
EasyChair Preprint
№ 4474

BVNet: A 3D End-to-End Model Based on Point
Cloud

Nuo Cheng, Xiaohan Li, Shengguang Lei and Pu Li

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 26, 2020

BVNet: A 3D End-to-end Model Based on Point
Cloud

Nuo Cheng1,2, Xiaohan Li2, Shengguang Lei2, and Pu Li1

1 Process Optimization Group, Technische Universität Ilmenau
98693 Ilmenau, Germany

nuocheng1992@gmail.com Pu.li@tu-ilmenau.de
2 LiangDao GmbH, 12099 Berlin, Germany
{xiaohao.li, shengguang.lei}@liangdao.de

Abstract. Point cloud LiDAR data are increasingly used for detecting
road situations for autonomous driving. The most important issues here
are the detection accuracy and the processing time. In this study, we pro-
pose a new model which can improve the detection performance based
on point cloud. A well-known difficulty in processing 3D point cloud is
that the point data are unordered. To address this problem, we define 3D
point cloud features in the grid cells of the bird’s view according to the
distribution of the points. In particular, we introduce the average and
standard deviation of the heights as well as a distance-related density of
the points as new features inside a cell. The resulting feature map is fed
into a conventional neural network to obtain the outcomes, thus realiz-
ing an end-to-end real-time detection framework, called BVNet (Bird’s-
View-Net). The proposed model is tested on the KITTI benchmark suit
and the results show considerable improvement for the detection accu-
racy compared with the models without the newly introduced features.

Keywords: Autonomous driving · point cloud · feature extraction · 3D
object detection · CNN · KITTI.

1 Introduction

Object detection plays an important role in an advanced driver assistance system
(ADAS). Compared with 2D images, 3D data have many advantages because
of its depth information. However, with the rapid hardware development, the
improvement of the performance of 3D object detection based on deep learning
is not as fast as that of 2D object detection. For example, in the tests of the
KITTI benchmark suite3, the performance gap of the average precision between
2D and 3D models for car detection is higher than 10%. Therefore, improving
the 3D detection precision remains a significant challenge.

The available 2D object detection methods can be classified into two ap-
proaches: the one-stage methods [13,18–20] and the two-stage methods [6–8,21].
A two-stage method first trains a region proposal network (RPN) to generate

3 http : //www.cvlibs.net/datasets/kitti/eval 3dobject.php

2 N. Cheng al.

several interested regions, and then performs the classification and regression of
the bounding boxes. On the other hand, the one-stage detection method predicts
bounding boxes and object categories in one step. The latest versions of the soft-
ware using these two approaches both show extremely high performance [8, 20].

With the fast development and wide application of LiDAR, 3D detection-
based point cloud data becomes more and more important. Point cloud gives
3D information which can be used for 3D object detection. However, unlike the
2D arrangement of pixels in an image, the data points of a 3D point cloud are
unordered. For this reason, point cloud cannot be processed directly by a typical
convolutional architecture. Currently, the existing 3D detection methods could
be classified into three categories to solve this problem.

First, the unordered point cloud is processed using a symmetric function. Qi
et al. were the first to propose a detection method based on point cloud called
PointNet [16, 17]. In [15] they applied it for detecting objects for autonomous
driving and tested on the KITTI benchmark suite. However, this method needs
a pre-processing using a 2D image and a 2D detection model. Therefore, the pre-
cision of this method depends on the performance of the 2D detection approach.
In addition, it is difficult to achieve a real-time detection, since successively run-
ning the 2D and 3D detection models will take a large amount of computation
time.

Using PointNet [16, 17] as the backbone network, PointRCNN [22] has re-
cently shown higher performance on the KITTI Benchmark Suite. It is the first
two-stage 3D object detection approach with raw point cloud as input. However,
in the first detection stage, a bounding box is needed for each foreground point
of the detected object, which requires high computation expense. In addition,
PointNet [16, 17] does not show high-speed performance on large-scale point
cloud [15, 17]. Furthermore, PointRCNN is not suitable to detect large objects
such as trucks and special vehicles.

