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Abstract. This paper is devoted to establish a computational approach to predict the processes 

with almost cyclostationary structure. The main idea is based on the estimating of the support of spectra 

and using the discrete Fourier transform and periodogram of almost cyclostationary processes. The 

simulated and real datasets are applied to study the performance of the introduced approach. The results 

confirm that the presented method acts efficiently for simulated and real datasets. 
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1. Introduction  
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Stationarity is an essential assumption in classical time series modeling. This assumption 

is not satisfied in many datasets, specially when these have periodic rhythm. In these situations, 

cyclostationary (CS) and almost cyclostationary (ACS) processes are naturally applied to model 

the rhythmic component. The ACS is a large non-stationary time series class that contained 

stationary and CS processes. The mean and auto-covariance functions of ACS are almost 

periodic. The spectra of these processes are supported on lines that are parallel to the main 

diagonal, 𝑇𝑗(𝑥) = 𝑥 ± 𝛼𝑗 , 𝑗 = 1, 2, …,  in spectral square [0,2𝜋) × [0,2𝜋) . The theories and 

applications of CS and ACS time series have been studied in many references such as Gladyshev 

[(1961); (1963)], Gardner (1991), Hurd (1991), Hurd and Leskow (1992), Leskow and Weron 

(1992), Gardner (1994), Leskow (1994), Lii and Rosenblatt [(2002); (2006)], Gardner et al. 

(2006), Hurd and Miamee (2007), Lenart [(2008); (2011)], Napolitano (2012), Lenart (2013), 

Lenart and Pipien [(2013a); (2013b)], Mahmoudi et al. (2015), Napolitano [(2016a); (2016b)], 

Mahmoudi and Maleki (2017), Nematollahi et al. (2017), Lenart and Pipien (2017), and 

Mahmoudi et al. [(2018a), (2018b), (2018c)]. 

Definition 1:  Almost Periodic Function [Corduneanu (1989)]  

A function 𝑓 (𝑡) ∶  𝑍 →  𝑅 is said to be almost periodic in 𝑡 ∈  𝑍 if for any 𝜀 > 0, there 

exists an integer 𝐿𝜀 > 0 such that among any 𝐿𝜀 > 0 consecutive integers there is an integer 

𝑝𝜀 > 0 such that 

𝑠𝑢𝑝𝑡∈Ζ|𝑓(𝑡 + 𝑝𝜀) − 𝑓(𝑡)| < 𝜀. 

 

Definition 2:  ACS Process [Mahmoudi et al. (2018a)] 

A second order process {𝑋𝑡: 𝑡 ∈  𝑍} is called ACS if the process has almost periodic 

mean, 𝜇(𝑡) =  𝐸(𝑋𝑡), and autocovariance, 𝐵(𝑡, 𝜏) =  𝑐𝑜𝑣(𝑋𝑡, 𝑋𝑡+𝜏), at t, for every τ ∈ Z.  

 

As Mahmoudi et al. (2018a), the following assumptions have been considered in this 

work: 

(A1) {𝑋𝑡: 𝑡 ∈  𝑍} is a zero-mean and real-valued time series.  

(A2) 𝑋𝑡 is an ACS process. 

By these assumptions, the autocovariance function 𝐵(𝑡, 𝜏) can be represented by 



3 | P a g e  
 

𝐵(𝑡, 𝜏)~ ∑ 𝑎(𝜔, 𝜏)𝑒𝑖𝜔𝑡,

𝜔∈𝑊𝑡

 

where  

𝑎(𝜔, 𝜏) = lim
𝑛→∞

(
1

𝑛
∑ 𝐵(𝑗, 𝜏)

𝑛

𝑗=1

𝑒−𝑖𝜔𝑡) , 

and for fixed 𝜏 . Also as Corduneanu (1989) and Hurd (1991) indicated the set 𝑊𝜏 =

{𝜔 ∈ [0,2𝜋): 𝑎(𝜔, 𝜏) ≠ 0} is a countable set of frequencies. 

 

(A3) 𝑊 = ⋃ 𝑊𝜏𝜏∈𝑍 , is a finite set and the spectra of 𝑋𝑡 is supported on lines that are parallel to 

the main diagonal, 𝑇𝑗(𝑥) = 𝑥 ± 𝛼𝑗 , 𝑗 = 1, 2, …,  in spectral square [0,2𝜋) × [0,2𝜋) . Thus we 

have 

𝐵(𝑡, 𝜏) = ∑ 𝑎(𝜔, 𝜏)𝑒𝑖𝜔𝑡,

𝜔∈𝑊

 

and the spectral measure of 𝑋𝑡, will be supported on the set  

𝑆 = ⋃ {(𝜈, 𝛾) ∈ [0,2𝜋)2: 𝛾 = 𝜈 − 𝜔}.

