
EasyChair Preprint
№ 2904

Exact solutions of third and fourth order
obstacle problems using reduction-to-first-order
method

Attiq Ur Rehman and Imran Siddique

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 9, 2020



Exact solutions of third and fourth order obstacle problems using

reduction-to-first-order method

ATTIQ-UR-REHMAN1, Dr.ImranSiddique2

E-mail: ranaattiqghs@gmail.com

1Department of Mathematics, University of Management and Techlonogy, Sialkot Campus, Pakistan
2Department of Mathematics, University of Management and Techlonogy, Lahore, Pakistan

Abstract

In this dissertation, a method named Reduction-to-First-Order (RFO) method proposed by L. E. Nicholas Afima

[1] in 1991 and first time presented at any forum in 2013 by A. M. Siddiqui and T. Haroon [2] is used to solve the

system of third and fourth order boundary value problems. Several examples are presented to get the exact solutions,

which illustrate the effectiveness and simplicity of the method.
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1 Introduction

It is well known that a wide class of unrelated problems arising industrial, regional,

economics, telecommunication, computer network, image reconstruction, pure and applied

sciences can be studied in the general and unified frame work of variational inequalities. We

note that the finite difference methods and splines techniques can not be applied directly to

find the approximate solutions of variational inequalities. However, one can be characterized

the variational inequalities associated with the third and fourth order obstacle problems

by a system of third and fourth order differential equations using Reduction-to-First-Order

technique. Reduction-to-First-Order is a mathematical technique used to solve the systems of

boundary value problems. Boundary value problems manifest themselves in many branches

of science. For example engineering, technology, control, optimization theory, draining and
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coating flows and various dynamic systems. In the solution of real-world problems ordinary

differential equations (ODEs) are supposed to be basic tools.

In 1987, M. A. Noor and A. K. Khalifa solved the unilateral problems using cubic spline

method in [12]. M. A. Noor and S. I. A. Tirmizi used the technique of finite difference to

solve obstacle problems [13] in 1988. E. A. Al-Said used spline [14], smooth spline [15] and

cubic spline [16] methods to find the numerical solutions of system of second order boundary

value problems in 1996, 1999 and 2001 respectively. The same second order problems has

been solved using a parametric cubic spline approach [17] in 2003 by A. Khan and T. Aziz.

In 2010, the solution of same second order system of boundary value problems was solved

numerically using Galerkins finite element formulation by S. Iqbal et al., [18], also, S. Iqbal

solved the second order obstacle problem using cubic Lagrange polynomial in Galerkins finite

element fashion [19]. The numerical solutions of obstacle problems of second order have been

given by G. B. Loghmani et al., using B-spline function [20] in 2011.

A spatially Adaptive Grid Refinement Scheme was used for the Finite Element solution of a

Second order Obstacle Problem in [21] by S. Iqbal et al., in 2013. In 2014 S. Iqbal et al., [22]

used Galerkins Finite Element Formulation to find the numerical solution of second order

and third order systems of boundary value problems. In 2006, F. Gao and C. M. Chi used

quartic B-splines technique [23] to find the solution of third order system of boundary value

problems. Variational iteration method is used in 2010 by F. Geng and M. Cui to solve

the third order systems of boundary value problems [24]. Semi analytical methods are more

suitable than numerical methods to solve nonlinear non-homogenous differential equations.

The most powerful tool for the calculation of analytical solutions of the linear or nonlinear

partial differential equation is Reduction-to-First-Order method. Reduction-to-First-Order

method was firstly introduced by L. E. Nicholas Afima [1] in 1991. In 2013, Reduction-

to-First-Order method was presented first time at any forum in a workshop held at 11th

Conference on Frontiers of Information Technology by A. M. Siddiqui and T. Harron [2].

In this paper, the systems of third and fourth order boundary value problems are considered.

Third-order boundary value problems arise in the study of draining and coating flows. Here,
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Reduction-to-First-Order method is used to find the exact solutions of third order systems

of boundary value problems in its general form as:

u
′′′

(x) =


f(x), a ≤ x < c,

g1(x)u′′(x) + g2(x)u′(x) + g3(x)u(x) + g4(x), c ≤ x ≤ d,

f(x), d < x ≤ b,

(1)

with the boundary and continuity conditions, u(a) = α1, u
′(a) = α2 and u′(b) = α3, where

α1, α2, α3 are constants and the continuity condition of u(x), u′(x) and u′′(x) at c and d.