Second, unordered point cloud is projected to a 2D image before processing.
Chen et al. [3] proposed another highly ranked model (MV3D) by projecting
LiDAR point cloud to a bird’s eye view map. In this way, unordered 3D points
are transferred into a 2D image which is further processed for object detection.
After that, more and more detection models [1–4,10,11,24,25,28] were proposed
to extract features on the bird’s eye view map to improve the quality of the
object detection. Table 1 shows the features extracted in the grid cells by these
detection models. Some models [1, 2, 4, 11, 24, 25, 28] extract features based only
on the bird’s eye view map and others combine it together with image [3,10]. The
features mostly extracted are the height, intensity and density of the point cloud
for each grid cell. Although 2D approaches could achieve a high frame-rate, the
average precision is low [1,2, 4, 11,24,25,28].

Third, unordered point cloud is transformed to voxels. The basic idea is to
divide the point cloud into many small voxels and uses a 3D-CNN to extract
features. VoxelNet [29] was developed based on this idea. In comparison to the
models shown in Table 1, VoxelNet achieves a high average precision but cannot
be used for real-time detection (only 4 fps on TitanX GPU [29]).

BVNet: A 3D End-to-end Model Based on Point Cloud 3

Fig. 1. BVNet Pipeline. We present a sample detection model. The input is raw point
cloud from Velodyne HDL-64 LiDAR. The output is 3D bounding box with classes. We
connect three new handcrafted features with modified State-of-the-Art 2D detector.

From the hardware implementation point of view, the first and the third
approaches discussed above cannot be readily applied in real circumstances due
to the fact that they usually run in GPUs [9, 14, 15, 17, 22, 23, 26, 29]. High per-
formance GPUs consume a large amount of power and thus are difficult to run
stably for vehicle-mounted detection systems. Existing dedicated hardware or
embedded devices (e.g. Huawei Atlas 200 and 300 etc.) support 2D-detectors
better than 3D-detectors4. In such cases, the second approach is suitable.

In addition, detection of multiple objects for autonomous driving is required.
Compared with 3D detectors, 2D detectors are more appropriate for address-
ing multi-classification problems [18–20]. 3D detectors such as MV3D [3] and
PointRCNN [22] can only detect a single category at a time. Therefore, it is
favorable to use the second approach, i.e. to project the point cloud to a 2D im-
age and combine it with an efficient 2D detection model, and finally convert the
2D results back into the 3D detection results. However, the shortcoming of this
approach is that the height information is lost. Therefore, proper measures have
to be taken to compensate the height information in the case of autonomous
driving.

In this study, we propose a simple 3D detection model, BVNet (Bird’s-View-
Net), which is only based on raw point cloud, to achieve real-time detection for
multi-categories for autonomous driving. The proposed BVNet pipeline is shown
in Fig.1, being a detection method based on the bird’s eye view map. Unlike the
models listed in Table 1, we introduce the average and standard deviation of
the heights as new features inside each cell. In addition, we define a distance-
related density feature of the points. The backbone detection network in BVNet
is an extended CNN based on the Complex-YOLO [24, 25] and YOLOv3 [20].
The proposed BVNet is evaluated on the KITTI benchmark suite3. Compared
with the models in Table 1, better results in terms of accuracy are achieved by
using our model. In addition, in comparison to models with 3D approaches like

4 Huawei atlas support: https://support.huawei.com/enterprise/en

4 N. Cheng al.

PointNet [16,17] and VoxelNet [29], we can achieve similarly accurate results for
detecting cars with considerably lower computation time.

