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Abstract. Distinguishing differences between areas represented with
point cloud data is generally approached by choosing a optimal view-
point. The most informative view of a scene ultimately enables to have
the optimal coverage over distinct points both locally and globally while
accounting for the distance to the foci of attention. Measures of sur-
face saliency, related to curvature inconsistency, extenuate differences in
shape and are coupled with viewpoint selection approaches. As there is
no analytical solution for optimal viewpoint selection, candidate view-
points are generally discretely sampled and evaluated for information
and require (near) exhaustive combinatorial searches. We present a con-
solidated optimization framework for optimal viewpoint selection with
a continuous cost function and analytically derived Jacobian that incor-
porates view angle, vertex normals and measures of task related surface
information relative to viewpoint. We provide a mechanism in the cost
function to incorporate sensor attributes such as operating range, field of
view and angular resolution. The framework is evaluated as competing
favourably with the state-of-the-art approaches to viewpoint selection
while significantly reducing the number of viewpoints to be evaluated in
the process.
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1 INTRODUCTION

Humans are inherently capable of determining discriminative viewpoints when
perceiving 3D objects; generally the view selected emphasizes distinguishing at-
tributes of an object relative to the task at hand. Assuming that position and
orientation of viewer constitute the viewpoint (the same as pose), the definition
of optimal viewpoint is highly dependent on the concept of information required
for a task. Examples include optimal views to discern an object from others in
clutter [23], to achieve complete coverage of space [9, 19] and to determine dis-
tinctiveness between objects of the same class [6]. Our particular interest is in
using a depth sensor as the viewer of objects from same class, (e.g human face,
single species body attributes - Angus cattle muscle score [14]), as they exhibit
limited variations over the entire class.
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When examining a 3D object for discriminating tasks in dynamic scenes (e.g.
moving animals), limited number of embedded fixed-pose depth sensors in the
scene are often confronted with restricted time and angles for capturing data.
Systems that perform dense reconstruction [15] continuously add measurements
into an underlying representation, the rapid dynamic nature of animal motion
and inability to reasonably constrain animals for any periods of time renders
these approaches unfeasible on a scale. However, it is reasonable to obtain dense
representative point clouds of exemplars (object, animal or part thereof). Then,
the problem of discerning an object can inherently be approached leveraging this
information and devising methods to acquire the discriminative properties with
a limited number of informative viewpoints (in the context of our work referred
to as optimal viewpoints).

Assigning information content conveyed by each point of a 3D surface is
achieved with saliency measures related to local or global curvature [8, 13, 20].
Accordingly, the optimal viewpoint should enable a sensor (depth camera) to
have the optimal coverage over the most informative or distinct points both lo-
cally and globally while also accounting for the distance to the foci of attention.
The viewpoint quality and ultimate selection are generally decoupled, candidate
viewpoints are discretely sampled on a lattice [12, 13] and evaluated for infor-
mation.

In this paper we tackle the problem of finding the optimal viewpoint for a
depth sensor by presenting a consolidated framework based on optimization on
the manifold. A continuous cost function that incorporates view angle, surface
normals and surface quality with an analytically derived Jacobian is leveraged
via an optimization framework to determine the optimal viewpoint. We further
provide, via a single coefficient embedded in the cost function, a mechanism
to consider knowledge of the entire object or limited fields of view (FoV). By
ray-tracing the point cloud, the framework enables to consider sensor attributes
such as optimal sensing range, field of view and angular resolution. The proposed
framework is extendable to configurations of multiple depth sensors.

The organization of this paper is as follows: Section II discusses related work
on exploiting surface information, with emphasis on viewpoint selection to dis-
criminate objects. Section III details our approach that incorporates surface and
viewpoint quality in a unified optimization framework. An empirical evaluation
of the approach is presented and we compare our results with the state-of-the-
art in Section IV. Finally, conclusions are drawn and future work proposed in
Section V.

2 RELATED WORK

Assessment of a 3D object exploits stereopsis, which supports the perception
of a 3D world including discriminating a difference in depth, judging slant or
curvature, and ascertaining surface properties. Previous research demonstrated
that an observer’s perception of convexity and concavity of surfaces, even with
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partial occlusions, allows to ignore task irrelevant regions and shapes of a 3D
surface [5, 16].

