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Abstract. Complex tasks can be difficult to train and difficult to learn. Though 

training one-on-one with a human instructor is considered the gold standard for 

learning, social agency theory posits that social cues in virtual instructors can 

elicit the same mental processes in learners that occur with human instructors. 

We contend that artificial intelligence (AI)-driven pedagogical agents (PAs) 

could be superior for analyzing learner data, adapting instructional content, and 

providing scalable, consistent, on-demand training, particularly when instructors 

are expensive or unavailable. Ideally, an AI-driven PA would surpass the capa-

bility of a human instructor if these features could be fully realized. Because there 

are key differences in the way that humans and AI present learning content, we 

must ascertain whether a PA can deliver a quality of learning similar to a human 

instructor. We compared the knowledge levels of two groups after learning a 

complex task with either a human instructor or PA. We present nonexperimental 

preliminary findings that suggest learning from a human instructor and PA are 

comparable and discuss instructional considerations for PA design approach. 

Keywords: Adaptive Training, Artificial Intelligence, Complex Learning, Hu-

man Performance, Virtual Instructors 

1 Introduction 

Human one-on-one instruction has long been the gold standard for delivering a flexible 

style of instruction that is not possible in the group setting [1]. While individualized 

instruction is considered optimal, it imposes a costly burden to training programs. Mod-

ern artificial intelligence (AI) solutions, such as pedagogical agents (PAs), could reduce 

costs without significant sacrifices in training quality. When PAs are supported by well-

designed instructional algorithms, they can provide a tailored learning process similar 

to the one-on-one learning experience.  

Social agency theory (SAT) [2] offers a practical theoretical framework to guide 

instructional algorithm design considerations. SAT posits that the use of social cues in 

a non-human entity (such as a PA) can trigger the same social conversational schema 

elicited during human instruction. For example, the integration of facial expressions, 

politeness, natural voices, and titular names might prime a human-nonhuman interac-

tion to be perceived as inherently social [2, 3]. Training outcomes benefit from social 
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schema activation because the learner engages a host of cognitive processes (e.g., co-

operation principle, deep cognitive learning) to make sense of what the PA is communi-

cating [4]. Perhaps unwittingly, the learner abides the social rules of the exchange while 

making lasting, meaningful representations of the information in memory [2, 5]. 

Nonetheless, designing effective instructional algorithms for training complex tasks 

can be challenging. For instance, if the task to-be-trained is complex in nature, it likely 

includes difficult decision-making and problem-solving aspects where learners often 

make mistakes. These mistakes are valuable for human instructors who use them to 

provide performance-based feedback and modify instruction to adapt to their learner’s 

needs. Instructional algorithms may also be able to detect these errors and the reasons 

they were made. Using this information, PAs could deliver instruction through multi-

media (e.g., text, images, audio clips, graphics, videos) and a variety of interventions 

(e.g., real-time feedback, after-action review, scaffolding) to approximate human in-

struction. However, determining when to present instructional materials, prioritizing 

competing learning goals, and ensuring the learner understands the PA are complicated 

aspects of designing effective instructional algorithms. Therefore, thoughtful design of 

a comprehensive PA algorithm must account for a variety of learner needs and perfor-

mance outcomes in a complementary way.   

To this end, we created a dynamic instructional algorithm to compare a PA to the 

gold standard of one-on-one instruction for learning outcomes in a complex task. Pre-

vious work has explored PA algorithms as part of computer-based instruction and adap-

tive training (AT) delivering end-to-end complex task instruction [6, 7, 8]. This re-

search suggests that well-designed PA algorithms support maintenance of learning and 

improve on-task performance [9]. However, it remains to be seen whether PA algo-

rithms can meet (or even exceed) the learning benefits of human instruction. 

2 Methodology 

We performed two data collections where we trained groups of participants on a 

complex radio frequency (RF) identification task. The human instructor group (HI; data 

collection 1; N = 90) received one-on-one training from an experimenter and the PA 

group (PA; data collection 2; N = 89) received training from a PA instructor. During 

the task, participants monitored an environment for RF signals, performed signal anal-

ysis, and prepared and submitted time-sensitive reports. Both groups received training 

on how to perform the RF identification task, including using the interface (taking 

measurements, finding information, and submitting reports) and signal analysis (under-

standing parameter information, priorities of each signal type, reporting requirements, 

etc.). After the training session, both groups answered 10 multiple-choice quiz ques-

tions relating to these task topics.   