Table 1. Features extracted by different detection models

Models Features
Number of the

height feature maps
Camera

MV3D [3] Max Intensity Density Max height M +

Complex-YOLO [25] Max Intensity Density Max height 1 -

AVOD [10] - Density Max height 5 +

YOLO3D [1,4] - Density Max height 1 -

RT3D [28] Mean height Min Height Max Height 3 -

BirdNet [2] Mean Intensity Density Max height 1 -

2 Proposed Model

2.1 Introduction of new features

We consider the point cloud data from Velodyne HDL64 Lidar [5]. At first, we
represent the point cloud by projecting it to a bird’s eye view map. The detection
range is selected as 60m×60m×3.25m. Inspired by Complex-YOLO [24,25], we
discretize and project the raw point cloud into a 2D grid cell with the resolution
of 8 cm. Therefore, the final size of the grid map is 768× 768.

Since the features of the cells used for detection are important, we introduce
following three new features to improve the performance for detection.

First, as mentioned in the last section, the models listed in Table 1 extract
the maximum height information of the point cloud inside grid cells as a feature.
However, the measurement of the maximum height by Lidar may include noises.
In order to reduce the influence of the noises, we use the average height of each
grid cell, as follows:

fh =
hmean
3.25

(1)

where hmean is the average of the height values at the points reflecting the object
under consideration,and the 3.25 is the maximum height of the points.

Second, it is a well-known fact that the raw point cloud will become sparser
as the distance increases. It means that the detection accuracy will be lowered
if the cloud data are taken from a large distance. To address this problem, we
introduce a distance-related density of the point cloud as a new feature. To this
end, we multiply the grid density by the Euclidean distance between the grid
cell and the origin point (i.e. the LiDAR sensor position), as shown in Fig.2. For

this purpose, we modify the normalized density formula min(log(N+1)
log64) used in

MV3D [3], as follows:

BVNet: A 3D End-to-end Model Based on Point Cloud 5

LiDAR? 0? 0?
.

.

.A

B

X (m)

Y (m)

Gr id Cell

r1

r2

......

...

Fig. 2. For the two grid cells (A and B) in this bird’s eye view map, we multiply the
number of point clouds in each grid by r1 and r2 to balance the point clouds sparse
region.

r =
√

(xgrid − xorigin)2 + (ygrid − yorigin)2 (2)

ϑ = N × r (3)

fd = min(1.0,
log(ϑ+ 1)− a

b
) (4)

where N is the number of points in the grid cell, xgrid, ygrid denote the coordi-
nates of the grid cell and (xorigin, yorigin) is defined as (0, 0). Fig.3 shows the
distribution of the values of log(ϑ+1), based on which, it can be found that most
of the values are between 3.0 to 9.0. Thus, in the normalized density formula (4),
we take a = 3, b = 6. Attention should be paid that for different LiDAR data,
different values for a and b should be chosen.

Third, some detection models [2, 3, 24, 25] extract the intensity as a feature
inside a grid cell. However, based on the BirdNet’s experimental results [2], it
is found that only using this feature, the intensity of point cloud is extremely
unstable. Thus, using the intensity as a feature can improve a little or nothing of
the detection performance. Therefore, we propose to use the standard deviation
of the height of the point cloud as a new feature to replace the intensity. This is
because the main disadvantage of bird’s-eye-view-based detection models is the
loss of the height information. However, it is difficult to reflect the distribution of
point clouds on the Z-axis only by the mean point cloud height of each grid cell.
However, the standard deviation can supplement the distribution of the point
clouds in the cell, which is computed as follows

Sn =

√√√√ 1

N

N∑
i=1

(hi − hmean)2 (5)

6 N. Cheng al.

0 2000 4000 6000 8000 10000 12000 14000 16000

3

4

5

6

7

8

9

Fig. 3. The distribution of the distance-related density of the point cloud (The hori-
zontal ordinate is the number of point cloud and the vertical ordinate is the values of
log(ϑ+ 1)).

where hi is the height values of the points. However, the standard deviation in
most grids may be too small (e.g. 0-0.1). To make the distribution of the standard
deviation smooth between the cells, we normalize the standard deviation by

fstd =

√
1− (

Sn
max(Sn)

− 1)2 (6)

Finally, the three newly introduced features fd, fh, fstd are used as inputs to
the CNN, as shown in Fig.1.

