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Abstract 
In recent years, image inpainting technology has made significant progress. Notably, the LaMa model, proposed 

in 2021, has shown marked improvements for large-area inpaints. However, challenges persist in effectively 
inpainting complex geometric structures, processing high-resolution images quickly, and achieving realism in filled 
areas. Existing solutions to enhance realism often involve incorporating diffusion models to generate the filled mask 
portions, which increases hardware demands and is impractical for high-resolution images. We propose a novel 
image inpainting approach called Downsampled Fast Fourier Convolution (DFFC), with the main components being: 
i) deep learning-based image downsampling, ii) an image inpainting architecture based on Fast Fourier Convolution 
(FFC), iii) a high-perceptual-domain loss function, and iv) dynamic large-area mask training. Our technique 
maintains the original model's performance while enhancing processing speed and reducing computational load. 
 

1.Introduction 
The problem of image inpainting has long been a significant challenge in the field of computer vision. Solutions 

to this problem require a balance between understanding large-scale structures in natural images and the ability to 
synthesize realistic imagery. Previous research has primarily focused on using deep learning methods to tackle this 
issue, leading to significant advancements in image inpainting technology. However, existing methods often struggle 
with insufficient comprehension of global information and limited capability in handling high-resolution images. 
These shortcomings typically manifest as blurred defects after processing, slow computation speeds, and high 
memory demands. 

A common approach involves using complex two-stage models for training, incorporating intermediate 
predictions such as smoothed images [2,3,4], edges[5] , and segmentation maps [6]. 

Against this backdrop, we propose a novel image inpainting method that integrates the concepts of image 
compression and partial downsampling. By partially downsampling the image (excluding the selected area) to gather 
surrounding information, we then perform inpainting and merging. This method aims to enhance the understanding 
of global structures in large-scale images and better handle complex geometric structures and high-resolution images. 
Additionally, it allows the introduction of diffusion model generation on consumer-grade devices to improve the 
realism of the inpainted regions while reducing computational demands. 

Our approach diverges from traditional image inpainting techniques by striving for simplicity while achieving 
state-of-the-art results. To this end, we introduce a novel single-stage image inpainting network capable of effectively 
handling large missing areas and complex structures. Our method leverages the latest deep learning technologies and 
references techniques from prior research [7,8,9]. 

During training, to ensure the model maintains attention analysis for global structures and generates consistent 
shapes, we propose the use of high-perceptual-domain semantic segmentation, large dynamic mask generation, and 
the combination of FFC with partial image downsampling. This strategy's loss function also promotes the model's 
ability to control global structure and consistency. 



 

Figure 1: The proposed method was trained only on 512x512 images. The results shown in the figure demonstrate 
that our method successfully inpaints masked content in images with complex repetitive structures (highlighted in 
yellow). Unlike the Baseline model [1], our model relies more on downsampling techniques and therefore did not 
use a 256x256 training scheme. Nevertheless, it still shows excellent performance, validating its ability to generalize 
to high-resolution images. 

 
In this paper, we will provide a detailed description of the proposed image inpainting method, along with a 

comprehensive evaluation and analysis. Our experimental results indicate that this method reduces computational 
complexity and hardware demands compared to existing algorithms, while still performing exceptionally well in 
handling large missing areas and complex structures. Through this research, we hope to offer new insights and 
approaches for further advancements in the field of image inpainting. 
 

2.Related Work 
Before the deep learning era, image inpainting relied on patch-based [11] and nearest-neighbor-based [9] data-

driven generation methods. With the rise of deep learning, some of the earliest works[12] used convolutional neural 
networks with encoder-decoder structures and trained them in an adversarial manner [13] . This paradigm of encoder-
decoder combined with adversarial training is still widely used today. Another popular network architecture is based 
on U-Net [14] , as seen in works such as [15,21,36,19] . A common focus of these early works was how to effectively 
utilize both local and global contextual information within the network. 