Here f and gi where i = 1, 2, 3, 4 are the continuous functions on [a, b] and [c, d] respectively.

Fourth-order boundary value problems arise in the study of viscoelastic and inelastic flows [3],

deformation of beams with nonlinear boundary conditions [4] and plate deflection theory [5].

Several numerical and analytical methods including finite difference method [6] for nonlinear

boundary-value problems, Adomian decomposition method [7, 8] for numerical solution of

fourth-order boundary value problems, differential transform method for the same problems

[9], variational iteration technique for the solution of higher order boundary value problems

[10] and Homotopy perturbation method [11], have been developed for solving general fourth-

order boundary value problems. In this paper, Reduction-to-First-Order method is also used

to find the exact solutions of fourth order systems of boundary value problems in its general

form as:

u(iv)(x) =


f(x), a ≤ x ≤ c,

g(x)u(x) + f(x) + r, c ≤ x ≤ d,

f(x), d ≤ x ≤ b,

(2)

with the boundary and continuity conditions, u(a) = u(b) = α1, u
′′(a) = u′′(b) = α2 and

u(c) = u(d) = β1, u
′′(c) = u′′(d) = β2, where α1, α2, β1, β2 and r are constants. Here f and

g are the continuous functions on [a, b] and [c, d] respectively.

Usually, it is difficult to find the analytical solution for arbitrary choice of f(x) and g(x).

Therefore, some numerical methods are opted to get approximate solutions of the problems.

Such type of systems arise in the study of obstacle, unilateral and contact boundary value

problems and have important applications in other branches of pure and applied sciences.

Most of the nonlinear differential equations do not have analytical solution. However re-
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searchers used many numerical methods, but these methods require much time and more

efficient computing devices.

Reduction-to-First-Order method requires a suitable tranformation to reduce the order of

the linear nonhomogeneous differential equation with constant coefficients. This reduced

order differential equation can then be solved using the integrating factor technique. To

illustrate the utility of the method several examples of third and fourth order system of

boundary value problems are presented.

2 Main Results of Third Order Obstacle Problems

2.1 Algorithm for Third Order Obstacle Problems

The formulation of working algorithm of Reduction-to-First-Order Method can be expressed

in the following way [17, 18]:

(a) Write the governing differential equation

u′′′ + lu′′ +mu′ + nu = h(x). (3)

(b) Suppose α, β and γ are the roots of polynomial λ3 + lλ2 +mλ+ n = 0, at least one root

will be real say α.

(c) Rearrange the Eq. (3) using α as

(u′ − αu)′′ + p(u′ − αu)′ + q(u′ − αu) = h(x), (4)

so that β and γ are the roots of the quadratic equation λ2 + pλ+ q = 0.

(d) Introduce the new variable

w = u′ − αu, (5)

so that, Eq. (3) will reduce to second order linear differential equation as

w′′ + pw′ + w = h(x). (6)

(e) Factorize Eq. (6) as

(w′ − βw)′ − γ(w′ − βw) = h(x). (7)

(f) Introduce the new variable

z = w′ − βw, (8)
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so that, Eq. (6) will reduce to first order linear differential equation as

z′ − γz = h(x), (9)

with integration factor e−γx.

(g) Solve Eq. (9) for z

z = Ceγx + eγx
∫
e−γxh(x)dx. (10)

(h) Restore the variable w by Eq. (5), once again first order linear differential equation will

appear, which will be solved by the method of integrating factor to find the solution for w.

(i) Restore the original variable u by Eq. (5), once again first order linear differential equation

will appear, which will be solved by the method of integrating factor to find the solution for

u.

2.2 Illustrative Problem to Demonstrate (RFO) Method

In this section the solution of third order systems of boundary value problems is given by

using the Reduction-to-First-Order method.

