
EasyChair Preprint
№ 11019

SoftFlow: Automated HW-SW Confidentiality
Verification for Embedded Processors

Lennart M. Reimann, Jonathan Wiesner, Dominik Sisejkovic,
Farhad Merchant and Rainer Leupers

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 4, 2023

SoftFlow: Automated HW-SW Confidentiality

Verification for Embedded Processors
Lennart M. Reimann∗, Jonathan Wiesner∗, Dominik Sisejkovic†, Farhad Merchant§, and Rainer Leupers∗

∗RWTH Aachen University, Germany, {lennart.reimann, wiesner, leupers}@ice.rwth-aachen.de
†Corporate Research, Robert Bosch GmbH, Germany, dominik.sisejkovic@de.bosch.com

§Newcastle University, UK, farhad.merchant@newcastle.ac.uk

Abstract—Despite its ever-increasing impact, security is not
considered as a design objective in commercial electronic design
automation (EDA) tools. This results in vulnerabilities being over-
looked during the software-hardware design process. Specifically,
vulnerabilities that allow leakage of sensitive data might stay
unnoticed by standard testing, as the leakage itself might not
result in evident functional changes. Therefore, EDA tools are
needed to elaborate the confidentiality of sensitive data during the
design process. However, state-of-the-art implementations either
solely consider the hardware or restrict the expressiveness of
the security properties that must be proven. Consequently, more
proficient tools are required to assist in the software and hard-
ware design. To address this issue, we propose SoftFlow, an EDA
tool that allows determining whether a given software exploits
existing leakage paths in hardware. Based on our analysis, the
leakage paths can be retained if proven not to be exploited by
software. This is desirable if the removal significantly impacts
the design’s performance or functionality, or if the path cannot
be removed as the chip is already manufactured. We demon-
strate the feasibility of SoftFlow by identifying vulnerabilities in
OpenSSL cryptographic C programs, and redesigning them to
avoid leakage of cryptographic keys in a RISC-V architecture.

Index Terms—confidentiality, property checking, information
flow analysis, risc-v

I. INTRODUCTION

Malicious modifications or unintended insecure software

and hardware implementations must be detected at early de-

sign stages to avoid expensive post-silicon patches. Therefore,

Electronic Design Automation (EDA) tools must consider not

only performance, power, and area objectives, but also the

security implications of hardware and software. Commercial

approaches to running secure kernels on secured hardware

have already been developed, whereby leakage paths are not

considered [1]. Moreover, the academic community continues

to introduce security-aware EDA tools [2].

Information Flow Analysis (IFA) gains approval when

analyzing software or hardware for the leakage of secret

data [3]. However, existing IFA tools do not consider the bare-

metal software running on a processor when analyzing the

information flow, thus giving oversensitive results. Leakage

paths that might not be exploited by software are presented

as dangerous. Although it is desirable to remove all leakage

paths to untrusted components in hardware, it might not

always be possible to do so. Sometimes the vulnerabilities

are only detected after the manufacturing process, such as

Meltdown [4]. Moreover, removing all leakage paths might

result in the loss of functionality or performance. A leakage

+

- +

Digital circuit

1

0

1

0

Control bit 0

Known bit 0

Secret bit 0
Output bit

Known bit 1

Control bit 1
Observable inputs

Secret inputs

Observable outputs

Leakage path

Fig. 1: A leakage path in a circuit through a multiplexer.

path is a signal route that carries data from a sensitive source

to untrusted components (Fig. 1). Fundamentally, there are

two distinct flavors of information flow analysis: dynamic

and static IFA. A dynamic analysis tracks the information

flow within hardware for a given software running a set

of test cases [5]. As only the program flow for the test

cases is considered, vulnerabilities might be overlooked. Thus,

static approaches that consider software independent of test

cases yield more reliable verification results. Most state-of-

the-art tools require manual translation of either software or

hardware descriptions, or limit the expressiveness of security

properties. Thus, a new EDA tool is required to overcome these

constraints. To address this challenge, we present SoftFlow, a

framework that allows a hardware-software co-verification to

analyze whether determined leakage paths are activated for a

given software and arbitrary input data. SoftFlow allows the

designer to adapt the program and avoid leakage, or deploy

software patches for manufactured chips.