To address this, some works proposed different solutions: for instance, [22] introduced dilated convolutions [23] 
to expand the receptive field and used two discriminators to constrain both local and global consistency; [27] 
employed branches with different receptive fields in the main network; [24] proposed a contextual attention layer to 
borrow information from spatially dispersed regions; and [33,34,35] explored other forms of attention mechanisms. 
Our work further confirms the importance of effectively propagating information between distant locations. 
Therefore, we propose mechanisms such as frequency domain convolution [30] to achieve this, aligning with trends 
in computer vision that use Transformers [16,17] and frequency domain self-attention [29,31].  

Apart from single-stage methods, works like [24] proposed a two-stage coarse-to-fine framework. The first-
stage network completes a rough global structure within the holes, and the second-stage network refines local details 
based on this. This idea stems from the earlier structure-texture separation approach [22]. Subsequent works [41,47] 
modified this two-stage framework so that the coarse and fine branches generate results simultaneously rather than 
sequentially. Other works [42,6,5,48,45] extended the two-stage approach to other types of intermediate structures, 
such as edge maps, semantic segmentation maps, foreground object contours, and gradient maps, instead of 
traditional structural maps. In contrast, a progressive inpainting approach [44,42,39,38] has also been proposed. This 
work demonstrates that a well-designed single-stage network can achieve performance comparable to two-stage 
methods. 



To better handle irregular inpainting regions, some works [15,24,3,43] introduced improvements such as gating 
mechanisms and local convolutions into the convolutional layers. Regarding training data, different works have 
explored various types of masks, including random shapes [22] , free-form shapes [24] , and actual object shapes 
[3,4] . This work finds that as long as the mask contours are diverse enough, the specific generation method is not 
very important, with mask width being more critical. In terms of loss functions, besides common pixel-level losses 
(such as L1, L2) and adversarial losses, perceptual losses [15,34,39,19,49,50,42,48] are also frequently used to 
constrain perceptual quality, typically with VGG networks pre-trained on ImageNet. Some works also incorporate 
style losses [15,43,34,42,39] and feature matching losses [49,6,42] . This system uses a PatchGAN [40,25] style 
discriminator to implement adversarial loss and introduces feature matching loss, but finds that traditional perceptual 
loss is not ideal for the inpainting task, hence proposing a more suitable alternative loss. 
Fast Fourier Convolution（FFC） 

The main feature of FFC [10] is its non-local receptive field and cross-scale fusion capability. By improving the 
spectral convolution theorem in Fourier theory, pointwise updates in the spectral domain influence the entire image's 
frequency distribution due to the nature of the Fourier transform, resulting in global effects in the spatial domain. 

The design goal of FFC is to encapsulate three different types of computations in a single operational unit: a 
local branch performing ordinary small kernel convolutions, a semi-global branch processing spectra- 
lly stacked image blocks, and a global branch operating on image-level spectra. All these branches handle different 
scales and are combined in FFC through a cross-scale fusion aggregation step. 
 
FCC Specific Steps: 
1. Apply Real FFT2d: Convert the input tensor from the real domain to the complex frequency domain: 

Real FFT2d:ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶 → ℂ𝐻𝐻×𝑊𝑊
2 ×𝐶𝐶; 

Concatenate the real and imaginary parts of the complex tensor to form a new real-valued tensor: 

ComplexToReal:ℂ𝐻𝐻×𝑊𝑊
2 ×𝐶𝐶 → ℝ𝐻𝐻×𝑊𝑊

2 ×2𝐶𝐶; 

2. Frequency Domain Convolution Block: Perform convolution, batch normalization, and ReLU activation on 
the concatenated real-valued tensor in the frequency domain. 

ReLU ∘ BN ∘ Conv1 × 1:ℝ𝐻𝐻×𝑊𝑊
2 ×2𝐶𝐶 → ℝ𝐻𝐻×𝑊𝑊

2 ×2𝐶𝐶; 

3. Inverse Transformation to Restore Spatial Structure: Convert the processed real-valued tensor back to the 
complex frequency domain and restore it to the real domain using inverse Real FFT2d. 

RealToComplex:ℝ𝐻𝐻×𝑊𝑊
2 ×2𝐶𝐶 → ℂ𝐻𝐻×𝑊𝑊

2 ×𝐶𝐶, 

InverseRealFFT2d:ℂ𝐻𝐻×𝑊𝑊
2 ×𝐶𝐶 → ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶. 