𝜔∈𝑊

 

 

Moreover, the coefficients  

𝑎(𝜔, 𝜏) = ∫ 𝑒𝑖𝜉𝜏𝑟𝜔(𝑑𝜉),
2𝜋

0

 

are the Fourier transforms of the measures 𝑟𝜔(·). 

 

We note that the 𝑟𝜔will be identified if the spectral measure of 𝑋𝑡 be restricted on the line 𝛾 =

𝜈 − 𝜔, modulo 2𝜋,  where 𝜔 ∈ 𝑊. 

Remark: In the rest of paper, all equalities of frequencies are modulo 2𝜋. 

(A4) 𝑟0 is an absolute continuous measure with respect to the Lebesgue measure. 

 

Dehay and Hurd (1994) shown by considering this assumption and ∑ |𝑎(𝜔, 𝜏)| < ∞,∞
𝜏=−∞  for any 

𝜔 ∈ 𝑊, result in a spectral density function 𝑓𝜔(·) exists such  

that 
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𝑓𝜔(𝜈) =
1

2𝜋
∑ 𝑎(𝜔, 𝜏)𝑒−𝑖𝜈𝜏

∞

𝜏=−∞

. 

 

Consequently, an ACS process with support on a finite number of cyclic frequencies is 

represented by 

𝑋𝑡 =  ∫ 𝑒−𝑖𝑡𝑥𝜁(𝑑𝑥),   𝑡 ∈ ℤ,

2𝜋

0

 

where 𝜁 is a random spectral measure on [0, 2𝜋) such that 

𝐸(𝜁(𝑑𝜃)𝜁(𝑑𝜃′)̅̅ ̅̅ ̅̅ ̅̅ ̅) = 0, (𝜃, 𝜃′) ∉ 𝑆. 

As Mahmoudi et al. (2018a) indicated, the spectral distribution and density matrices of 𝜁, are 

defined by 

𝑭(𝑑𝜆) = [𝐹𝑘,𝑗(𝑑𝜆)]
𝑗,𝑘=1,…,𝑚

, 

and 

𝒇(𝜆) =
𝑑𝑭

𝑑𝜆
= [𝑓𝑘,𝑗(𝜆)]

𝑗,𝑘=1,…,𝑚
,   

respectively, where 

𝐹𝑘,𝑗(𝑑𝜆) = 𝐸 (𝜁 (𝑑𝜆 + 𝛼𝑘)𝜁 (𝑑𝜆 + 𝛼𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) , 𝑘, 𝑗 =  1, … , 𝑚, 

and 𝑓𝑘,𝑗 is spectral density correspond to 𝐹𝑘,𝑗. 

Definition 3:  Discrete Fourier Transform (DFT) 

Assume 𝑋0, … , 𝑋𝑁−1, are a sample of size 𝑁 from ACS process {𝑋𝑡: 𝑡 ∈  𝑍}. The DFT of the this 

sample is defined by 

𝑑𝑋(𝜆) = 𝑁−1 2⁄ ∑ 𝑋𝑡𝑒−𝑖𝑡𝜆

𝑁−1

𝑡=0

 , 𝜆 ∈ [0,2𝜋). 
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Definition 4:  Periodogram 

Assume a sample 𝑋0, … , 𝑋𝑁−1, from ACS process {𝑋𝑡: 𝑡 ∈  𝑍}. The periodogram of the finite 

sequence 𝑋0, … , 𝑋𝑁−1, is defined by 

𝐼𝑋(𝜆) = |𝑑𝑋(𝜆)|2 , 𝜆 ∈ [0,2𝜋). 

The distribution of DFT and periodogram of ACS processes are widely studied by Lenart (2013), 

Lenart and Pipien [(2013a); (2017)] and Mahmoudi et al. (2018a). 

The aim of this paper is to establish a computational approach to predict the processes with 

almost cyclostationary structure. The main idea is based on the estimating of the support of 

spectra and using the discrete Fourier transform and periodogram of ACS processes. In Section 

2, prediction problem for ACS time series is studied. The ability of the introduced approach is 

also studied using simulation study and real data analysis, in Section 3. 

 

 

2. Prediction of ACS Processes 

Let  {Xt , t ∈ ℤ} be ACS process with spectral density 𝐟(λ), λ ∈ [0,2π). The supports of 

the spectra for ACS processes are the lines 𝑇𝑗(𝑇𝑘
−1(𝑥)),  where 𝑇𝑗(𝑥): 𝐵1 ⟶ 𝐵𝑗, is defined by  

𝑇𝑗(𝑥) =  𝑥 + 𝛼𝑗 , for 𝑗 = 1, … , 𝑚. 