The contributions of this paper are: (1) An automated

tool to convert leakage paths of a hardware description into

provable hardware properties. (2) A complete framework that

guarantees that determined leakage paths in hardware are not

exploited by a given software. (3) An analysis of the state-of-

the-art OpenSSL cryptographic algorithms to demonstrate the

usability of the tool for a RISC-V architecture.

II. RELATED WORK

As the complete system behavior can only be modeled

when considering hardware and software together, a co-

verification is used frequently to enforce security properties for

a given design [7]. However, co-verification is a challenging

task, as hardware and software are described in different

domains. Typically, one description is either converted into

the other domain, or both descriptions are converted to allow

the verification of both implementations [8]. These methods

mainly depend on model checkers that formally verify the

SoftFlow

Determine

multiplexer

conditions

Assumption
generator

HW description

(Verilog)

Name of

secret signal

C-program

Manual input

Additional tools

Retargetable
C-compiler

QFlow:
Information flow

tool

Model checker

VC Formal

Assembly &

control flow info

Leakage paths

Pyverilog

Determine

leakage

path activation

conditions

Convert to

PSL rules

Convert to

PSL rules

Cover-

statements

in PSL

Assumptions

in PSL

OutputInput Toolflow

Leakage

possible?

Number

of bits?

What line

in the code?

Fig. 2: Block diagram illustrating SoftFlow’s tool flow.

defined properties. In [9], a manual translation of the hardware

description, program, and properties is conducted to allow a

co-verification. However, a manual translation is error-prone

and could introduce vulnerabilities into the description. A

model checker, similar to the one used in this work, is used

in [10][11]. However, both proposals limit their use in the

variability of the observed software and the expressiveness

of the security property. With the introduction of SoftFlow,

we overcome the mentioned limitations and establish a novel

framework that allows an automated generation of security

properties. Therefore, we enable a static security analysis of

both hardware and software to facilitate the design of secure

software for insecure hardware.

III. PRELIMINARIES

A. Threat Model

The threat model is based on the following assumptions:

• The vulnerability that exposes the secret is already

present at the RTL-design stage of embedded processors.

• The adversary tries to gain information about secret

signals, such as cryptographic keys.

• The complete hardware design is known to the attacker.

• The adversary can observe primary inputs and outputs of

the design.

• The software cannot be exchanged by the attacker.

• Arbitrary input data can be used.

B. Information Flow Analysis

IFA allows the static or dynamic analysis of programs

and hardware descriptions to elaborate on whether unintended

information flow can occur. Security labels are used to flag

components to be part of certain security classes [12]. Thus,

an analysis determines whether sensitive information can be

leaked to untrusted areas of the hardware. For the example in

Fig. 1, it is analyzed whether the secret bit can be leaked to the

observable output for all possible known input bit sequences.

State-of-the-art tools can conduct a static analysis of the

Verilog hardware description to determine unwanted data leak-

ages. QFlow [13], [14] and QIF-Verilog [15] use quantitative

information flow to classify data leakages as negligible or a

threat. A scopechain is provided that allows identifying the

path within the hardware description. SoftFlow utilizes QFlow

to gather the most suspicious leakage path in a system.

C. Property Specification Language (PSL)

PSL [16] is compatible with Verilog hardware descriptions

and allows the modeling of the temporal behavior of digital

architectures. A simple example is a condition for a multi-

plexer: (control signal == 0x20). The Boolean expression

enables the model checker to determine when information is

forwarded. Moreover, Sequential Extended Regular Expres-

sions (SERE) can model the temporal dependencies. CONCAT,

FUSE, and REPETITION INF of the SERE repertoire are

used in this work, as explained in Table I. The operators

can be combined into sequences, allowing the modeling of

a leakage path. The verification layer uses commands like

cover and assume. assume indicates that the included

property is expected to hold, thus restricting the state-space of

the evaluated architecture for the desired property verification.

However, the user must verify the assumptions to avoid

introducing insecurities into the process. cover-statements

can be used to determine whether a property is true for at

least one state in the state-space using a model checker. If

the property is proven to be uncoverable, the leakage cannot

occur for the assumptions. SoftFlow automatically generates

the assumptions and properties (Fig. 2).

IV. SOFTFLOW

For the identification of the leakage paths, SoftFlow uses

QFlow, due to its capability to analyze the information flow

bitwise [13]. QFlow extracts the leakage paths from the

sensitive source to the possibly harmful target. The security

properties are generated by SoftFlow (Fig. 2), as explained be-

low. Additionally, model-checking requires information about

TABLE I: Sequential Extended Regular Expression (SERE) operators [6] used in this work.