Problem: We consider the obstacle problem of the following form

u′′′ =


1, 0 ≤ x < 1

4
,

5u′′ + u′ − 5u+ 1, 1
4
≤ x ≤ 3

4
,

1, 3
4
< x ≤ 1,

(11)

with boundary conditions u(0) = u′(0) = u′(1) = 0. The problem is divided into three cases,

Case 1:
(
0 ≤ x < 1

4

)
In this case, we have the following differential equation with boundary conditions,

u′′′(x) = 1, (12)

u(0) = u′(0) = 0, u′
(

1

4

)
= a,

where a is constant. After solving Eq. (12), we have

u[0, 1
4
)(x) =

x2

48
(−3 + 96a+ 8x). (13)
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Case 2:
(
1
4
≤ x ≤ 3

4

)
In this case, we have the following differential equation with boundary conditions,

u′′′(x)− 5u′′(x)− u′(x) + 5u(x) = 1, (14)

u

(
1

4

)
= d, u′

(
1

4

)
= a, u′

(
3

4

)
= c.

Eq. (14) is rearranged as(
u′(x)− u(x)

)′′
− 4

(
u′(x)− u(x)

)′
− 5

(
u′(x)− u(x)

)
= 1. (15)

A new variable z is introduce such that z = u′(x)− u(x), so Eq. (15) becomes

z′′(x)− 4z′(x)− 5z(x) = 1. (16)

Eq. (16) is rearranged as (
z′(x) + z(x)

)′
− 5

(
z′(x) + z(x)

)
= 1. (17)

Another variable w is introduced such that w = z′(x) + z(x), so Eq. (17) becomes

w′(x)− 5w(x) = 1, (18)

which is the first order linear differential equation. Now, by using integrating factor (IF)

method the solution is

w(x) = −1

5
+De5x, (19)

where D is a constant of integration. Restoring the variable z the differential equation

becomes

z′(x) + z(x) = −1

5
+De5x, (20)

which is again the first order linear differential equation, using (IF) method the obtained

solution is

z(x) = −1

5
+

1

6
De5x + Ee−x, (21)

where E is constant of integration. Restoring the original variable u the differential equation

becomes

u′(x)− u(x) = −1

5
+

1

6
De5x + Ee−x, (22)

6



which is linear first order differential equation, using (IF) method the obtained solution is

u(x) =
1

5
− 1

2
Ee−x +

1

24
De5x + Fex, (23)

where F is a constant of integration. The boundary conditions are applied to obtain the

values of D, E and F

D = −12(1 + 5a− 5d− 10c
√
e− e+ 5ae+ 5de)

5e
5
4 (−2− 3e+ 5e3)

, (24)

E = −4ce
3
4 + e

5
4 + ae

5
4 − 5de

5
4 − e 13

4 − 5ae
13
4 + 5de

13
4

−2− 3e+ 5e3
, (25)

F = −−1− a+ 5d+ 6c
√
e+ e3 − 5ae3 − 5de3

2e
1
4 (−2− 3e+ 5e3)

. (26)

Putting the values of D, E and F in Eq. (23) the solution is

u[ 1
4
, 3
4
](x) =

1

5
− e

−5
4
+5x(1 + 5a− 5d− 10c

√
e− e+ 5ae+ 5de)

10(−2− 3e+ 5e3)

−e
−1
4
+x(−1− a+ 5d+ 6c

√
e+ e3 − 5ae3 − 5de3)

2(−2− 3e+ 5e3)
(27)

+
e−x

(
4ce

3
4 + e

5
4 + ae

5
4 − 5de

5
4 − e 13

4 − 5ae
13
4 + 5de

13
4

)
2(−2− 3e+ 5e3)

.

Case 3:
(
3
4
< x ≤ 1

)
As in case 1, we have the following differential equation with boundary conditions

u′′′(x) = 1, (28)

u

(
3

4

)
= b, u′

(
3

4

)
= c, u′(1) = 0.

