:  

𝜀̇ = 𝐴[sinh(𝛼𝜎)]𝑛𝑒(−
𝑄

𝑅𝑇
)
                                                                                                     (1) 

where 𝜀̇  is creeping strain rate, 𝐴  is a material constant, 𝛼  is a multiplier of 

hyperbolic-sine law, which is obtained from curve fitting to experimental data by using 

linear and non-linear least square regression, 𝜎 is the applied shear stress, 𝑛 is the stress 

exponent which can be determined from creep deformation map, the author found that 

the deformation mechanism is dislocation creep, so n is between 5 and 7. Q is the 

activation energy, R is the universal gas constant, and T is the temperature (K).   

For predicting the fatigue life of solder joints, four fatigue life, empirical equations 

are used to determine the fatigue lives of the solder joint alloys considered in this work. 

The output such as plastic strain, plastic shear strain, shear strain, accumulated creep 

density and creep energy density parameters are determined from ANSYS using the 

Anand model in Eq. 2. Supplementary data on the fatigue lives of solder joint alloys are 

presented in the authors' publications [6]–[8], [10]. 

• Anand Model, 𝜀̇𝑝 = 𝐴𝑒𝑥𝑝 (−
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 Engelmaier equation, Nf =
1

2
(

∆γ

2εf
′)

1
c
                                                                  (3) 

 Coffin-Manson equation, Nf
m∆εp = c                                                              (4) 

 Solomon equation, ∆γpNf
α = θ                                                                        (5) 

 Syed equation, Nf = (W′ωacc)−1                                                                    (6) 

 

2.2.2 Loading and Boundary Conditions 

      Two specific loading conditions used in this investigation are isothermal ageing and 

thermal cycling. The temperature loading started from 22℃, dwelled at −40℃,  at the 

rate of 15℃ /min and ramped up to 22℃,  for 1,380 s and excursion temperature (ET) of 

150℃,  for 1,908 s where it dwelled for 600 s. The solder joints are aged at 

−40℃, 25℃, 75℃ and 125℃  for 45 days (64,800 mins) in an ANSYS simulation 

environment. For the thermal cycling tests, the FE models were subjected to six complete 

ATCs in 36 steps presented in the thermal cycling plot (Fig. 3). In addition, the models 

are subjected to standard IEC 60749-25 temperature cycling in ANSYS mechanical 

package environment. The solder joints are at homologous temperature during the 

loading. The assemblies were supported such that the conditions of the structure at the 

supports are: 

At the PCB base, 𝑦 = 0, and 𝑢(𝑦) = 0; Top surface 𝑢(𝑦) = 0, 𝑢(𝑥) and 𝑢(𝑧) are free. 

The  𝑢(𝑥) , 𝑢(𝑦)  and 𝑢(𝑧)  represents the displacement in the 𝑥, 𝑦 and 𝑧 directions, 

respectively. Thus, the bottom surface of the PCB was fixed in Y direction and displaced 

in the X and Z directions. 
 
2.2.3 Basic Assumptions  

      The basic assumptions employed in the FEA research methodology include:  

• All the materials were modelled as linear elastic and isotropic materials except 

the solders and PCB, simulated using the Garofalo creep relations and 

orthographic materials. 

• All materials, including the solder joint, were assumed homogeneous at load 

steps. 

• The assemblies were assumed to be in a stress-free state at room temperature, 

which was also the starting temperature of the thermal cycle loading.  

• The material property of the solder bump is non-linear and temperature-

dependent. In other words, others are linear and temperature-independent. 

• Every interface of the materials is assumed to be in contact with each other. 
 
2.2.4 Failure Criterion 

      The generally used solder-joint failure criteria include those based on plastic strain 

[11]–[13], creep strain [14]–[16], inelastic work [17], [18], classic fracture mechanics 

[19], and fracture-calibrated energy [20]. Each failure criterion requires specific material 

properties and could place the requirements on the type of the mathematical solution 

acquired either by calculation or in FEA simulation for the five solder joint alloy 

materials (lead-based eutectic Sn63Pb37, and lead-free SAC305, SAC387, SAC396 and 

SAC405) considered in this study. 



 

Fig. 3: Thermal cycling plots used in the ANSYS FEA simulation 

 

3.0 Results and Discussions 

The results of this investigation are presented under two key headings. These are 

the effect of isothermal ageing and thermal cycling loading: 

 
3.1 Effect of isothermal ageing on solder creep response 

Isothermal loading increases creep damage in solder joints. Creep deformation tends 

to occur at an actual rate when the homologous temperature is ~0.5 or higher. The FEA 

simulation results show that creep occurs faster at higher temperatures. Similarly, it was 

understood that stress increases with the rate of deformation. Critical strain magnitude 

appears at the top and bottom of the solder joints at a high homologous temperature, 

decreasing gradually as the temperature decreases. The author investigated the effect of 

isothermal ageing on creep response in four different contexts. These are examined thus:   

 
3.1.1 Effect of isothermal ageing on creep response on solder equivalent total strain  

The outcomes obtained for the simulated FE model's equivalent strain are presented 

in Fig. 4, while Fig. 5 shows the strain distribution schematically.  