Name PSL Usage Verilog Example Interpretation

CONCAT A;B (cntrl sig1 == 0x20); (cntrl sig2 == 0x11)
Two cycles exist, so that first condition A is true, followed
by the cycle in which B is true.

FUSE A:B (cntrl sig1 == 0x20) : (cntrl sig2 == 0x11) A cycle exists in that both Boolean expressions A and B are true.

REPETITION INF A[*] (cntrl sig1 == 0x20)[∗] The Boolean expression is true in every cycle.

Leakage paths

Untrusted

 signal/output

s

Signal s3 Signal s6

Activation

seq. block sb
Activation

seq. block sb

Activation

seq. block sb1

Liveness

sb

Liveness

sb

Secret bit s1 Signal s7Signal s4 Signal s5

8

3221

Signal s2

Conditional assignment Unconditional assignment Sequential logic (registers,...)

Fig. 3: Separating the leakage paths into blocks to allow a suitable environment for property generation. The arrows illustrate

signal assignments in which dotted arrows describe conditional assignments.

the software to constrain the model, reducing the number

of false positives. Below, we clarify how the PSL rules are

generated, verified and evaluated for multiple programs.

A. Property Generation

This subsection describes a tool that processes the leakage

paths, given by a static quantitative IFA, and the hardware

description to generate properties using PSL.

a) Combinational: First, a combinational circuit is con-

sidered. In this case, a leakage path can consist of combi-

national operations and signal assignments (Fig. 1). These

assignment types can be divided into two classes: condi-

tional and unconditional. Unconditional assignments happen

independently of any control signals, while conditional as-

signments depend on a multiplexer’s control signal. When

checking whether a leak can occur, one needs to analyze

whether all conditional assignments are active at the same

time. Hereafter, active-function A describes whether an infor-

mation flow between two signals is active.

b) Sequential Blocks: Due to the timing dependency,

additional system behavior needs to be considered for se-

quential circuits. Fig. 3 illustrates a single leakage path. The

path leads from a trusted signal, storing a secret bit, to an

untrusted signal. Due to the timing behavior of sequential logic

within this path, each leakage path needs to be separated into

multiple blocks. Assignments between non-sequential signals

of the same block must occur in a single cycle. But the

data can live for several cycles in sequential signals, such

as registers, before moving on. Separating the leakage paths

into blocks that always end with a sequential signal allows

for a differentiation of this behavior. The separation into the

sequential blocks (sb) is depicted in Fig. 3. Additionally, one

must consider that the secret data is not overwritten within the

sequential logic before forwarding it to the next sb.

Only conditional assignments influence the property gener-

ation. For the first sequential block in Fig. 3, only the second

assignment holds a condition. Hence, the block active-function

BA for this sequential block sb1 is true if the conditions for

the assignment are true in a single cycle.

1) Leakage Path Activation: First, the sequential logic

within the leakage path is identified. This is done to form the

sequential blocks. The secret datum can only pass a single

sequential block in each cycle. For leakage to occur, the

second sequential block needs to be activated after the previous

one (Fig. 3). Additionally, the two blocks do not have to be

activated in consecutive cycles as long as the information in

the previous sequential logic stays alive and is not overwritten

until it passes the next sequential block, which is described

with the alive-function L. Each sequential block results in a

BA and L function, except for the last one. In the example

(Fig. 3), two alive-functions and three block active-functions

are required to describe the activation of the path.

2) Active & Alive-Function Collection: First of all, the

Verilog description is parsed to form a tree structure that can

be iterated over. Afterward, the algorithm iterates over the

leakage paths to determine the individual activation conditions.

The conditions for a single signal assignment are connected

via an OR-operator as only a single true activation condition

can lead to leakage. The resulting set of active-functions are

temporally stored in a file to be processed to PSL. The alive-

function L is determined similarly to the active-function. The

alive-function returns ’true’ if the current value in a sequential

logic is not overwritten for a fixed amount of cycles. An empty

signal assignment describes a value that is not overwritten. The

activation condition from the empty node to the destination

node is calculated and stored as the alive function.