2.2 Network Architecture

Our BVNet model uses a modified Darknet53 [20] architecture as the backbone,
which can predict not only the dimension and classes of the bounding boxes, but
also the orientation. Fig.4 shows the complete network structure. Because the
BVNet consists of feature pyramid networks [12], it extracts features from three
different scales of a feature map. The down-sampling steps of the three scales
are 8, 16 and 32, respectively. In addition, as YOLOv3 [20], BVNet also has 5
residual modules, which extends the network to 53 layers

Orientation Prediction. In the past two years, many methods [1,4,24,25]
were proposed to modify YOLO [18–20] to enable it to predict orientation.
YOLO3D [1] and YOLO4D [4]can predict the offset of orientation and compute
the mean squared error between the ground truth and the predicted orienta-

tion directly in the loss function expressed as
s2∑
i=0

B∑
j=0

Lobjij (θi − θ
′

i)
2, where θi is

the predicted orientation and θ
′

i is the ground truth orientation of the bounding
box. However, since using one value could create singularities, in Complex-YOLO

BVNet: A 3D End-to-end Model Based on Point Cloud 7

Type Filters Size Output
Convolutional 32 3x3 768 x 768
Convolutional 64 3x3/2 384 x 384
Convolutional 32 1x1 Residual_block_0
Convolutional 64 3x3
Residual 384 x384

Convolutional 128 3x3/2 192 x 192
Convolutional 64 1x1 Residual_block_1
Convolutional 128 3x3
Residual 192 x 192

Convolutional 256 3x3/2 96 x 96
Convolutional 256 1x1 Residual_block_2
Convolutional 512 3x3
Residual 96 x 96

Convolutional 512 3x3/2 48 x 48
Convolutional 256 1x1 Residual_block_3
Convolutional 512 3x3
Residual 48 x 48

Convolutional 1024 3x3/2 24 x 24
Convolutional 512 1x1 Residual_block_4
Convolutional 1024 3x3
Residual 24 x 24

1x

2x

8x

8x

4x Conv_Block_0

Conv_Block_1

Conv_Block_2

Concat_Block_0

Concat_Block_1

1x1, 30

3x3, 256

1x1, 30

3x3, 512

1x1, 30

3x3, 1024

2D Bounding Box (x, y, w, h, Ø , Class)
Dection Header

3x3/2, 64

1x1, 32

3x3, 64

1x1, 32

3x3, 64

3x3/2, 64

1x1, 32

3x3, 64

1x1, 32

3x3, 64

3x3/2, 64

1x1, 32

3x3, 64

1x1, 32

3x3, 64

3x3/2, 64

1x1, 32

3x3, 64

1x1, 32

3x3, 64

Residual_Block_0

1x1, 512

3x3, 1024

1x1, 512

3x3, 1024

1x1, 512

Conv_Block_0

1x1, 256

UP Sample

+

Concat_Block_0

Fig. 4. The detection backbone is the same as YOLOv3’s and we add an orientation
regression at the end, so that the network can predict the orientation of the object.
The bottom shows the residual block, the convolutional block and the feature pyramid
network of the network, respectively.

[24,25], the Grid-RPN approach in YOLOv2 [19] was modified by adding two re-
sponsible regression parameters (tim, tre): bθ = arg(|z| eibθ) = arctan2(tim, tre).
In BVNet, We employ this modified method so that it can predict the orientation
of bounding boxes.

Loss Function. The loss function L of our network is based on YOLOv3 [20]
and Complex-YOLO [25] and the ground true boxes are defined by (x, y, w, h,
θ, class):

LBV Net = LY OLOv3 + LComplex−Y OLO (7)

LBV Net = λcoord

N×N∑
i=0

K∑
j=0

1obj
ij [(tx − t

′
x)2 + (ty − t

′
y)2]

+λcoord

N×N∑
i=0

K∑
j=0

1obj
ij [(tw − t

′
w)2 + (th − t

′
h)2]

+λcoord

N×N∑
i=0

K∑
j=0

1obj
ij [(tre − t

′
re)2 + (tim − t

′
im)2] (8)