To mimic the capabilities of a human instructor, we designed a PA that automatically 

monitored a participant's actions and provided them timely, relevant instruction through 

visual cues and audio clips via a feedback algorithm. For example, where a human 

instructor would have directed the learner’s attention to relevant information via ges-

ture, verbal direction, or controlling the learner’s cursor, the PA would highlight the 
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information, play a sound clip, or take control of the learner’s cursor. The design of the 

PA was informed in 2 ways: (1) using SAT as a framework and (2) by our own protocol 

for providing human instructor-led training for this task. Regarding SAT, we designed 

a PA to present as an animated instructor, Captain Ray, with a human-like face and 

titular name. Through human voice recordings, Captain Ray provided feedback in a 

polite, conversational voice (vs. machine synthesized) to sustain social credibility 

throughout the training session. We also instantiated a gesture analog by using on-

screen visual cues and cursor movements to simulate human-like pointing and other 

guiding gestures. In essence, the PA served as an “over-the-shoulder” instructor, gov-

erned by algorithms that emulate the instructional sequences a human instructor would 

provide to the learner. Regarding the human instructor protocol, there were two types 

of feedback delivered to learners: assistive and corrective. Assistive feedback guided 

the learner when they needed their attention redirected (e.g., “Check the new signal that 

came in”), prompting them to attend to the next part of the task they needed to complete. 

Corrective feedback addressed an error on a numerical or categorical response (e.g., 

“The measurement you just provided was incorrect; remember to measure the full 

waveform”). In both groups, assistive or corrective feedback was provided as needed, 

determined by either the experimenter’s judgment of learner performance (HI group) 

or driven by the PA algorithm (PA group). The content of the PA group’s feedback 

algorithm was generated based on scripts for training learners in the HI group. 

For the PA algorithm, we designed a set of prioritized feedback rules, each with three 

major components: the conditions under which feedback should be presented, the spe-

cific content to be presented (e.g., imagery or audio), and the conditions under which 

the feedback should be removed (e.g., the learner addressed their mistake). Each of 

these rules provided either assistive or corrective feedback to the learner based on their 

actions, inaction, or at scheduled times during training. Over time, the feedback algo-

rithm monitored the learner's performance, queuing up any rules for which the feedback 

presentation conditions were satisfied and displaying them in priority order. As an ex-

ample, participants were responsible for monitoring the environment for the appearance 

of new RF signals. Given the inherent complexity of the task and the interface, these 

signal appearance events were often easy to overlook. To address this, we designed a 

feedback rule to detect whether a new signal had appeared that the learner had not at-

tended to after a few seconds had elapsed. If so, the algorithm played audio from the 

captain informing the learner that they had missed the new signal and provided visual 

cues guiding their attention toward it. Importantly, the scripts, imagery, and timing of 

the algorithm were fixed based on performance for every participant in the PA group. 

This is a contrast to the HI group, where instructors provided verbal feedback based on 

learner mistakes following the same script, but the timing varied naturally with each 

session. 

 

3 Results 
 

We compared both groups’ scores on a knowledge test following their tutorial ses-

sion using the two one-sided t-test (TOST) procedure described by Lakens et al. [10]. 

The result was significant, t(177) = -1.76, p = .04, providing evidence that both versions 
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of instruction had statistically equivalent overall quiz scores (MHI = 90.44%, SDHI = 

10.70%; MPA = 87.75%, SDPA = 12.95%). Although this result supported our goal, we 

wanted to explore frequency data with feedback delivered by the algorithm and how it 

may have related to knowledge test scores in the PA group. Though those in the HI 

group received the same types of feedback, the algorithm automatically collected data 

relating to when and why specific feedback was shown, which could offer insight for 

improving the algorithm and understanding how it affected learning. Eighty-five par-

ticipants’ algorithm data were available for analysis. 