3) Specifying SoftFlow’s PSL Sequences: The collected

active-functions and alive functions need to be translated to

PSL to enable model-checking. For the example in Fig. 3,

the PSL sequence is shown in Equation 1, with AS and

LS describing the activation and liveness sequences. The

sequence is extended with the cover command, forming the

cover rules. If the model checker can cover this path, the

leakage can occur for the given assumptions. The individual

Boolean activation conditions are connected using the FUSE

operator (Table I), as the conditions must be true in the

same cycle. After the activation conditions are converted, the

liveness condition for the sequential logic is required. The

returned liveness condition is converted to a PSL expression

using the REPETITION INF operator (Table I). The activation

conditions and the alive-functions are combined into the full

sequence for a single sb using CONCAT (Table I). Uncover-

able properties state that the leakage path cannot be taken.

active(s2, s3)
︸ ︷︷ ︸

AS

; alive(s3)[*]
︸ ︷︷ ︸

LS
︸ ︷︷ ︸

sb1

; active(s3, s4) : active(s4, s5) : active(s5, s6)
︸ ︷︷ ︸

AS

; alive(s6)[*]
︸ ︷︷ ︸

LS
︸ ︷︷ ︸

sb2

; active(s7, s8)
︸ ︷︷ ︸

AS
︸ ︷︷ ︸

sb3

(1)

B. Property Verification

By employing model-checking, one can establish a level of

certainty regarding the reliability of the verification results.

The individual cover rules allow an independent evaluation

for every leakage path, enabling the model checker to work

in parallel for these properties. The program memory address

is used to identify the instruction and the related C code line.

SoftFlow’s generated properties do not consider the com-

piler program for this processor. As we would like to elaborate

on the security of a given C program and an insecure hardware

implementation, the hardware model for the model-checking

needs to be constrained before running the verification. This

is done to reduce the false positives, which describe a leakage

of secret data for programs that would not be implemented.

Those constraints are implemented using assume. Since the

model permits the data memory to contain any information,

it is necessary to contemplate all conceivable routes within a

program. Conditional branches depend mostly on data in the

data memory. Thus, all possible conditional jumps need to be

considered. The user can choose from the following derived

assumptions (A to F) to restrict the program flow.

A No illegal instructions: A assumption is made which

claims that the read port of the program memory can never

hold the value of prohibited instructions.

B Only used instructions: The formal model can be further

constrained by analyzing the compiled machine-code stati-

cally. An assumption can be generated that further constrains

the model by stating that only instructions present in this

compiled program can be read from the program memory.

The order is not yet considered.

C Replacing the program memory: To avoid modeling

an entire program memory, a lookup table is used instead,

which also enables consideration of the order of instructions.

Furthermore, since return addresses of function calls are stored

on the stack, it is possible for a return to transpire to any point

within the program.

D Only legal return addresses: The remaining three

assumptions are generated using compiler information. The

assumption is used to remove undefined return addresses,

which results in arbitrary program flows for the verification.

E Only correct hardware jumps: Compiler information is

processed to allow only valid start and return addresses for

hardware loops during the evaluation.

F Call-return matching: When a function is invoked from

several locations, it is essential to account for both return

addresses. Confirming a legitimate correlation between a call

and its corresponding return is only achievable during runtime.

Nonetheless, if an authentic hardware call-stack is utilized

to store the return addresses, it can already be taken into

consideration during the verification process.

V. EVALUATION

The evaluation is conducted for a RISC-V Verilog descrip-

tion and compiler. The processor uses the RV32IC instruction-

set, in which an instruction for a single round of AES, and

RISC-V architecture (RV32IC+crypto)

Control unit

ALU Crypto unit
Secret signal

Poss. leakage path

Key memoryData memoryProgram memory

Untrusted signal

Address AddressInstruction Address Data Crypt. key

...General purpose registers

Fig. 4: Abstract block diagram of the RISC-V architecture.

an additional memory have been added that holds the cryp-

tographic key. A block diagram illustrating the architecture

is shown in Fig. 4. The data input from the key memory

is labeled sensitive in order for QFlow to yield the most

suspicious leakage paths from the signal to all output ports

of the design, including the memories’ data and address ports.

The analysis is performed for several cryptographic algorithms

from OpenSSL[17]: ChaCha20, AES-256, Camelia, Aria, and

SHA-256. SoftFlow is evaluated for different assumptions to

elaborate on their efficiency and security.

A. Verification Cases

The used assumptions are listed behind each mode.