8 N. Cheng al.

−
N×N∑
i=0

K∑
j=0

1obj
ij [c

′
ilog(ci) + (1− c

′
i)log(1− ci)]

−λnoobj

N×N∑
i=0

K∑
j=0

1noobj
ij [c

′
ilog(ci) + (1− c

′
i)log(1− ci)]

−
N×N∑
i=0

1obj
ij

∑
c∈classes

[P
′
i (c)log(Pi(c)) + (1− P

′
i (c))log(1− Pi(c))]

where λcoord is the weight of the coordinate loss. λ is used to control the
imbalance of the predicted bounding boxes with and without objects inside.
tx, ty, tw, th, tre, tim are the predicted values of the 2D bounding box. t

′

x, t
′

y, t
′

w, t
′

h, t
′

re, t
′

im

are the truth values of the 2D bounding box. c is the confidence of the predic-
tion bounding box. Pi is the probability of the object class. Cross entropy is used
here to calculate the loss. 1objij takes the value of 0 and 1 based on whether there
is a ground truth box in the i-th and j-th location (i.e.,1 if there is a ground

truth box, and 0 otherwise). In contrast, 1noobjij takes the value of 0 if there is
no object, and 1 otherwise.

Anchor Box Calculation. As reported above, YOLOv3 [20] uses a feature
pyramid network [12] to detect objects on three different scale feature maps.
For each feature map, an object detector predicts three anchors on every grid
cell. The size of the anchors is calculated in different datasets by the k-means
clustering. Since the position of Lidar is fixed, the size of the object in the bird’s
view map does not change with distance, we use the predefined length and width
from cars, cyclists and pedestrians to determine the sizes of the 3 anchors in each
grid cell, with width, and length of (1.6, 3.9), (0.6, 1.76) and (0.6, 0.8) meters [11],
respectively.

Detection Header Network. We predict 3 bounding boxes in each grid
cell on one feature map. The dimension of the tensor is [3 × (6 + 1 +Nclass)],
where 6 stands for the number of bounding box offsets, 1 stand for the confidence
prediction, and Nclass is the number of the classes. In our model, we choose three
KITTI-classes (i.e., car, pedestrian and cyclist) to perform the detection.

3D Bounding Box Regression. A 2D bounding box is obtained through
our improved detection model. Quit a few methods [24,25] transfer 2D bounding
boxes to 3D by a predefined height for each class. However, this method cannot
accurately generate the 3D bounding boxes. In order to improve the accuracy,
we take the maximum average height from the 2D bounding box as the height
of the 3D bounding box.

3 Training and Experiments

3.1 KITTI Dataset

The KITTI dataset [5] (with 7,481 samples for the training and 7,518 samples
for testing) is used to test our model. We follow the frequently used method [14]

BVNet: A 3D End-to-end Model Based on Point Cloud 9

[17] to divide the KITTI training dataset into train split (3712 samples) and
validation split (3769 samples).

3.2 Optimization of feature maps

As stated in the second section, we at first extract the features on the bird’s
eye view map. Fig.5. (a) and (b) show the density map from our model and
that from Complex-YOLO [25]/ MV3D’s [3]. It can be seen that since we use a
distance-related density of point cloud instead of the normally used density, the
improvement is obvious.

(a) MV3D/Complex-YOLO’s density

map

(b) Our density map

(c) Standard deviation feature map (d) Height feature map

Fig. 5. Comparison of different feature maps

In addition, Fig.5 (c) and (d) show the mean height and the standard devi-
ation feature map. It is shown that, compared with the height and the density
feature map, the deviation feature map provides the contour of the object better
and remove some useless points. Finally, we encode the three features as RGB
(Red-Green-Blue) and fed them into the CNN.

3.3 Training and Implementation

Our model is trained by the stochastic gradient descent method with a weight
decay of 0.0005 and a momentum of 0.9. Since the backbone network is based

10 N. Cheng al.

on YOLOv3 [20], the training parameters are taken as the same as YOLOv3’s.
We trained the network for 500 epochs, with a batch size of 4.