In order to define regions of interest, measures of surface saliency have been
proposed [20]. Measures of centre surround operators have been used, such as
maximum curvature [8] or Gaussian-weighted mean curvatures [11]. Alterna-
tively, local descriptors are used, such as Scale Invariant Features [17] and Spin
Images [10]. These methods identify regions where curvature is inconsistent with
its immediate surroundings and where human vision tends to be drawn to take
differences in shape into account. Additionally, work on grouping regions of inter-
est (ROI) and exemplifying influence of extrema points has also been researched
[13]. All of these approaches assign weights per vertex or face of a 3D object based
on the computed saliency, thereafter this information is the utility to determine
optimal viewpoints.

Irrespective of the method assigning surface saliency attributes, the process of
determining the optimal viewpoints involves a search over the space of viewpoint
poses. This search has been generally performed by discretely sampling the space
[12], commonly with viewpoints on a sphere encompassing the object, where
orientation of each viewpoint is aimed towards the centroid of the object.

While techniques to group the points and limit the search space have been
introduced [7, 12, 13], a unified framework that exploits a cost function associated
with the surface quality in an optimization framework has not been proposed.

We address this with an approach leveraging a cost function that incorporates
finite fields of view and spatial resolution of a 3D sensor and surface quality
relative to the viewpoint. An analytical Jacobian is used in an optimization
approach to guarantee the convergence.

3 METHODOLOGY

Given a noisy point cloud obtained by depth sensors, the aim of this work is to
find the optimal viewpoint —3D pose (R, t) ∈ SE(3), where t is the translation
and R is an orthonormal vector base, i.e. the rotation matrix— for the sensor by
computing the geometrical properties of the object-sensor setup to capture the
most informative region(s) for accurate perception tasks. Our approach considers
the field of view and the depth range of the camera as part of the optimization
problem.

Surface curvature in this work is extended to point clouds, by considering
curvature embedded at each vertex (point) of the surface. The normal curvature
at each vertex on the surface is the curvature of the planar curve created by
intersecting the surface at that vertex with the plane spanned by the tangent
vector and the surface normal. By rotating the tangent vector around the surface
normal (and subsequently varying the normal curvature) the curvature property
of the surface (and vertices) is acquired as two distinct extrema values called
principle curvatures while their average is mean curvature [3]. In this work, in
addition to mean curvature, we take advantage of noise associated with position
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and normals of vertices as the information of interest and utilise them in the
framework as vertex weights.

The scalar value of weights associated with each vertex can be used as infor-
mation metric to drive viewpoint selection. Hence after a pre-processing stage
we define a 7-tuple for each vertex of the surface that contains 3D position, sur-
face normal and an information weight as (pj ,nj , cj) where pj = (xj , yj , zj) and
nj = (nxj ,nyj

,nzj ) respectively.
In this work we solely utilize depth information of an RGB-D camera, per

manufacturers specifications [1] depth RMSE is related to horizontal offset from
principle point. Therefore, the most accurate measurement of depth is achieved
when the sensor is gazing perpendicularly to the points of interest. Having this
defined, the main axis of the sensor should be co-linear with the vertex nor-
mals of ROI. Specifically, given the afore-mentioned tuple and the current depth
sensor pose, the proposed framework aims to minimize iteratively the objective
function conformed by the angle between the principal axis of the sensor and
the surface normals and the vector that joins the vertex and the sensor as shown
in Fig. 1. This is done, while applying the FOV and visibility range constraints.
The flowchart of our proposed algorithm is demonstrated in Fig. 2. Note that in
this work the terms ‘point’ and ‘vertex’ are used interchangeably.

Fig. 1: Angles definition for camera-object setup and magnified area of the cam-
era coordinate frame in the top right. pj : j th vertex on the surface. ti and Ri:
camera position and orientation in ith state, respectively. αi

j : angle between the

camera main axis (z axis of camera) in state i , and vector hi
j(= ti − pj). β

i
j :

angle between camera main axis and flipped vertex normal (-nj).
∥∥hi

j

∥∥: distance
of camera in ith state from vertex pj .
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Fig. 2: System Flowchart.