NONE: No assumptions are added to the model checker. The

verification tool works solely with the properties generated

from our property generator for the leakage paths.

LEGAL A : The loading port of the program memory is

restricted, disallowing all illegal instructions to be read.

USED A & B : The data port of the program memory

is restricted using an assume statement that allows only

instructions present in a compiled machine-code to be read.

JUMPS A to E : In this mode, only valid return addresses

can be used for a return command and hardware loops,

allowing a more realistic program flow.

STACK A to F : A hardware stack allowing the return-

call matching is added as supplemental Verilog code.

FULL: First, the assumptions for USED are utilized. If the

property for this path cannot be proven to be uncoverable,

all verification cases are tried until the model checker is

successful. Considering the valid states S of a processor model,

the valid states for STACK are present in USED, resulting in:

SSTACK ⊆ SJUMPS ⊆ SUSED ⊆ SLEGAL ⊆ SNONE

The inclusiveness of the more restrictive verification cases

further reduces the state space that has to be analyzed.

B. Results

1) Coverages: The evaluation results of SoftFlow’s func-

tionality are presented below. The verification modes are

applied to the five cryptographic algorithms for the RISC-V.

a) Without Software:: The assumptions of the modes

NONE and LEGAL are applied to the verification model. These

two modes are independent of the actual software running.

QFlow yields 3776 leakage paths that need to be elaborated

for the given architecture. Leakage paths are uncoverable if

.
l d k x7 , 1 (x6 !)
a d d i x10 , x13 , 40
sw x13 , 0 (x2)
l i x6 , 1
sw x7 , 4 (x13 !)
mv x14 , x7
l d k x7 , 1 (x6 !)
sw x7 , 4 (x13 !)
mv x15 , x7
l d k x7 , 1 (x6 !)
sw x7 , 4 (x13 !)
sw x7 , 4 (x2)

(a) Assembly program

i n t c h e s s s t o r a g e (KM: 0) km [4] ;
i n t Camel l i a Ekeygen (i n t

keyBi tLeng th ,
KEY TABLE TYPE k)

{
r e g i s t e r u32 s0 , s1 , s2 , s3 ;

k [0] = s0 = km [0] ;
k [1] = s1 = km [1] ;
k [2] = s2 = km [2] ;
k [3] = s3 = km [3] ;
.
s0 ˆ= k [0] , s1 ˆ= k [1] ,\

(b) C program

Fig. 5: A naive implementation of Camellia: The dashed

line symbolizes the reported instructions activating the leakage

path. The corresponding C-code is marked with an arrow.

the leakage cannot occur for the given assumptions. The paths

that can be activated are labeled covered. Both, the LEGAL

and NONE modes yield 857 uncoverable paths, which indicates

that the processor only accepts legal instructions and that the

857 paths are false positives from QFlow. With SoftFlow, the

false positives are removed entirely!

b) With OpenSSL Cryptographic Algorithms:: Next, the

capabilities of SoftFlow are elaborated for the different

OpenSSL algorithms for the remaining verification modes.

An example of how the applications are modified for the

architecture is shown in Fig. 5b. The key can be accessed with

a pointer to the key memory KM. Table II illustrates the results

of the elaboration for the modes STACK, JUMPS, and USED.

As one can see, the number of uncoverable paths increases for

all applications when more restrictive assumptions are used.

No difference in the results between the modes STACK and

JUMPS can be observed.

The call tree depths are limited for all five applications,

which is required if the STACK mode is used. Otherwise,

the hardware stack would have to be of unlimited size.

Thirty-two leakage paths are still covered for the design and

applications. The cause for this leakage detection can be

seen in Fig. 5 for the application Camellia. The remaining

exemplary elaborations are only presented for Camellia. Final

results are presented for all applications. The assembly code

in Fig. 5a shows that the compiler loads the key values from

TABLE II: Summarized metrics for the five applications

grouped by verification case.