After solving Eq. (28), we have

u( 3
4
,1](x) = b+

1

768
(−3 + 4x)

(
27− 60x+ 32x2 − 96c(−5 + 4x)

)
. (29)

Now, to obtain continuous solution, for the given obstacle problem, following continuity

conditions are used to find the values of a, b, c and d

lim
x→ 1

4

−
u(x) = lim

x→ 1
4

+
u(x), (30)

lim
x→ 3

4

−
u(x) = lim

x→ 3
4

+
u(x), (31)
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lim
x→ 1

4

−
u′′(x) = lim

x→ 1
4

+
u′′(x), (32)

lim
x→ 3

4

−
u′′(x) = lim

x→ 3
4

+
u′′(x), (33)

we get

a = −1354 + 768
√
e− 4345e+ 3759e3

96γ
, (34)

b =
1914− 4045

√
e+ 1575e− 11394e

5
2 + 33015e3 − 22025e

7
2

360γ
, (35)

c = −264− 809
√
e+ 180e− 5697e

5
2 + 1860e3 + 8810e

7
2

288γ
, (36)

d = −43 + 24
√
e− 135e+ 132e3

24γ
, (37)

where γ = 22 + 25e + 465e3, by substituting the values of a, b, c and d we have the exact

solution of this problem is

u(x) =



x2

48

(
−3 + 8x− 1354+768

√
e−4345e+3759e3

96γ

)
, 0 ≤ x < 1

4
,

1
5

+ 11e
3
4−x

12γ
− 4045e

5
4−x

576γ
− 1899e

13
4 −x

64γ

−809e
−1
4 +x

192γ
− 5e

1
4+x

8γ
− 4405e

11
4 +x

64γ

−633e
−5
4 +5x

320γ
− 31e

−3
4 +5x

24γ
+ 1405e

−1
4 +5x

576γ
, 1

4
≤ x ≤ 3

4
,

1
11520γ

(
3(5(3− 4x)2(−9 + 8x)γ

+88(307− 160x+ 80x2)− 900e(−71 + 32x− 16x2)

+4045
√
e(−47 + 32x− 16x2)− 44050e

7
2 (1 + 32x− 16x2)

−1860e3(−643 + 160x− 80x2) + 5697e
5
2 (−139 + 160x− 80x2)

)
, 3

4
< x ≤ 1.

(38)

3 Main Results of Fourth Order Obstacle Problems

3.1 Algorithm for Fourth Order Obstacle Problems

The formulation of working algorithm of Reduction-to-First-Order method can be expressed

in the following way:

(a) Write the governing differential equation

u(iv) + lu′′′ +mu′′ + nu′ + qu = h(x). (39)
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(b) Suppose α, β, γ and δ are the roots of polynomial λ4 + lλ3 +mλ2 + nλ+ q = 0, at least

one root will be real say α.

(c) Rearrange the Eq. (39) using α as

(u′ − αu)′′′ + p(u′ − αu)′′ + q(u′ − αu)′ + r(u′ − αu) = h(x), (40)

so that β , γ and δ are the roots of the cubic polynomial λ3 + pλ2 + qλ+ r = 0.

(d) Introduce the new variable

w = u′ − αu, (41)

so that, Eq. (39) will reduce to third order linear differential equation as

w′′′ + pw′′ + qw′ + rw = h(x). (42)

(e) Factorize Eq. (42) as

(w′ − βw)′′ + γ(w′ − βw)′ + δ(w′ − βw) = h(x). (43)

(f) Introduce the new variable

z = w′ − βw, (44)

so that, Eq. (42) will reduce to second order linear differential equation as

z′′ + γz′ + δz = h(x). (45)

(g) Factorize Eq. (45) as

(z′ − γz)′ − γ(z′ − γz) = h(x). (46)

(h) Introduce the new variable

t = z′ − γz, (47)

so that, Eq. (45) will reduce to first order linear differential equation as

t′ − γt = h(x), (48)

with integration factor e−γx.

(i) Solve Eq. (48) for t

t = Ceγx + eγx
∫
e−γxh(x)dx. (49)
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(j) Restore the variable z by Eq. (44), once again first order linear differential equation will

appear, which will be solved by the method of integrating factor to find the solution for z.

(k) Restore the variable w by Eq. (42), once again first order linear differential equation will

appear, which will be solved by the method of integrating factor to find the solution for w.

(l) Restore the original variable u by Eq. (42), once again first order linear differential

equation will appear, which will be solved by the method of integrating factor to find the

solution for u.

3.2 Illustrative Problem to Demonstrate (RFO) Method

In this section the solution of fourth order systems of boundary value problems is given by

using the Reduction-to-First-Order method.