3.1 Angular Terms of Objective Function

Let the camera position t, on the origin of world coordinate system and unit
vector of camera axis, be aligned with the Z-axis of the world reference frame.
This means that the roll, pitch and yaw components of the camera orientation are
zero, which corresponds to a 3×3 identity matrix, i.e. t0 = (0, 0, 0), R0

3×3 = I. If
the camera moves to new pose (position and orientation) of ti and Ri, according
to SE(3) transformation, the updated orientation of unit vector associated with
camera axis is Riz.

In Fig. 1, pj denotes the coordinate of the j-th point of the point cloud with
respect to the world reference frame. By considering the vector hi

j formed be-

tween the point pj and the sensor position ti, two angles have to be minimized;
(1) α: the angle defined between the camera’s main axis Riz and hi

j and (2) β:

angle between the vertex normal, n, and the camera axis, Riz. Note that the
variable z represents the unit vector aligned with the Z-axis of reference frame,
hence, z = [0, 0, 1].

The surface normal at point pj is defined by the unit vector nj . Since the
angle between the vertex normal and the camera axis is independent of their
position, nj can be translated to the camera position. As the minimization pro-
cedure includes the angle between −nj and the camera axis in terms of the
four-quadrant (inverse tangent atan2), the flipped normal surface is used in
computations, i.e. −nj . Thus, α and β are given by:
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∠(Riz, tipj) : αi
j = atan2

∥∥Riz× (pj − ti)
∥∥

Riz • (pj − ti)
(1)

∠(Riz,nj) : βi
j = atan2

∥∥Riz×−nj

∥∥
Riz • −nj

, (2)

where ‖·‖ is defined as the L2-norm of a vector and Riz is the unit vector defining
the camera axis in ith pose. In our computations, αi

j and βi
j are confined to the

interval [−π, π].

3.2 Distance Term of Objective Function

The optimal sensing distance at minimum noise of common RGB-D cameras
is very limited [18, 1], therefore, the function should include a term to restrict
the search of the optimal pose to a ideal distance, η, within the nominal depth
sensing range of the sensor (e.g. < 1.0m for Kinect [1, 2]). The distance terms is
defined as,

hi
j =

∣∣∥∥hi
j

∥∥− η∣∣ =

∣∣∣∣|√(ti − pj)ᵀ(ti − pj)| − η
∣∣∣∣ (3)

where hi
j is a term that aims at setting the distance between the camera’s position

in ith state, ti, and the vertex pj to the ideal distance, η (see Fig. 1).

3.3 Objective Function

The terms αi
j and βi

j are in radians and hi
j is in meters. Therefore, in order to

consolidate them in same order of magnitude, the distance term is multiplied by
a coefficient, µ (empirically set, any value between 600-1500 can be selected).

Several different metrics of information cj , can be attributed to each point
(vertex) pj . For instance cj ’s can be defined as mean curvature [3]. If cmax,
and cmin denote the minimum and maximum of the mean curvature values, the
normalized weight, wj ∈ [0 , 1 ], is computed as:

wj =
cj − cmax

cmax − cmin
. (4)

The weights, wj ’s, are not restricted to a specific metric, the noise associated
to the vertex positions or vertex normals can also be used (as a proxy we estimate
the noise based on the mean of the measurements associated to a vertex).

Finally, a scalar value f integrates the data from all n points as following:

f =

n∑
j=1

wj(αj + βj + µhj)

n
, (5)
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Note that the angles and the distance defined above are functions of the state
to be estimated R and t:

ααα : SO(3)× IR3 7→ IR : (R, t) 7→ ααα(R, t) (6)

βββ : SO(3) 7→ IR : R 7→ βββ(R) (7)

h : IR3 7→ IR : t 7→ hhh(t) . (8)

3.4 Camera Field of View Constraint

In practice cameras have limited FoV, therefore only some points can be observed
at a given position. Moreover, surfaces can be convex therefore some points are
obstructed by others. To address these issues, we opted to apply a ray tracing
algorithm [21] on the point cloud to find the set of points that are either visible
within the FoV, P

FoV
, or not P̃

FoV
.