Application Aria ChaCha20 Camellia AES SHA

Instr. count 2112 1347 1973 1409 649

Call depth 4 4 4 6 5

U
S

E
D Covered 65 74 58 58 48

Uncoverable 3711 3702 3718 3718 3728

JU
M

P
S

Covered 32 32 32 32 32

Uncoverable 3744 3744 3744 3744 3744

S
T

A
C

K

Covered 32 32 32 32 32

Uncoverable 3744 3744 3744 3744 3744

14 s0 ˆ= km [0] , s1 ˆ= km[1] ,\
15 s2 ˆ= km [2] , s3 ˆ= km [3] ;

Listing 1: Replacing k with km in the application camellia

1 v o l a t i l e i n t c h e s s s t o r a g e (KM: 0) km [4] ;

Listing 2: Declaring km as volatile

1 i f (i n p u t [0] == 0 x4d2)
2 {
3 u32 * l e a k a g e = (u32 *) m a l l o c (s i z e o f (u32) *8) ;
4 f o r (i n t j =0 ; j <8; j ++) l e a k a g e [j] = km[j] ;
5 }

Listing 3: The malicious lines implementing a simple Trojan

in the application Camellia.

the dedicated key memory (ldk, load key) and stores them in

the untrusted data memory (sw, store word) for the array k.

The programmer can avoid the usage of the leakage path by

modifying the C program. Listing 1 shows the replacement

of the variable k with the pointer km, so that the values

are not automatically stored in the untrusted data memory.

Additionally, the pointer is marked as volatile (Listing 2),

instructing the compiler not to optimize any data movements

for KM’s data. Table III depicts the outcomes of SoftFlow

subsequent to this modification. The leakage paths are not

activated anymore except for the Aria application. For Aria,

the compiler places the key in a register that is directly

connected to the address port of the key memory, which is

marked as untrusted. Forcing the compiler to pick a different

register can also avoid this leakage. However, the limited

intrusion into the compiler does not allow this change. The

final evaluation shows an example of finding software Trojans

inside the program. In the four applications that achieved

100% avoidance of leakage, a software Trojan is implemented.

An example Trojan for the Camellia application can be seen

in Listing 3. For a particular input value stored in the data

memory, the keys are written to the untrusted memory.

The results for the evaluations of the FULL mode illustrate

that all Trojans that use the leakage paths are detected despite

their difference in the trigger, as shown in Table IV. The value

of the trigger does not play a role in the detection, as the data

coming from the untrusted data memory is assumed to be of

any possible value.

2) Runtime: For the unmodified applications (e.g., Fig. 5b)

that still carry 32 covered paths, the verification is conducted

by using the available verification modes. LEGAL is not

presented here, as it yielded the same verification results as

NONE. As shown in Fig. 6, the lowest runtimes are given

by the verification modes that restrict the hardware model the

least. However, some leakage paths could not be marked as

uncoverable for the less restrictive assumptions (Table II).

TABLE III: Metrics of the modified applications.

Application Aria ChaCha20 Camellia AES SHA

F
U

L
L covered 473 0 0 0 0

uncoverable 3303 3776 3776 3776 3776
time 16016 16780 3213 1337 4432

NONE USED JUMPS STACK FULL

0

5

10

15
T

im
e

(1
0
3

s)

Aria Chacha20 Camellia AES-256 SHA-256

Fig. 6: The summarized runtime of the verification procedure

for the different verification modes and applications.

The runtime increases drastically for all applications at

JUMPS. Moreover, as expected, the lowest runtime can be

achieved using the verification mode FULL. The overall run-

time is optimized, while yielding a precise result for all appli-

cations. As the verification of the properties for every leakage

path can be parallelized, depending on the available resources

of the designer, the runtimes can be drastically reduced. Fig. 7

illustrates how successful the different verification modes are

in their task. It can be observed that most leakage paths can be

flagged as uncoverable by assuming that only the instructions

given in a program will be used. The higher number of

cases verified using USED explains the reduced runtime of

the FULL-mode in Fig. 6.

VI. LIMITATIONS

Overall, the tool can identify vulnerabilities and assist the

designer in writing software that allows safe use of insecure

hardware. However, some limitations must be considered.

Leakage paths can be triggered with instructions like load

and store operations, as shown in Fig. 5. The data is leaked

without any change. This results in a varied attack scenario

from the one used by QFlow. Additionally, the evaluation is

only conducted on 3776 existing leakage paths, as QFlow only

outputs the most suspicious ones. Although the elaboration of

the paths was successful, all leakage paths must be considered.

It might not be possible for some applications and hardware

combinations to avoid leakage. This could be due to uncon-

ditional leakages or leakages caused by instruction patterns

required for the application.