Soltani and Parvardeh (2006) showed the best predictor for 𝑋𝑡+𝜏, 𝜏 > 0, is given by  

�̂�(𝑡 + 𝜏) = ∑ �̂�𝑘(𝑡 + 𝜏)

𝑚

𝑘=1

, 

where  

 

�̂�𝑘(𝑡) = ∑ (�̂�𝑡,𝑘)(𝑙)𝑍𝑘,𝑙

+∞

𝑙=−∞

, 

�̂�𝑡,𝑘(𝑥) = ∑ 𝑒𝑖𝑡𝑇𝑗(𝑥)𝑎𝑗𝑘(𝑥)

𝑚

𝑗=1

, 
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and {𝑍𝑘,𝑙} , 𝑘 = 1, … , 𝑚 are orthogonal white noise series. Also 𝑎𝑗𝑘(𝑥), 𝑗, 𝑘 = 1, … , 𝑚, are the 

components of Cholesky decomposition of spectral density 𝐟, given by 

𝐟(𝑥) = 𝐀(𝑥)𝐀∗(𝑥), 

where 𝐀∗ is conjugate transpose of 𝐀. 

In real problems, 𝑇𝑗(𝑥) =  𝑥 + 𝛼𝑗 ,  𝑗 = 1, … , 𝑚,  and 𝑎𝑗𝑘(𝑥), 𝑗, 𝑘 = 1, … , 𝑚,  are unknown. 

Mahmoudi et al. (2018a) applied the following procedures to estimate these unknown functions. 

 

2.1. Procedure for Estimating 𝑇𝑗, 𝑗 = 1, … , 𝑚 

Let 

�̂�(𝜆, 𝜆′) = 𝐶𝑜𝑟𝑟(|𝑑𝑋(𝜆)|, |𝑑𝑋(𝜆′)|). 

The summary of estimation procedure of 𝑇𝑗
,s is as follows: 

(i) For given 𝜆 ∈ [0,2𝜋), apply the moving block bootstrap (MBB) methodology to produce n 

sample of 𝑑𝑋(𝜆). 

(ii) For 𝜆 ∈ 𝐵1  and 𝜆′ ∈ 𝐵𝑗 , 𝑗 = 1, … , 𝑚, calculate �̂�(𝜆, 𝜆′)  using n samples of DFT in 𝜆  and 

𝜆′, {𝑑1(𝜆), … , 𝑑𝑛(𝜆)} and {𝑑1(𝜆′), … , 𝑑𝑛(𝜆′)}. 

(iii) Fix 𝜆 ∈ 𝐵1 to obtain 𝜆∗ ∈ 𝐵𝑗 such that (𝜆, 𝜆∗) maximizes �̂�(𝜆, 𝜆′). 

(iv) Repeat Step (iii) until finding 𝜆1
∗ , … , 𝜆𝐽

∗ ∈ 𝐵𝑗 corresponding to 𝜆1, … , 𝜆𝐽 ∈ 𝐵1. 

(v) Assign 𝜆𝑘
∗ = �̂�𝑗(𝜆𝑘), 𝑘 = 1, … , 𝑚; which estimate 𝑇𝑗 , 𝑗 = 1, … , 𝑚. 

2.2. Procedure for Estimating 𝑎𝑗𝑘(𝑥), 𝑗, 𝑘 = 1, … , 𝑚 

Mahmoudi et al. (2018a) defined the periodogram of the finite ACS time series as  

𝑰𝑋
𝑚(𝜆) = 𝒅𝑋

𝑚(𝜆)𝒅𝑋
𝑚∗(𝜆), 
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where 

𝒅𝑋
𝑚(𝜆) = (𝑑𝑋(𝑇1(𝜆)), 𝑑𝑋(𝑇2(𝜆)) … , 𝑑𝑋(𝑇𝑚(𝜆)))

′

 , 𝜆 ∈ 𝐵1. 

They showed that 𝐟(λ) =
𝐈X

m(λ)

2π
,  is an asymptotically unbiased estimator for 𝐟(λ), λ ∈ 𝐵1.  

Therefore we can estimate 𝐀(x) by the square root of 𝐟(x), i. e.,  

�̂�(x) = 𝐬𝐪𝐫𝐭 (𝐟(x)). 

 

3. Simulation Study 

In this section, first we demonstrate the simulation results of using the presented method 

in spectral support estimation. Then the applicability of the method is evaluated by a real 

example. 

3.1. Simulation Study 

To analyze the ability of the presented approach, different datasets are generated from the 

process  

𝑋𝑡 = (1 + cos(𝜔𝑡))𝑌𝑡, 𝜔 ∈ (0, ∞), 

where 

𝑌𝑡 = 𝑍𝑡 + 0.5𝑍𝑡−1, 

and 𝑍𝑡 is a sequence of IIDN(0,1). 

The simulations are accomplished after 1000 runs and using the R 3.3.2. software (R 

Development Core Team, 2017). 