Given that a full point cloud is available, λ is applied to the weights wj to
allow control over the contribution of points with respect to FoV{

wj ← λwj for pj ∈ P
FoV

wj ← (1− λ)wj for pj ∈ P̃
FoV

(9)

where λ is always equal or greater that 0.5. Note that if λ is equal to 0.5 the
FoV is not taken into account, and all points are treated as if they are all visible
to the camera.

It is worth mentioning that due to convexity of objects and occlusion the
relationship between FoV and the considered points (from the overall pointcloud)
is highly non-continuous and non-differential. Therefore we opted to ray trace
as a way of sampling as the constraints can not be modelled with an explicit
equation.

3.5 Optimization approach

The optimization problem is formulated as:

f : SO(3)× IR3 7→ IR : (R, t) 7→ f(R, t) (10)

(R̂, t̂) = min
(R,t)∈SE(3)

f(R, t) (11)

In our proposed implementation, this minimization is carried out by a trust-
region solver on Riemannian manifoldM. However, to speed up the convergence
we derive the analytical Jacobian, ∇f(R, t) = ( ∂f

∂R ,
∂f
∂t ).

In order to compute partial derivative of (1) in vector form with respect to
R and t we use the auxiliary variable u1(R, t) which is defined as

u1(R, t) =
‖Rz× (p− t)‖
Rz • (p− t)

(12)
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thus
∂ααα

∂R, t
=

∂u1

∂R,t

1 + u2
1

(13)

To compute the ∂u1

∂R,t , we use the Lemma in the Appendix section and substitute

it into the above equation. Similarly for βββ(R), the auxiliary function is defined
such that

u2(R) =
‖Rz×−n‖
Rz • −n

(14)

∂βββ

∂R
=

∂u2

∂R

1 + u2
2

(15)

We again use the Lemma in the Appendix section. Note that βββ is function of
only R.

As for the distance term

h(t) = | ‖t− p‖ − η| (16)

using
u3(t) = ‖t− p‖ − η (17)

s = t− p (18)

r = ‖t− p‖ (19)

then,
dt = ds (20)

dh

dt
=

u3

|u3|
dr

dt
(21)

and finally,
r2 = s · s (22)

2rdr = 2s ds (23)

And by substituting (24) and (25) into (23) we have:

dh

dt
=

u3

|u3|
s√
sᵀs

(24)

As the depth sensor pose has 6 DoF, this is an optimization problem on a
manifold SO(3)×IR3. To take advantage of the steepest decent property in trust-
regions solver, the computed gradient is projected on the SE(3) manifold, in fact
the projected above-computed gradient is the generalization of steepest-descent
direction on a Riemannian manifold and absolute value of gradient is used as a
metric to stop the optimization. In the case when u3 = 0, to avoid ambiguity
we set the value of u3

|u3| to 1.
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4 EVALUATION

For the evaluation we utilised two point cloud datasets, the cow back (hindquar-
ters) and Igea (venus). We also used three different information measures; mean
curvature, vertex normal noise, and vertex position noise.

In this work we took advantage of Manopt which is devised for optimization
on manifolds [4] and ran the solver of optimization in a system with Core-i5
CPU and 8 Gigabyte RAM. For the first experiment, we performed the opti-
mization on cow back dataset with an initial pose randomly selected from left
side of point cloud, using the mean curvature as the information measure. The
optimal position, t, and orientation, R (in terms of its Euler angles, i.e. roll,
pitch and yaw) are displayed in the first experiment of Table 1. In this table,
the used parameters, namely the optimal distance (η), FoV coefficient (λ), num-
ber of iterations, and the elapsed time of entire framework are included. This
experiment is illustrated in Fig. 3(a) and (b) from two different viewing angles.