Problem: We consider the obstacle problem of the following form

u(iv)(x) =


1, −1 ≤ x ≤ −1

2
,

u+ 1, −1
2
≤ x ≤ 1

2
,

1, 1
2
≤ x ≤ 1,

(50)

with boundary and continuity conditions

u(−1) = u

(
−1

2

)
= u

(
1

2

)
= u(1) = 0,

u′′(−1) = u′′
(
−1

2

)
= u′′

(
1

2

)
= u′′(1) = 0.

The problem is divided into three cases

Case 1:
(
−1 ≤ x ≤ −1

2

)
In this case, we have the following differential equation with boundary conditions

u(iv)(x) = 1, (51)

u(−1) = u

(
−1

2

)
= u′′(−1) = u′′

(
−1

2

)
= 0.

After solving Eq. (51), we have

u[−1,− 1
2
](x) =

1

24
x4 +

1

8
(x3 + x2) +

3

64
x+

1

192
. (52)

10



Case 2:
(
−1

2
≤ x ≤ 1

2

)
In this case, we have the following differential equation with boundary conditions

u(iv)(x)− u(x) = 1, (53)

u

(
1

2

)
= u

(
−1

2

)
= u′′

(
1

2

)
= u′′

(
−1

2

)
= 0.

Eq. (53) is rearranged as(
u′(x)− u(x)

)′′′
+

(
u′(x)− u(x)

)′′
+

(
u′(x)− u(x)

)′
+

(
u′(x)− u(x)

)
= 1. (54)

A new variable z is introduce such that z = u′(x)− u(x), so Eq. (54) becomes

z′′′(x) + z′′(x) + z′(x) + z(x) = 1. (55)

Eq. (55) is rearranged as (
z′(x) + z(x)

)′′
+

(
z′(x) + z(x)

)
= 1. (56)

Another variable w is introduced such that w = z′(x) + z(x), so Eq. (56) becomes

w′′(x) + w(x) = 1. (57)

Eq. (57) is rearranged as

(w′ − iw)′ + i(w′ − iw) = 1. (58)

Let β = i and α = −i, hence

(w′ + αw)′ + β(w′ + αw) = 1. (59)

Another variable t is introduced such that t = w′ + αw, so Eq. (59) becomes

t′(x) + βt(x) = 1, (60)

which is the first order linear differential equation. Now by using (IF) method the solution

is

t(x) =
1

β
+ C1e

−βx, (61)
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where C1 is a constant of integration. Restoring the variable w the differential equation

becomes

w′(x) + αw(x) =
1

β
+ C1e

−βx, (62)

which is again the first order linear differential equation, using (IF) method the obtained

solution is

w(x) =
1

αβ
+
C1e

−βx

(α− β)
+ C2e

−αx, (63)

where C2 is a constant of integration. Restoring the variable z the differential equation

becomes

z′(x) + z(x) =
1

αβ
+
C1e

−βx

(α− β)
+ C2e

−αx, (64)

which is linear first order differential equation, using (IF) method the obtained solution is

z(x) =
1

αβ
+

C1e
−βx

(α− β)(1− β)
+
C2e

−αx

1− α
+ C3e

−x, (65)

where C3 is a constant of integration. Restoring the original variable u the differential

equation becomes

u′(x)− u(x) =
1

αβ
+

C1e
−βx

(α− β)(1− β)
+
C2e

−αx

1− α
+ C3e

−x, (66)

which is linear first order differential equation, using (IF) method the obtained solution is

u(x) = − 1

αβ
− C1e

−βx

(−α + β)(−1 + β2)
+

C2e
−αx

−1 + α2
− C3e

−x

2
+ C4e

x, (67)

where C4 is a constant of integration. The boundary conditions are applied to obtain the

values of C1, C2, C3 and C4

C1 =
(−α + β) csch(α−β

2
) sinh(α

2
)

αβ
, (68)

C2 =
csch(α−β

2
) sinh

(
β
2

)
αβ

, (69)

C3 = −2
√
e

(
(−(−1 + eα)(−1 + e1+β)β2) + α2(1 + eα(−e+ (−1 + e)β2)

(−1 + e2)(eα − eβ)α(−1 + α2)β(−1 + β2)