The Fast Fourier Convolution (FFC) method efficiently transforms convolution operations to the frequency 
domain using real-valued Fourier transforms, significantly improving computational efficiency. This approach is 
particularly suitable for large-scale data processing and high-resolution image analysis. 

 

 



 
Figure 2: Based on the introduction above, Figure 2 illustrates the proposed inpainting network architecture. All 
input image information is sized 512x512. The feedforward neural network architecture is similar to ResNet, 
incorporating the Fast Fourier Convolution (FFC) scheme proposed in 2020, along with the settings for perceptual 
loss and other loss values, to construct this network architecture. The upsampling and downsampling structures and 
FFC blocks are shown eighteen times in the figure; however, in actual use, nine of these form a modular combination, 
used twice in total, hence appearing eighteen times. Detailed settings and the rationale for the loss values are 
explained thoroughly in section 2.2. 

 

3.Method 
Our objective is to inpaint a color image using a mask displayed in a binary image. Training is conducted on a 

dataset composed of pairs of real images and synthetically generated masks (image, mask). In the network 
architecture diagram presented in this section, the Inpaint Network part is usually referred to as the generator. Given 
an input 𝑥𝑥′, the inpainting network processes the input in a fully convolutional manner and generates a inpainted 
three-channel color image. In this section, we will also detail how the receptive field loss, adversarial loss, and global 
loss are configured, along with explanations for these settings. 
 
3.1 Incorporating Global Contextual Information in Initial Layers 

When filling large masked areas, image restoration requires consideration of the entire background context of 
the image, not just local pixels. Therefore, designing an effective restoration method necessitates ensuring that global 
context is fully considered in the early stages of the algorithm. Traditional fully convolutional models, such as ResNet, 
often face a challenge where the effective receptive field (the context range affecting a particular pixel) grows slowly. 
This is because smaller convolution kernels, such as 3×3, are commonly used in the early layers of the network. This 
results in relatively small receptive fields in these early layers, making it difficult to cover global contextual 
information. Consequently, many network layers lack global context when processing images, leading to inefficient 
use of computational resources and parameters to construct such global context. This issue becomes particularly 
prominent when dealing with high-resolution images, where more pixels need to be considered. 

To address this problem, early researchers proposed an operation known as Fast Fourier Convolution (FFC). 
This technique is based on Fast Fourier Transform (FFT), allowing global context to be considered in the early stages 



of the network. FFC achieves this by splitting channels into two parallel branches: one branch handles local 
information using traditional convolution operations, while the other branch processes global information using real-
valued FFT to capture global context. Real-valued FFT can only be applied to real-valued signals, and inverse real-
valued FFT ensures the output remains real-valued. Compared to traditional FFT, real-valued FFT utilizes only half 
of the spectrum. Therefore, FFC maintains computational efficiency while fully leveraging global information in 
images, which is especially crucial for handling wide-range masked images. 

3.2 Loss functions 
 
3.2.1 Receptive field Loss 

In image inpainting tasks, the receptive field represents the area of the image that a neural network can perceive 
and influence. For image inpainting, a larger receptive field can help the model better understand the global structure 
and semantic information of the image, leading to more accurate inpainting results. 

To introduce receptive field loss during training, it is first necessary to calculate the receptive field involved 
when the model inpaints the image. A common method is to estimate the size of the model's receptive field by 
analyzing the architecture and parameters of the model, as well as the size of the input image. 

                                             ℒHRFPL(𝑥𝑥, 𝑥𝑥�) = ℳ�∑  𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 ⋅ �𝜙𝜙HRF𝑖𝑖(𝑥𝑥) − 𝜙𝜙HRF𝑖𝑖(𝑥𝑥�)�

2�                  （1）  

𝜙𝜙HRF(𝑥𝑥) denotes the feature representation of the original image𝑥𝑥 extracted by the high perceptual feature 
extractor. 𝜙𝜙HRF(𝑥𝑥�)  denotes the feature representation of the generated image𝑥𝑥�  extracted by the high perceptual 
feature extractor. ℳ is the Interlayer Mean, representing the average feature values across all convolutional layers 
to obtain a final single value. This value is the global average feature output of the entire network, integrating feature 
information at all levels. [⋅]2 represents the squared Euclidean distance, which ensures non-negativity and associates 
larger distances with greater errors. In this project, larger differences between features imply greater differences 
between the generated and original images. Squaring these differences highlights the impact of significant errors, 
making the model more attentive to these important discrepancies, thereby improving the accuracy of the loss 
function for image restoration. 