VII. CONCLUSION

We presented SoftFlow, an EDA tool that utilizes formal

verification to conclusively indicate whether leakage paths

in hardware are activated for a given software. Therefore,

SoftFlow facilitates both a security-driven system design from

the ground up and post-fabrication security patches. The

usability of the proposed framework was demonstrated by

TABLE IV: Verification of the modified applications with

embedded Trojans.

Application ChaCha20 Camellia AES SHA

F
U

L
L

covered 32 32 32 32
uncoverable 3744 3744 3744 3744

time 26045 2127 1386 1321
trigger (hex) 12345678 4d2 fedcba 12ef34dc

Total number of leakage paths

USED JUMPS STACK

0

1

2

3

#
u
n
co

v
er

ab
le

p
at

h
s

(·
1
0
3
)

Aria Chacha20 Camellia AES-256 SHA-256

Fig. 7: A histogram showing what modes are mostly success-

ful when verifying the model for different applications.

analyzing OpenSSL cryptographic algorithms for a RISC-

V architecture. The evaluation proves that secure software

disabled all 3776 leakage paths. In addition, the consideration

of both software and hardware mitigated all false positives of

QFlow. With SoftFlow, we enable a security-aware software-

hardware co-verification process that takes into account the

intricate interplay of dedicated hardware and software. In the

future, we plan to investigate security-aware compilers that

facilitate the complete removal of vulnerabilities if allowed

by both hardware and software.

REFERENCES

[1] D. Sisejkovic et al., “A Secure Hardware-Software Solution Based on
RISC-V, Logic Locking and Microkernel,” ser. ACM SCOPES ’20.

[2] IEEE Council on Electronic Design Automation, “CADForAssurance,”
2020. [Online]. Available: https://cadforassurance.org/

[3] A. Ardeshiricham et al., “Register transfer level information flow
tracking for provably secure hardware design,” in DATE ’2017.

[4] M. Lipp et al., “Meltdown: Reading Kernel Memory from User Space,”
in 27th USENIX Security Symposium (USENIX Security 18), Baltimore.

[5] O. Ruwase et al., “Parallelizing dynamic information flow tracking,”
in Proceedings of the Twentieth Annual Symposium on Parallelism in

Algorithms and Architectures, 01 2008, pp. 35–45.
[6] A. Cimatti et al., “From Sequential Extended Regular Expressions to

NFA with Symbolic Labels,” in Implementation and Application of

Automata. Springer Berlin Heidelberg, 2011.
[7] F. Lugou et al., “Toward a Methodology for Unified Verification of

Hardware/Software Co-designs,” Journal of Cryptographic Engineering,
pp. 1–12, Nov. 2016.

[8] B.-Y. Huang et al., “Formal Security Verification of Concurrent
Firmware in SoCs using Instruction-Level Abstraction for Hardware,”
in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).

[9] X. Guo et al., “Scalable SoC trust verification using integrated theorem
proving and model checking,” in 2016 IEEE International Symposium

on Hardware Oriented Security and Trust (HOST), 2016, pp. 124–129.
[10] M. D. Nguyen et al., “Formal hardware/software co-verification by inter-

val property checking with abstraction,” in 2011 48th ACM/EDAC/IEEE

Design Automation Conference (DAC), 2011, pp. 510–515.
[11] D. Große et al., “HW/SW Co-Verification of Embedded Systems Using

Bounded Model Checking,” ser. GLSVLSI ’06.
[12] J. Oberg et al., “Theoretical analysis of gate level information flow

tracking,” in Design Automation Conference, 2010, pp. 244–247.
[13] L. M. Reimann et al., “QFlow: Quantitative Information Flow for

Security-Aware Hardware Design in Verilog,” in 2021 IEEE 39th Inter-

national Conference on Computer Design (ICCD), 2021, pp. 603–607.
[14] L. M. Reimann et al., “Quantitative information flow for hardware:

Advancing the attack landscape,” in 2023 IEEE 14th Latin America

Symposium on Circuits and System (LASCAS), 2023.
[15] X. Guo et al., “QIF-Verilog: Quantitative Information-Flow based Hard-

ware Description Languages for Pre-Silicon Security Assessment,” in
IEEE HOST ’19.

[16] C. Eisner et al., A Practical Introduction to PSL Introduction, ser.
Integrated Circuits and Systems. Springer, Boston, MA, 2006.

[17] Open SSL Project, “OpenSSL,” 1998. [Online]. Available:
https://github.com/openssl/openssl