First, we assessed the frequency that each of our 24 rules was triggered by partici-

pants. Examining these data offers a perspective for how often the typical participant 

triggered feedback from the PA, which might suggest areas for algorithm improvement 

(for example, rules that were rarely triggered by participants may need to be revised or 

discarded). Among this sample, all rules were triggered at least once, and some were 

triggered more than once for the average participant (see Figure 1).  Next, we examined 

differences between assistive and corrective feedback to understand whether the PA 

was providing more of one type of feedback or another and how this may relate to 

knowledge acquisition. There were a total of 9 corrective feedback rules and 15 assis-

tive feedback rules. Between these two types, 22% of feedback delivered was correc-

tive, and 78% was assistive. Interestingly, the total sum of feedback triggers was cor-

related with performance on the knowledge test, r(83) = -.28, p = .009, such that more 

feedback interventions from the PA resulted in lower scores on the knowledge test. This 

was primarily driven by corrective feedback, r(83) = -.41, p < .0001, such that those 

who received more corrective feedback performed more poorly on the knowledge test. 

The correlation for assistive feedback was not significant, r(83) = -.12, p = .27. 

 

 
Figure 1. Frequency diagram of feedback algorithm rule triggers. Error bars = SE. 

4 Discussion 

Our observed result was encouraging, but we contend that there are still areas for im-

provement, and our results have limitations. First, we acknowledge that multiple-choice 
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quiz scores only provide a partial account of declarative knowledge acquired from in-

struction. Assessing procedural knowledge and real-time decision-making performance 

may elucidate more differences from these two modes of instruction. 

In evaluating our algorithm, we observed that every feedback rule was triggered; 

however, this could indicate that we neglected to design other feedback-worthy rules. 

In addition, the rules we did employ may have had some limitations for learning. For 

example, when the PA provided feedback, it assumed the participant understood it 

when they addressed the underlying mistake that prompted it; participants were unable 

to seek clarification. Anecdotally, some participants ignored or missed the PA’s audio-

visual feedback, perhaps assigning it less importance than if received from a human 

instructor. The high workload from the task itself may have made it difficult for partic-

ipants to attend to this feedback, especially if it interrupted their workflow or was not 

as salient as feedback from a human instructor. Instead, a human instructor might be 

better able to deliver feedback at more opportune times. It may also be possible to in-

crease the saliency of visual feedback to ensure that it is not missed. For example, the 

PA could guide a learner’s attention by tracking their cursor or eye movements and 

creating a visual path toward relevant feedback. Though we endeavored to account for 

a variety of possible learner interactions, we were unable to accommodate them all us-

ing this prescribed feedback, an ability human instructors can often perform well. 

In general, the PA instructor provided more assistive feedback than corrective feed-

back, but corrective feedback was more strongly and negatively correlated with perfor-

mance on the knowledge test. Future research is needed to understand why this hap-

pened. Were participants who received more corrective feedback unable to properly 

encode the task procedure because corrective feedback interrupted their flow to correct 

their work? Or did they poorly encode the instructional material prior to training with 

the PA? Given that corrective feedback sought to address specific signal classification 

errors, it may be the case that a participant who received less of this feedback type 

understood the task sufficiently well and therefore performed well on the knowledge 

test. Additionally, this poses the question of how this corrective feedback could be im-

proved to minimize the performance gap between those who committed more mistakes 

and required more of this type of feedback and those who achieved high scores without 

it. Seeing equivalence between a human instructor and PAs designed utilizing SAT 

principles is promising. However, we do not yet believe it fully capitalizes on the ben-

efits of AI-driven PAs, such as scalability and performance data analysis. With these 

shortcomings addressed, PAs could exceed the training capabilities of a one-on-one 

human instructor.  

5 Conclusion 

This work describes an exploratory analysis comparing the effectiveness of an AI in-

structor against a human instructor for training a complex RF identification task and its 

effects on learning. Results suggested both approaches provided instruction to learners 

equivalently; however, future research is necessary to determine the efficacy of using 

PAs and associated feedback algorithms in other task domains and with other measures 

of learning to better bridge the gap between them and human instructors. 
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