By minimizing ℒHRFPL(𝑥𝑥, 𝑥𝑥�) , we can ensure that the generated image's representation in the high perceptual 
feature layer closely matches that of the original image, thereby preserving the image's global structure and semantic 
information. 
3.2.2 Adversarial Loss 

This paper uses adversarial loss to ensure that the restoration model 𝑓𝑓𝜃𝜃(𝑥𝑥′) generates locally detailed images 
with a natural appearance. A discriminator 𝐷𝐷𝜉𝜉(⋅),is defined to operate at the local patch level, distinguishing between 
"real" and "fake" patches. Only patches intersecting the masked regions are labeled as "fake." Due to the supervised 
perceptual loss, the generator quickly learns to replicate the known parts of the input image, thus the known parts of 
the generated image are labeled as "real." Finally, the paper employs a non-saturating adversarial loss: 

ℒ𝐷𝐷 = −1
2
�𝔼𝔼𝑥𝑥�log 𝐷𝐷𝜉𝜉(𝑥𝑥)� + 𝔼𝔼𝑥𝑥,𝑚𝑚�log (1 − 𝐷𝐷𝜉𝜉(𝑥𝑥�)) ⊙ (1 −𝑚𝑚)��

− 1
2
�𝔼𝔼𝑥𝑥,𝑚𝑚�log 𝐷𝐷𝜉𝜉(𝑥𝑥�) ⊙𝑚𝑚� + 𝔼𝔼𝑥𝑥,𝑚𝑚�log (1 − 𝐷𝐷𝜉𝜉(𝑥𝑥) ⊙𝑚𝑚)��              （2） 

ℒ𝐺𝐺 = −𝔼𝔼𝑥𝑥,𝑚𝑚�log 𝐷𝐷𝜉𝜉(𝑥𝑥�)�                               （3） 

𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴 = s𝔤𝔤𝜃𝜃(ℒ𝐷𝐷) + s𝔤𝔤𝜉𝜉(ℒ𝐺𝐺) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃,𝜉𝜉

           （4） 

Where 𝑥𝑥    represents a sample from the dataset, x′ is the synthesized masked input, and 𝑥𝑥� = 𝑓𝑓𝜃𝜃(𝑥𝑥′)  is the 



restoration result of 𝑥𝑥′ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 ⊙𝑚𝑚,𝑚𝑚) . 𝑠𝑠𝑔𝑔𝐴𝐴𝑣𝑣𝑣𝑣  stops the gradient of var , 𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴  is the combined loss being 
optimized. 

To illustrate why we use non-saturating adversarial loss instead of Mean Squared Error (MSE) for training the 
model, it is essential to consider the determinants of probability flow. Probability flow is influenced by the dataset, 
forward function, loss function, and model capacity. With a limited number of training samples, the underlying data 
distribution is inherently fuzzy, leading maximum likelihood estimation (MLE) to assign probability solely to the 
observed samples while assigning zero probability elsewhere. 

If a model has an infinite number of parameters, it will learn an MLE flow, resulting in overfitting, where the 
model always generates observed samples without generating new data. However, in practice, since neural networks 
are not perfect learners, diffusion models are capable of generating new data. 

Another critical consideration is the difference between multi-step and few-step generation. In multi-step 
generation, the model has a higher Lipschitz constant and more nonlinear characteristics, making it easier to simulate 
more complex distributions. However, in few-step generation, the model no longer has the same capacity to 
approximate the same distribution accurately. This can be demonstrated by the fact that diffusion models can produce 
highly varied results under slight changes in initial noise, while distilled models have much smoother changes in the 
latent space. Moreover, the recent SDXL-Lightning [26] model has shown that using non-saturating adversarial loss 
and progressive distillation adjustments can achieve better results. Our model theoretically has better compatibility 
with other generative models using similar loss functions, such as SDXL-Lightning [26]. 