 
Fig. 4: Plot of strain rate vs temperature for eutectic lead-based Sn63Pb37 and lead-free 

SAC solders subjected thermal ageing 

 
Fig. 5: Schematic of equivalent total strain for lead-based eutectic Sn63Pb37 and lead-

free SAC solders after isothermal ageing modelling 

 



Table 1: Empirical Mathematical relationships for untried temperature, T 

 
Solder Alloys Empirical Equations 

Sn63Pb37 𝐸𝑑 = 9 × 10−5T2 + 0.0064T − 0.4012 

SAC305 σ = 3.152T − 68.167 

SAC387 ε = 9 × 10−5T − 0.0018; Ed = 0.0003T2 + 0.0483T − 1.2915 

SAC396 
𝐸𝑑 = 0.0001T2 + 0.0073T − 0.4515;  ε = 4 × 10−5T − 0.0009 

σ = 1.8684T − 40.1 

SAC405 
ε = 3 × 10−5T − 0.0008; Ed = 0.0001T2 + 0.0073T − 0.4515 

σ = 1.543T − 34.983 

ε = Equivalent Strain,σ = Equivalent Stress, T = Untried Temperature and 𝐸𝑑 = Strain Energy Density 

The author observed from Fig. 4 that SAC405 accumulated the lowest strain rate, 

whereas SAC387 has the highest strain rate as the ageing temperature increases. As 

expected, as the temperature increases, the material decline's strength and modulus, 

imitating changes in the strain rate. One of the significant conclusions from the outcomes 

acquired is that solder joints failure is highly strain rate dependent. Fig. 5 show the 

regions on the solder bump with a high strain rate that induces creep failure. This study 

has determined empirical equations valuable for engineers and academic communities. 

Table 1 shows sets of empirical equations useful for engineers, electronics 

manufacturing industries, and educational establishments to assess the stress, strain, and 

strain energy density of untried or unknown temperatures in electronics packages. 

 

3.1.2 Effect of isothermal ageing on creep response on solder strain energy density 

The strain energy dissipated in solder joints during thermal ageing has been 

investigated by FE simulation using ANSYS software for 45 days. It is seen that the 

lead-based eutectic Sn63Pb37 solder has the lowest strain energy density, followed by 

SAC405 solder. On the other hand, SAC387 accumulated the highest strain energy and, 

consequently, more susceptive to failures than the rest of the solders studied. By using 

FEA, the time-dependent creep strain energy for the different solder is quantified. The 

results corroborate that induced strain energy density impacts the solder joints during 

operations. The higher the strain energy density, the more critical the joints' accumulated 

strain leads to creep-fatigue failure. This implies that strain energy in the solder joints 

impacts the thermo-mechanical reliability of the BGA assembly joints.  

 
3.1.3 Effect of isothermal ageing on creep response on solder total deformation 

The total deformation obtained is the vector sum of all directional displacements of 

the solder assembly. The deformation outcomes for the solders studied in this 

investigation indicates that SAC387 has the highest deformation rate, while SAC405 

accumulates the lowest deformation rate. The higher the free deformation, the less the 

stress accumulated in the solder joints.     

 
3.1.4 Effect of isothermal ageing on creep response on solder Von Mises stress  

The Von Mises stress in the solder joint is a measure of creep degradation of the 

joint. It is discovered that the magnitude of stress at 25℃ is low compared to other 

temperatures. The low value is attributed to the limited ability of solder to creep at low 

temperatures. The SAC405 is seen to have the lowest equivalent stress, followed by the 

SAC396 solder. On the other hand, the SAC305, eutectic Sn63Pb37 and SAC387 solders 

have the highest Von Mises stress. The stress evaluation founds that the crack is initiated 

at the top and bottom of the solder bumps, which depicts the stress distribution gradient.  

 
3.2 Effect of thermal cycling on solder creep response  

Like the discussion on isothermal loading, thermal cycling analysis on solder creep 

response is studied and presented in three frameworks. These are examined thus: 

 
3.2.1 Effect of thermal cycling on creep response on solder Von-Mises stress  

Cyclic thermal stresses in electronic packages have been identified as a fundamental 

challenge to electronic reliability. The reliability is associated with crack initiation and 

propagation, which culminates in systems failure if not controlled. The simulation output 

results are used to plot Figs. 6 and 7. Fig. 6 shows that SAC305 has the highest stress 

magnitude, while SAC405 has the lowest magnitude. Hence, the author could deduce 

that SAC405 is the most stable and less likely to attain its yield stress. Fig. 7 shows that 

the stress is critical at the edges of the solder bump, and thus crack most probable to 

nucleate there. 