The experiment was also repeated with a random initial pose on the right
side of dataset, the result also summarized in Table 1. This experiment is il-
lustrated in Fig. 3(c) and (d) from two different viewing angles. Note that the
cow back is almost symmetrical, the two sides are similarly rich in mean cur-
vature information. As depicted in Fig. 3, the two optimal viewpoints (cameras
denoted in black) are oriented and positioned similarly with respect to the ini-
tial pose. In Fig. 3, color of vertices represents the value of mean curvature with
color scale from blue (small mean curvature) to red (large mean curvature). For
the purpose of better illustration of the optimization process, the sensor is also
colormapped based on its pose from light orange representing the initial guess,
through a subset of interim iterations (color scale), and finally to black sensor
representing the optimized pose. As explained in section 3.3, the weights wj

Table 1: Experimental results

Dataset Weight η(m) λ Ini. Pose
Optimal Pose

Iter. Time(s)
R(radian) t(m)

Cow B M. curv. 1.7 0.51 left side (2.07,0.51,2.71) [-0.57,1.63,0.85] 90 101

Cow B M. curv. 1.7 0.51 right side (-2.27,-0.48,0.53) [-0.53,-0.94,1.12] 95 110

Cow B pos. noise. 1.0 0.51 anywhere (3.01,0.51,1.66) [-0.21,0.41,1.04] 87 83

Cow B normal noise 1.0 0.51 anywhere (2.66,0.66,-0.53) [-0.39,0.72,0.85] 47 42

Igea M. curv. 1.4 0.51 front (-1.06,-0.02,1.41) [0.29,-0.97,-0.57] 44 36

First point set M. curv. 1.4 0.51 - towards centroid [-0.89,0.16,1.26] 23546 1291

Second lattice M. curv. 1.4 0.51 - towards centroid [-0.95,0.17,1.34] 15000 1147

(associated with information of interest) in our framework can also be defined
based on the noise associated with vertex positions or vertex normals. Several
point clouds of Cow Back dataset are used to compute the associated noise. The
results and parameters of the optimization utilizing this information are noted
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as third and forth experiments of Table 1 respectively. This experiment is illus-
trated in Fig. 4(a) and (b) for noise associated with vertex positions or vertex
normals, respectively. As the information of interest in these two cases are not
symmetrically distributed over the point cloud, the optimal pose is independent
of the initial guess.

(a) (b)

(c)
(d)

Fig. 3: (a) and (b) two different view angles of one experiment associated with op-
timization process of camera pose in which the initial guess is randomly selected
(pose 0 in light orange) from left side of the cow dataset (color-coded vertices
based on mean curvature values) after going through some interim poses (color
scale) and ending up to the optimal pose (black camera). (b) and (c) two dif-
ferent view angles of an experiment in which the random initial guess is on the
right side of the cow dataset (for the purpose of illustration the scale of camera
and the associated axes are magnified).

Our proposed framework performs optimisation in continuous space, we also
evaluate against traditional approach of evaluating viewpoints in discrete space.
In order to gain an insight into the value of cost function in terms of the position
of sensor in discretized space, we constructed two point sets around the cow
back dataset to compute the value of cost function f per point (of point set)
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(a) (b)

Fig. 4: (a) Optimal pose resulting from optimization based sparseness (b) Opti-
mal pose resulting from optimization based vertex normal noise. In both figures
vertices are color coded with the values of associated normalised noise.

as a single pose with ray tracing (i.e. without optimization). In the first set,
Fig. 5(a), two types of candidate points are selected. The first type is in distance
of η from the associated vertex in direction of associated normal (the lattice
is an expanded version of point cloud in the direction of vertex normals. Here
orientation of sensor is in direction of flipped normal of the associated position.
To cover all potential poses around the object, the second type is defined as spline
interpolated candidate positions using first type oriented towards the centroid
of mass.

The second point set, Fig. 5(b), is a lattice of 15000 regularly spaced points
over a hemisphere with radius η+0.2 meters (to compensate the distance between
centroid and surface) from the centroid of object. The point coordinates of lattice
serve as the candidate positions of the depth sensor while oriented towards the
centroid of object. For these two point sets the value of cost function is computed
and colourmapped per pose. Fig. 5 (a) and (b) display the color scale and the
associated values of the cost function computed per pose over the point set, with
blue colour indicating poses where value of cost function is smaller (informative
viewpoints). The results and parameters of these two experiments are shown in
Table 1.