)
− 2

√
e

(
eβ(−1 + e1+α + β2 − eβ2)

(−1 + e2)(eα − eβ)α(−1 + α2)β(−1 + β2)

)
,
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C4 =

(
e

3
2 (−α2 + β2) + e

1
2
+α(α2 + (−e+ (−1 + e)α2)β2)

(−1 + e2)(eα − eβ)α(−1 + α2)β(−1 + β2)

)
+

(
e

1
2
+β ((−1 + α2)β2 − eα2(−1 + β2) + eα(−α2 + β2))

(−1 + e2)(eα − eβ)α(−1 + α2)β(−1 + β2)

)
.

Putting the values of C1, C2, C3 and C4 in Eq. (67), the solution is

u[− 1
2
, 1
2
](x) = − 1

αβ
−
e−xβ(−α + β) csch(α−β

2
) sinh(α

2
)

αβ(−α + β)(−1 + β2)
+
e−xα csch(α−β

2
) sinh(β

2
)

αβ(−1 + α2)

+ e
1
2
−x
(

(−(−1 + eα)(−1 + e1+β)β2) + α2(1 + eα(−e+ (−1 + e)β2)

(−1 + e2)(eα − eβ)α(−1 + α2)β(−1 + β2)

)
+ e

1
2
−x
(

eβ(−1 + e1+α + β2 − eβ2)

(−1 + e2)(eα − eβ)α(−1 + α2)β(−1 + β2)

)
+ ex

(
e

3
2 (α2 − β2) + e

1
2
+α(eβ2 + α2(−1− (−1 + e)β2)

(−1 + e2)(eα − eβ)α(−1 + α2)β(−1 + β2)

)

+ ex

(
e

1
2
+β(β2 + eα(α− β)(α + β) + α2(−e+ (−1 + e)β2)

(−1 + e2)(eα − eβ)α(−1 + α2)β(−1 + β2)

)
.

Case 3:
(
1
2
≤ x ≤ 1

)
As in case 1, we have the following differential equation with boundary conditions

u(iv)(x) = 1, (70)

u(1) = u

(
1

2

)
= u′′(1) = u′′

(
1

2

)
= 0.

After solving Eq. (70), we have

u[ 1
2
,1](x) =

1

24
x4 − 1

8

(
x3 − x2

)
− 3

64
x+

1

192
. (71)

The exact solution of this problem is

u(x) =



1
24
x4 + 1

8
(x3 + x2) + 3

64
x+ 1

192
, −1 ≤ x ≤ −1

2
,

− 1
αβ
− e−xβ(−α+β) csch(α−β

2
) sinh(α

2
)

αβ(−α+β)(−1+β2)
+

e−xα csch(α−β
2

) sinh(β
2
)

αβ(−1+α2)

+e
1
2
−x
(

(−(−1+eα)(−1+e1+β)β2)+α2(1+eα(−e+(−1+e)β2)
(−1+e2)(eα−eβ)α(−1+α2)β(−1+β2)

)
+e

1
2
−x
(

eβ(−1+e1+α+β2−eβ2)
(−1+e2)(eα−eβ)α(−1+α2)β(−1+β2)

)
+ex

(
e
3
2 (α2−β2)+e

1
2+α(eβ2+α2(−1−(−1+e)β2)

(−1+e2)(eα−eβ)α(−1+α2)β(−1+β2)

)
+ex

(
e
1
2+β(β2+eα(α−β)(α+β)+α2(−e+(−1+e)β2)

(−1+e2)(eα−eβ)α(−1+α2)β(−1+β2)

)
, −1

2
≤ x ≤ 1

2
,

1
24
x4 − 1

8
(x3 − x2)− 3

64
x+ 1

192
, 1

2
≤ x ≤ 1.

(72)
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4 CONCLUSION

In this dissertation Reduction-to-First-Order method has been presented to solve the system

of third and fourth order boundary value problems. Several examples of third and fourth

order obstacle, unilateral and contact problems demonstrated the exact solutions. We also

noted that using Reduction-to-First-Order method, the higher order differential equations

can be solved by first order linear method. So instead of learning the different methods like

undetermined coefficient method and variation of parameters method, one have to learn only

the first order linear method.
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