These insights underscore the importance of using non-saturating adversarial loss to enhance the model's ability 
to generate new and realistic data without the pitfalls of overfitting or excessive smoothness associated with MSE. 
The use of such a loss function, coupled with advanced techniques like progressive distillation, positions our model 
to achieve superior performance in image generation tasks. 
3.3.3 Final loss function 

Before explaining the global loss, it is necessary to additionally explain the perceptual loss attached to the above 
content. In this paper, the perceptual loss is set as follows: 

𝜆𝜆 ∑  𝑁𝑁
𝑖𝑖=1

1
𝑀𝑀𝑖𝑖

[||𝐹𝐹(𝑖𝑖)(𝐱𝐱) − 𝐹𝐹(𝑖𝑖)(𝐺𝐺(𝐬𝐬))||1]        (5) 

Where 𝜆𝜆=10. Additionally, the gradient penalty is set as follows:𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑥𝑥||∇𝐷𝐷𝜉𝜉(𝑥𝑥)||2,the final loss function 
for our inpainting system as follows: 

ℒ𝑓𝑓𝑖𝑖𝑓𝑓𝑣𝑣𝑓𝑓 = 𝜇𝜇𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛼𝛼ℒ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 𝛽𝛽ℒ𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 + 𝜎𝜎𝑅𝑅𝑅𝑅       (6) 
where 𝜇𝜇  = 15,𝛼𝛼  =30, 𝛽𝛽 =100,𝜎𝜎 = 0.001. The non-saturating adversarial loss 𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴  is used to encourage the 

generator to produce realistic images, controlled by the weight parameter 𝜇𝜇 , The high receptive field perceptual 
loss ℒ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  ensures that the generated images remain consistent with the target images at the feature level, 
controlled by the weight parameter 𝛼𝛼 . The discriminator loss ℒ𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻 ,encourages the discriminator to accurately 
distinguish between real and generated images, controlled by the weight parameter 𝛽𝛽 . The gradient penalty term 
RE penalizes the magnitude of the discriminator's gradients, helping to improve model stability, controlled by the 
weight parameter 𝜎𝜎. 

We believe it is necessary to explain why we incorporate both L1 and non-saturating adversarial losses as our 
total loss function, despite the potential for generated images to appear blurry. There are two main reasons why using 
L1 norm or L2 norm as the loss function in GAN networks might lead to blurry generated images: 

1. Smoothness of L1 and L2 Norms: Both L1 and L2 norms are smooth loss functions that encourage the 
generated image to be as close to the target image as possible. However, due to their smooth nature, they tend to 
produce relatively blurry results as they do not emphasize the details and textures of the image sufficiently. When 
using L1 norm as the loss function in a GAN network, the generator might produce smoother images while neglecting 



finer details. 
2. Gradient Vanishing Problem: When L1 norm is used as the loss function, the gradients typically become 

smaller as the loss decreases, potentially leading to the gradient vanishing problem. When this occurs, the generator 
cannot receive adequate update signals, hindering its ability to learn the details and textures of the image, further 
resulting in blurry generated images. 

Despite these issues, using the L1 norm loss can help the model maintain the overall structure and contour of 
the image. Additionally, incorporating non-saturating adversarial loss can assist the generator in learning to produce 
more realistic and sharp images. In adversarial training, the discriminator reinforces the generator's learning of image 
details and textures. 

Therefore, appropriate parameter weight control for different loss functions can harness the advantages of 
various loss functions, enabling the model to achieve stronger generative performance. 

4.Experiment 
Implementation details 

During the training process, we utilized the Place2, CelebA [28], and Paris Street View datasets. In pursuit of 
designing more efficient network architectures, we adopted variants of architectures similar to ResNet-18. As shown 
in Figure 1, our approach includes 3 downsampling modules, 18 residual modules, and 3 upsampling modules, with 
FFC integrated into the residual blocks. Compared to architectures like ResNet-152, this design requires less memory 
and computational resources, facilitates faster convergence during training, and leads to shorter inference response 
times. However, to mitigate potential overfitting due to fewer parameters, we employed a larger volume of training 
data. 

Additionally, the learning rates for the restoration and discriminator networks were set to 0.001 and 0.0001, 
respectively. The model was trained with a batch size of 25 over 1.2 million iterations. 