The spectral mass of 𝑋𝑡 is supported on the lines given by 

𝑇1(𝑥) = 𝑥, 𝑇2(𝑥) = 𝑥 + 𝜔, 𝑇3(𝑥) = 𝑥 − 𝜔, 𝑇4(𝑥) = 𝑥 − 2𝜔, 𝑇5(𝑥) = 𝑥 + 2𝜔. 

Figure 1 shows the spectral square[0,2𝜋)2, for  
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𝜔 = {0.5,1,2}. 

The results of the estimation procedure are shown in Table 1. 

The presented approach is employed to predict 10 last observations (�̂�𝑁−9, … , �̂�𝑁, ) based 

on {𝑋1, … , 𝑋𝑁−10}. The results are summarized in Table 1. The first and second columns report 

the values of the mean absolute error (MAE) and the mean square error (MSE), which is 

respectively presented by 

𝑀𝐴𝐸 =
1

10000
∑ ∑ |�̂�𝑘,𝑗 − 𝑋𝑘,𝑗|

𝑁

𝑗=𝑁−9

1000

𝑘=1

, 

and 

𝑀𝑆𝐸 =
1

10000
∑ ∑ |�̂�𝑘,𝑗 − 𝑋𝑘,𝑗|

2
,

𝑁

𝑗=𝑁−9

1000

𝑘=1

 

where 𝑋𝑘,𝑗 and �̂�𝑘,𝑗 are the real and predicted values for 𝑋𝑗 in replication 𝑘. 

 

As Table 1 indicates, the values of MAE and MSE are very close to zero and consequently we 

can accept that the introduced approach acts well, especially as 𝑁 is large. 

3.2. Real data 

Now, we illustrate a real example to show the ability of the introduced approach in the 

real world applications. The dataset includes the first difference of centered moving average 

filter 2×12 moving average (MA) applied for logarithm of industrial production index (IPI) in 

Poland (2005 = 100%) since January 1995 untile December 2009, Lenart and Pipien (2013b). 

Figure 2 shows the IPI, the first difference of centered moving average filter 2×12 MA applied 

for IPI and the first difference of centered moving average filter 2×12 MA applied for logarithm 

of IPI, respectively. Lenart and Pipien (2013b) detected an ACS time series with spectra on the 

lines 𝑇𝑗(𝑥) = 𝑥 ± 𝛼, 𝛼 ∈ {0.062, 0.153, 0.258} . Figure 3 also shows the spectral coherency 

graph. This graph also reveals that the considered ACS time series by Lenart and Pipien (2013b) 

can be a good choice to fit dataset.  
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The presented method is applied to predict 10 last observations (�̂�𝑁−9, … , �̂�𝑁, ) based on 

{𝑋1, … , 𝑋𝑁−10}. The results are summarized in Table 2. The columns show the values of absolute 

error (AE) and square error (SE), which is respectively defined by 

𝐴𝐸 = |�̂�𝑗 − 𝑋𝑗|, 

and 

𝑀𝑆𝐸 =
1

10
|�̂�𝑗 − 𝑋𝑗|

2
, 

where 𝑋𝑗 and �̂�𝑗 are the real and predicted values for 𝑋𝑗. 

As Table 2 indicates, the values of AE and SE are very close to zero and consequently we can 

accept that the presented approach acts well in real world problems. 

  

Figure 1: Spectral square, Left: 𝜔 = 0.5, Middle: 𝜔 = 1, and Right: 𝜔 = 2 

 

Table 1: The values of MAE and MSE for simulated datasets 

N MAE MSE 

100 0.002942547 8.32855E-06 

200 0.002929578 7.61992E-06 

500 0.002695950 8.91804E-06 

1000 0.002640224 8.49954E-06 

5000 0.002199655 6.57345E-06 

10000 0.002023741 6.95971E-06 
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Figure 2:  The IPI (Top), the first difference of centered moving average filter 2×12 MA applied for IPI (Middle) 

and the first difference of centered moving average filter 2×12 MA applied for logarithm of IPI (Bottom) in Poland 

(2005 = 100%) since January 1995 untile December 2009 
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Figure 3: Spectral coherency graph for the first difference of centered moving average filter 2×12 MA applied for 

logarithm of IPI in Poland (2005 = 100%) since January 1995 untile December 2009 

 

Table 2: The values of AE and SE for real dataset 

j AE SE 

N-9 0.002196039 4.47264E-06 

N-8 0.002674178 5.68371E-06 

N-7 0.002453326 4.54062E-06 

N-6 0.002992652 5.47701E-06 

N-5 0.002766690 4.07448E-06 

N-4 0.002340976 5.40244E-06 

N-3 0.002684742 7.07334E-06 

N-2 0.002285459 8.97162E-06 

N-1 0.002690938 4.07284E-06 

N 0.002334971 8.91985E-06 
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