At the first few epochs, we used a small learning rate to ensure the conver-
gence (0.001), and then we scaled the learning rate up in the middle epochs(0.005).
In order to avoid gradient divergence, we slowly reduce the learning rate at the
end of the training(0.005 to 0.001). Batch normalization for regularization is per-
formed and Leaky ReLU is used as the activation function. To remove overlapped
bounding boxes, we use the non-maximal suppression (NMS) on the bird’s eye
view maps with a threshold of 0.4.

The training environment used is Ubuntu 16.04 with an NVIDIA 2080ti GPU
and an i7-9700K 3.6GHz CPU. During the training, we randomly crop and flip
the bird’s eye view maps for data augmentation. The total training time is around
50 hours.

3.4 Result Evaluation

We evaluate our model by following the KITTI evaluation protocol, where the
IoU thresholds for the car class is 0.7 and for others are 0.5. Results are given
on the validation set. The average precision (AP) is used to compare the perfor-
mances of different models.

Bird’s eye view map detection performance on validation set us-
ing different features as input. We use our detection network to test all ex-
tracted features on the bird’s view map. We trained each network for 150 epochs.

Fig. 6. Visualization of BVNet results. Examples of detection results of BVNet on
KITTI validation set. (red: car, blue: pedestrian, pink: Cyclist)

BVNet: A 3D End-to-end Model Based on Point Cloud 11

The combinations of features are listed in Table 1. All the methods are tested
on our validation dataset. Our method is compared with Complex-YOLO [25],
YOLO3D [1, 4] and BirdNet [2], which are based only on bird’s-eye-view map
feature extraction. It can be seen that our model shows the best performance.
(see Table 2 and Fig.6).

Table 2. Results of testing different features on the validation dataset.

Features Car Pedestrian Cyclist

Max Intensity Max Height Density 78.18 42.21 61.81

Mean Intensity Max Height Density 78.77 42.57 61.21

- Max Height Density 76.21 41.78 60.00

Max height Mean Height Min Height 72.94 38.92 56.89

Our Features 82.78 42.50 63.71

Evaluation of the bird’s view map with other state-of-the-art mod-
els. All other results are taken from the KITTI benchmark suite3. Following
the KITTI setting, we also divide the results into three difficulty regimes: easy,
moderate and hard. For the car class, our model uses a 2D detector and shows
similar performance compared with the models using a 3D detector. On the
other hand, BVNet has an advantage in terms of efficiency (see Table 3).

Table 3. Results of bird’s view detection

Method Modality speed Car Pedestrian Cyclist

Easy Moderate hard Easy Moderate hard Easy Moderate hard
MV3D [3] Lid.+Img. 360ms 86.62 78.93 69.80 - - - - - -

VoxelNet [29] LiDAR 230ms 89.35 76.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55

F-PointNet [15] LiDAR 170ms 91.17 84.67 74.77 57.13 49.57 45.48 77.26 61.37 53.78

PointRCNN [22] LiDAR 100ms 92.13 87.36 82.72 54.77 46.13 42.84 82.56 67.24 60.28

F-ConvNet [26] LiDAR 470ms 91.51 85.84 76.11 57.04 48.96 44.33 84.16 68.88 60.05

PointRGCN [27] LiDAR 260ms 91.63 87.49 80.73 - - - - - -

Ours LiDAR 50ms 89.45 84.65 78.52 48.97 42.53 38.12 73.87 64.68 60.98

3.5 Failure Cases

Although our model results in an improved detection performance, it shows
some failure cases. The most error cases are road signs and trees mistakenly
detected as pedestrians. The reason is due to the fact that the three handcrafted
features for these classes are too similar. In practical applications, this issue can
be addressed by using target tracking after the detection so as to remove such
false bounding boxes.