Regarding hyperparameter optimization, we employed a beam-search strategy. This approach involves 
sequentially tuning each hyperparameter individually rather than adjusting all hyperparameters simultaneously. For 
each hyperparameter, a small set of promising values was selected for deeper exploration, thereby reducing the search 
space and improving efficiency. This method is advantageous as it effectively narrows down the hyperparameter 
search space, particularly when dealing with a large number of hyperparameters. By sequentially adjusting 
hyperparameters, this approach allows for finding optimized combinations within limited computational resources, 
as applied to the models presented in the Ablation Work. 

 
Data and Evaluation 
 

As indicated in Table 1, we used the Places[55] and CelebA-HQ[28] datasets as benchmarks. Following 
evaluation methods proposed in current literature on image generation, this study employed Learned Perceptual 
Image Patch Similarity (LPIPS)[4] and Fréchet Inception Distance (FID) as practical evaluation metrics. Compared 
to L1 and L2 distances, which focus on pixel-level differences rather than visual quality or human perception, 
LPIPS[4] and FID are more suitable for assessing image restoration quality. L1 and L2 distances do not account for 
higher-level features such as texture, shape, and structure, which are crucial for evaluating the naturalness and quality 
of image inpainting, as discussed earlier in this document. FID measures the quality of generated images by 
comparing their distributions in the feature space of an Inception network with those of real images. LPIPS[4], on 
the other hand, leverages a learned approach using pre-trained convolutional neural networks for image classification 
to extract and compare image features, thereby closely approximating human visual perception and offering more 
accurate assessments of image quality. 



 
 
 
 
Method #P

ar
ar

m
s 

x1
06  

Places(512x512)  CelebA-HQ(256x256) 
Narrow masks Wide masks Segm. masks    Narrow masks Wide masks 
FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓  FID↓ LPIPS↓ FID↓ LPIPS↓ 

Ours 51 0.65 0.091 2.28 0.142 5.38 0.071  7.28 0.091 7.25 0.109 
LaMa[1] 27▼ 0.66▲ 0.090▼ 2.21▼ 0.135▼ 5.40▲ 0.067▼  7.31▲ 0.088▼ 6.75▼ 0.093▼ 
CoModGAN[20] 109▲ 0.83▲ 0.121▲ 1.83▼ 0.144▲ 6.31▲ 0.063▼  16.7▲ 0.077▲ 24.43▲ 0.114▲ 
MADF[52] 85▲ 0.58▼ 0.086▼ 3.77▲ 0.142- 6.50▲ 0.059▼  — — — — 
AOT GAN[53] 15▼ 0.79▲ 0.092▲ 5.95▲ 0.146▲ 7.33▲ 0.071-  6.62▼ 0.088▼ 10.2 0.124▲ 
GCPR[54] 30▼ 2.94▲ 0.144▲ 6.52▲ 0.163▲ 9.13▲ 0.077▲  — — — — 
HiFill[3] 3▼ 9.26▲ 0.221▲ 12.9▲ 0.183▲ 12.7▲ 0.085▲  — — — — 
Region Wise[43] 47▼ 0.88▲ 0.104▲ 4.77▲ 0.152▲ 7.52▲ 0.066▼  11.1▲ 0.121▲ 8.54 0.122▲ 
DeepFill v2[24] 4▼ 1.05▲ 0.105▲ 5.22▲ 0.158▲ 9.17▲ 0.064▼  12.4▲ 0.132▲ 11.1 0.125▲ 
SD v1.5 100▲ 2.61▲ 0.244▲ 4.4▲ 0.283▲ — —  — — — — 
EdgeConnect[42] 22▼ 1.32▲ 0.111▲ 8.36▲ 0.162▲ 9.45▲ 0.077▲  9.62▲ 0.098▲ 9.07▲ 0.118▲ 
RegionNorm[51] 12▼ 2.21▲ 0.122▲ 15.8▲ 0.168▲ 12.7▲ 0.088▲  — — — — 