 

Fig. 6: Plot of Von Mises stress for lead-based eutectic Sn63Pb37 and lead-free 

SAC solders subjected thermal cycling 

 

Fig. 7: Schematic of Von Mises stress for lead-based eutectic Sn63Pb37 and lead-

free SAC solders subjected to thermal cycling modelling 

 
3.2.2 Effect of thermal cycling on creep response on solder strain rate  

The simulation's strain rate outputs show that SAC387 and SAC405 are the highest 

and least strained solder alloys. The inference is that SAC405 is the most stable during 

the thermal cycle loading, while SAC387 is the least stable. 

 
3.2.3 Effect of thermal cycling on creep response on solder strain energy density  

The FEA simulation results obtained for the solders' strain energy density show that 

the creep strain energy's magnitude varies for different solder alloys used in the research. 

For example, the author observes that SAC387 has the highest strain energy density 

while lead-free SAC405 and lead-based eutectic Sn63Pb37 have the lowest strain energy. 

3.3 Stress-Strain Hysteresis Loop Relationship and Thermal Fatigue Life 

Predictions for Solder Joint  

Another way to assess the stress-strain relationship and capture continuous 

viscoplastic effects during thermal cycles is to plot the stress-strain hysteresis loop, as 

presented in Fig. 8. The figure shows the hysteresis loop for lead-based eutectic 

Sn63Pb37 and lead-free SAC305, SAC396, SAC387 and SAC405 solder alloys. The 

plot shows that the higher the stress magnitude, the larger the area of dissipated work at 

individual cycle, which indicates that the more significant the damage through each 

cycle, the smaller the cycle to failure. Therefore, the hysteresis loop area is an important 

parameter required to evaluate the fatigue life of solder joints. For example, from the 

hysteresis loop plot presented in Fig. 8, it could be seen that the stress-strain hysteresis 

loop shows that SAC405 has the lowest strain energy per unit volume absorbed, 

followed by SAC396, eutectic Sn63Pb37, and SAC305. On the other hand, SAC387 has 

the highest strain energy per unit volume. This premise shows that the hysteresis loop is 

a more valuable tool to gauge the degree of failure in the solder alloys, estimating crack 

growth rate and lifetime.  

The prediction models are significantly not consistent in predicted magnitudes of 

TFLs across the solder joints. However, with circa 838% variation in the magnitudes of 



TFL predicted for Sn63Pb37, the damage parameters used in the models played a critical 

role and justifies that a combination of several failure modes drives solder joints damage. 

The SAC405 joints have the highest predicted TFL of circa 13.2 years, while 

SAC387 joints have the least life of circa 1.4 years (Fig. 9). In addition, the SAC405 

solder joints accumulated the lowest stress, plastic strain, and creep energy density 

magnitude, thus the highest fatigue life. The outcomes show that the SAC305 solder 

joint has a margin of error ±12% higher than those reported by the investigators why 

SAC387 is within the margin of error of 18.5% lower than the result obtained by Tao et 

al. [21] for the SAC387 solder alloys than those obtained in this work. This shows 

comparable relations between the researchers' results and the findings from this work. 

 

Fig. 8: Stress-strain hysteresis loop for solder alloys 

 

 
Fig. 9: Fatigue lives of BGA solder joint alloys   

                   

4.0 Conclusions 

The lead-free SAC405 was determined to possess the least stress magnitude, strain 

rate, deformation rate and strain energy density than the other solder joint alloys 

investigated in this work. The creep induced fatigue failure is more apparent in the 

SAC387 and Sn63Pb37 solder joint alloys, respectively. Additionally, the hysteresis 

loops show that the SAC405 solder has the lowest dissipated energy per cycle; thus, the 

highest fatigue life, followed by SAC396.  

The SAC405 joints have the highest predicted TFL of circa 13.2 years, while 

SAC387 joints have the least life of circa 1.4 years. The predicted lives are inversely 

proportional to the magnitude of the areas of stress-strain hysteresis loops of the solder 

joints. The observation recognises a significant variation in the models' predicted values 

- justifying that several failure modes drive solder joints' damage mechanics.  

This research is limited to lead-based eutectic Sn63Pb37 and four lead-free 

(SAC305, SAC387, SAC396 and SAC405) solder alloys. Also, for the creep-fatigue 

behaviour of solder joints, the author bases the failure criterion on stress, strain, strain 

energy density, deformation, and stress-strain hysteresis loop. The author also used these 

four-fatigue life models because of their accuracy, effectiveness, and most convenient 



tool used to calculate the thermal fatigue life of solder joints and predict useful life cycle 

and lifetime of solder joint compared to other fatigue life models. An experimental 

determination of the effect of thermal cycling and isothermal ageing with the five solder 

joint alloys considered in this work will have to be carried out at various temperature 

applied in this research. 

It is concluded that plastic strain, shear strain, plastic shear strain, accumulated 

creep energy density, and creep energy density for failures are damage parameters used 

to determine the solder's thermal fatigue lives of solder joint alloys in electronic 

assemblies. As a result, SAC405 and SAC396 are the best solder alloys in thermo-

mechanical loading conditions when creep-fatigue behaviours are desired. 
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