12 N. Cheng al.

4 Conclusion

In this paper, we propose BVNet, an end-to-end model based on point cloud
only. We compensate the loss of height information on the bird’s eye view map
with newly introduced features to improve the detection accuracy. In addition,
since our backbone network is YOLOv3 [20] which is able to detect objects of
multiple classes, our model can also be easily extended for detecting new classes.
Moreover, since BVNet only uses point cloud coordinate information to extract
features, it works not only on Velodyne HDL-64 LiDAR, our model can also be
adapted to various LiDAR (e.g. Innovusion LiDAR or Ibeo LiDAR etc.) with
different parameters. Furthermore, since we use the classical 2D network as the
backbone, our model can be readily applied to real autopilot.

References

1. Ali, W., Abdelkarim, S., Zidan, M., Zahran, M., El Sallab, A.: Yolo3d: End-to-end
real-time 3d oriented object bounding box detection from lidar point cloud. In:
Proceedings of the European Conference on Computer Vision (ECCV). pp. 0–0
(2018)

2. Beltran, J., Guindel, C., Moreno, F.M., Cruzado, D., Garcia, F., De La Escalera,
A.: Birdnet: a 3d object detection framework from lidar information. In: 2018 21st
International Conference on Intelligent Transportation Systems (ITSC). pp. 3517–
3523. IEEE (2018)

3. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3d
object detection for autonomous driving. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2147–2156 (2016)

4. El Sallab, A., Sobh, I., Zidan, M., Zahran, M., Abdelkarim, S.: Yolo4d: A spatio-
temporal approach for real-time multi-object detection and classification from lidar
point clouds (2018)

5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3354–3361. IEEE (2012)

6. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international conference on
computer vision. pp. 1440–1448 (2015)

7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2014)

8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017)

9. Jiang, M., Wu, Y., Zhao, T., Zhao, Z., Lu, C.: Pointsift: A sift-like network module
for 3d point cloud semantic segmentation. arXiv preprint arXiv:1807.00652 (2018)

10. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3d proposal
generation and object detection from view aggregation. In: 2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). pp. 1–8. IEEE
(2018)

11. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:
Fast encoders for object detection from point clouds. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 12697–12705 (2019)

BVNet: A 3D End-to-end Model Based on Point Cloud 13

12. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2117–2125 (2017)

13. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: European conference on computer vision.
pp. 21–37. Springer (2016)

14. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object de-
tection in point clouds. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 9277–9286 (2019)

15. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from rgb-d data. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 918–927 (2018)

16. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets
for 3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 652–660 (2017)

17. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Advances in neural information processing
systems. pp. 5099–5108 (2017)

18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2016)

19. Redmon, J., Farhadi, A.: Yolo9000: Better, faster, stronger. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (July 2017)

20. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

21. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

22. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detec-
tion from point cloud. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2019)

23. Shi, S., Wang, Z., Wang, X., Li, H.: Part-aˆ 2 net: 3d part-aware and ag-
gregation neural network for object detection from point cloud. arXiv preprint
arXiv:1907.03670 (2019)

24. Simon, M., Amende, K., Kraus, A., Honer, J., Samann, T., Kaulbersch, H., Milz,
S., Michael Gross, H.: Complexer-yolo: Real-time 3d object detection and tracking
on semantic point clouds. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. pp. 0–0 (2019)

25. Simony, M., Milzy, S., Amendey, K., Gross, H.M.: Complex-yolo: An euler-region-
proposal for real-time 3d object detection on point clouds. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 0–0 (2018)

26. Wang, Z., Jia, K.: Frustum convnet: Sliding frustums to aggregate local point-wise
features for amodal 3d object detection. arXiv preprint arXiv:1903.01864 (2019)

27. Zarzar, J., Giancola, S., Ghanem, B.: Pointrgcn: Graph convolution networks for
3d vehicles detection refinement. arXiv preprint arXiv:1911.12236 (2019)

28. Zeng, Y., Hu, Y., Liu, S., Ye, J., Han, Y., Li, X., Sun, N.: Rt3d: Real-time 3-d
vehicle detection in lidar point cloud for autonomous driving. IEEE Robotics and
Automation Letters 3(4), 3434–3440 (2018)

29. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4490–4499 (2018)