Table1：For the two datasets presented above, Places[55] and CelebA-HQ [28], we conducted a quantitative 
evaluation using models from related projects and the commonly used inpainting functionality of Stable Diffusion 
v1.5. The evaluation employed Fréchet Inception Distance (FID)[56] and Learned Perceptual Image Patch Similarity 
(LPIPS) as the actual assessment metrics. Since all score values should be as low as possible, the symbol▲indicates 
deterioration compared to our model, while▼denotes an advantage or improvement compared to our model (shown 
in the first row). These metrics were used to evaluate the results of generation strategies for wide, narrow, and 
segmented masks. We observed that the scores for LaMa and CoModGAN [20] were close to those of our method. 
However, unlike the original SOTA models, our model incorporated additional network structures, leading to a larger 
model size. Despite this, our model demonstrated lower complexity and faster running speed, as reflected in Table 2. 
To balance the model's running speed, we optimized the model, which, however, resulted in generated images not 
entirely matching or surpassing the LaMa model, especially noticeable in the slightly lower scores for wide masks. 
 

In the results shown in Table 1, we can observe that the model's performance is less effective when handling 
wide masks compared to narrow masks, resulting in slightly lower scores than the LaMa model for wide masks. 
Additionally, we can see that on the Places dataset with 512 resolution, the performance for wide masks is nearly 
perfect, whereas on the CelebA-HQ [28] dataset with 256 resolution, the scores for wide masks are lower. This 
indicates that the resolution of the training set has a certain impact on the model's performance. We believe that at 
higher resolutions, the model has more contextual information to infer the content of the missing areas because there 
are more surrounding pixels providing additional clues. However, at lower resolutions, due to the reduced amount of 
information, the model might struggle to accurately generate detailed and rich inpaint results. 
 

Method      
256*256 512*512 1024*1024 2048*2048 4096*4096 

Ours 1443.23ms 1981.45ms 2016.72ms 7116.76ms 12309.01ms 
LaMa[1] 2339.56ms 3790.18ms 6219.09ms 13952.58ms 29871.47ms 
CoModGAN[20] 2449.83ms 5798.91ms 13548.47ms — — 

Table 2：This table aims to test whether there is a significant improvement in processing speed at the same resolution. 
In this experiment, 35% of the area was randomly selected as the mask region, and the time results were averaged 
over 50 tests. Our findings indicate that, using areas of the same size as the test content, processing times for 512x512 
resolution images ranged from 1600ms to 2200ms. This variability is due to faster mask calculation and generation 
speeds in simpler areas like the sky, while more complex regions take relatively longer to process. Moreover, our 



method performs inpainting faster on single objects or attachments on a main object compared to cross-regional tasks. 
During specific tests at 4096x4096 resolution, the differences in results became more pronounced. For instance, 
inpainting the glass windows of a building took 4274ms when the mask was confined to the building. However, when 
approximately 6% of the mask extended beyond the building into areas like the ground with vehicles or the sky, the 
processing time increased to 15309ms. 

 

5.Ablation work 

 In our study, to evaluate the impact of each component of the proposed method on overall performance, we conducted 
detailed ablation experiments. We assessed a street scene image containing complex content. "Ours" represents the native 
model without removing any modules from the network. The remaining three comparative tests were conducted by 
removing the downsampling, removing the FFC, and using different losses, respectively.  
 

 

 

 

 
                 

 
Figure 3：The test images are American street scenes, including complex scenarios with bright and dark contrasts, text, 
and still objects. The original image size is 1900x1262. The first row shows the overall comparison of the test images, and 
the second to fourth rows are enlarged details of different areas. It can be observed that our results generally exhibit natural 
and realistic inpainting effects. When the downsampling operation is removed, the inpainting results show slight changes: 
while the inpainting effect on cars appears better, some parts of signs are completely erased, and text is also removed. 
Additionally, the smudging is more severe compared to our method. This is because the model trained without 
downsampling does not have the improved segmentation capability for global image features, leading to such excessive 
erasure effects. 
 

1. Impact of the Downsampling Module: 
In the task of image inpainting, the downsampling module plays a crucial role. To gain a deeper understanding 

of its impact, we conducted an experiment where the downsampling module was removed, and image inpainting was 
performed directly at the original resolution. The experimental results showed that this modification significantly 

Input Ours No DownSampling      No FFC With Different Loss      



affected the quality of the inpainting. Specifically, without the downsampling module, the inpainted images exhibited 
noticeable discontinuities and blurriness, particularly when handling high-resolution images. Further analysis 
revealed that the downsampling module effectively captures the global structural information of the image by  

Method    
Parar FID (↓) LPIPS(↓) 

Ours 
No Downsampling     

51 
135 

12.34 
15.67 

0.102 
0.135 

No FFC 38 18.21 0.120 
Different Loss 42 13.89 0.115 

Table 3: FID and LPIPS values for ablation experiment tests. It can be concluded from the table that if FFC and 
downsampling modules are retained, the score value is the highest. Please refer to the ablation experiment section for 
detailed explanation. 
 
 
reducing its resolution. Capturing this global information is vital for the image inpainting task as it helps the 
inpainting algorithm understand the large-scale structure and context of the image. In high-resolution images, while 
detail information is abundant, it also introduces more noise and complexity. By lowering the resolution, the 
downsampling module reduces this complexity, enabling the inpainting algorithm to focus more on learning useful 
features, thus improving the inpainting quality. Therefore, our experimental results emphasize the importance of the 
downsampling module in image inpainting. It not only helps increase the efficiency of the algorithm and reduces the 
computational resource requirements but also plays a key role in enhancing the inpainting quality. 

2. Impact of Fast Fourier Convolution (FFC)： 
  In our experiments, we trained models with and without the FFC module and compared their performance on 
the same dataset. The results indicated that incorporating the FFC module significantly improved both the 
effectiveness and speed of the inpainting. This improvement was particularly pronounced when dealing with large 
occluded areas. The FFC module effectively integrates features from different layers, enabling the model to better 
leverage global contextual information. This integration strategy helps the model produce more natural and coherent 
inpainting results, reducing abruptness and discontinuity in the inpainted regions. The use of global contextual 
information is especially crucial in large occluded areas, as it provides sufficient information to infer and fill in the 
missing parts. 

3. Impact of Perceptual Loss Function: 
We experimented with different loss functions to assess their impact on model performance, specifically 

comparing the perceptual loss function with the traditional L2 loss function. The experimental results showed that 
the perceptual loss function has a clear advantage in maintaining the visual quality of images. This loss function 
better captures the perceptual features of the image, making the inpainted images appear more natural and realistic. 
In contrast, the traditional L2 loss function performed poorly in handling image details and structural information, 
often resulting in blurry or unnatural inpainted images. 

 
From the above results, it is evident that each module we proposed plays a crucial role in enhancing overall 

performance. Removing any module leads to a decrease in performance, validating the effectiveness and necessity 
of each component in our method. 

 
 
 



6.Limitations and Future Works 
In this study, we propose a simple model for image inpainting or mask generation using a single-stage approach. 

We demonstrate that incorporating downsampling techniques reduces computational complexity and memory 
requirements. However, during experiments, we found that the optimized model did not achieve the optimal 
performance of the original model. This is because, during model design, to balance the integration of segmentation 
and generation components while avoiding excessive parameters, our proposed method sacrificed some generative 
parameters. Instead, the downsampling component partially assumed the analytical functions that the original 
baseline model performed. 

During testing, we also observed that this technique struggled to handle images with transparent distortions and 
single-object scenarios effectively. This issue could arise from two main factors. First, images casually taken in 
everyday life or commonly found on the internet might not be adequately represented in the dataset. Second, the 
FFC-based model trained on high-resolution images might not be fully capable of addressing the deformation of 
periodic signals, especially in images with repetitive content. 

Moreover, beyond Fourier and dilated convolutions, techniques like Vision Transformers and Swin 
Transformers can also be utilized to achieve a high receptive field. We have not yet explored whether these techniques 
can enhance model performance or processing efficiency. Additionally, we have not tested how multimodal models 
might improve image inpainting results. We believe that high-receptive-field models could offer new possibilities for 
the field of computer vision in the future. 
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Appendix 

In the appendix, we present additional image processing results. 
All tests in this paper were conducted on a hardware setup consisting of 16GB of RAM, an RTX 4060 Laptop 

GPU, and an i7-13700H CPU. 
Additionally, we plan to release an online demo experience on creatinf.com. 
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