It is imperative to note that the definition of ”best” viewpoint is dependent
on the weights of interest (i.e. curvature, noise etc.). In the devised experiments
for discrete space, the orientation of sensor is constrained towards the flipped
normal of vertex (first type) and the centroid of object (second type). Therefore,
the naive discrete optimization has 4 DOF (versus 6 DOF in continuous space).
Despite this simplification aimed at reducing number of poses to be evaluated
for the exhaustive search, according to Table 1 the experiment of discrete opti-
mization on the hardware require 11500 or 12340 seconds for the two point sets
(the number of iterations is equal to the number of points). Given different ex-
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perimental basis with similar conditions, we can conclude from the comparison
of discrete and continuous counterparts over Fig. 5 that the position associated
with minimum value of objective function is [-1.2,0.15,1.5] is quite close to the
corresponding position determined by our proposed continuous optimization.
However, our approach clearly outperforms the discrete optimization in terms of
processing time. If λ is set to 0.5 (i.e. all the points are in the FoV) the resulting
position from continuous optimization is identical to the global minimum of dis-
crete experiments. In the case of λ > 0.5, continuous optimization is dependent
on the initial guess caused by symmetry (mean curvature).

(a)
(b)

Fig. 5: (a) The color map of cost function values associated with the sensor
positioned on the first point set (with distance of η =1.4m from vertices in
direction of vertex normals) and oriented towards the flipped vertex normal per
position. (b) The color map of cost function values associated with the sensor
positioned on a hemisphere lattice (with 15000 points with distance of 1.4m from
the centroid of object) and oriented towards the centroid of object.

To provide a comparison with a similar discrete sampling approach presented
by [13] we tested our framework on Igea (Venus) dataset with parameters stated
in the fifth experiment of Table 1. The optimal pose is presented in Table 1 while
Fig. 6(a),(b) and (c) depict the optimal pose from three different viewing angles.
Similar to the cow back dataset, the mean curvature values are color-coded in
vertices and the transition of sensor during the optimization process is indicated
with a color scheme from light orange (initial pose) to black (optimal pose) with
a subset of the interim states are selected.

Regardless of variation of initial guess (as far as it is not in the back half of
head) the optimal pose is unique. The used conditions and assumptions in this
experiment are similar to [13] and their optimal viewpoint for this dataset is
shown in Fig. 6d. The viewpoint determined by our proposed algorithm is similar
to [22] which was used as a benchmark for the work reported by Leifman [13].
The angle displayed by Fig. 6(c) highlights the similarity of optimal viewpoint
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(a)

(b)

(c)

(d)

Fig. 6: (a),(b) and (c) three different viewing angles of one optimization exper-
iment (with λ = 0.51) over Igea dataset (color-coded based on mean curvature
values per vertex) after going through some interim poses (shown by color scaled
cameras) and ending up to the optimal pose (black camera). (d) optimal view-
point of Igea illustrated in [13].

rendered by our approach with their result shown in Fig. 6d (for more details
refer to [13]). A quantitative compassion over the viewpoint computed was not
possible, computer graphics publications such as [22] and [13] only illustrate the
viewpoint, not reporting actual values.

The overall performance of our algorithm mainly depends on the variance
of information measure on the surface, value of λ, topology of object and the
number of vertices. However, the number of iterations through our experiments
has proven to be less than 150, which by considering the gradient computation
running in parallel with cost function computation, the average computational
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complexity of our algorithm considering its continuous property is considerably
less than discrete approaches.

5 CONCLUSIONS

To address the problem of informative viewpoint of a depth camera, we have
shown analytically that by aligning the concept of information with inherent
surface characteristics of object surface (such as mean curvature, sparseness,
normal noise), the optimal pose is achievable at much lower computational cost
compared to numeric approaches. The considered optimal pose of the camera
consists of 6 parameters (denoting 6 DoF) and is obtained by minimizing a
novel cost function based on geometry of the sensor-object setup through the
steepest descent defined by its gradient projected over the appropriate manifold
in SE(3). The experiment demonstrates that the optimal pose found by our
approach is consistent with the optimal viewpoint of the object obtained via
numerical methods and state-of-the-art viewpoint selection approaches.

Future work will incorporate a probabilistic framework to deal with uncer-
tainty of acquiring data from a sensor and update the objective function to
continuously optimize the distance of sensor with respect to the surface. We will
combine viewpoint selection with machine learning approaches to ascertain the
possibility of viewpoint invariance when entire cohorts of animals are evaluated
for phenotypic trait estimation purposes. Finally, we aim to integrate our frame-
work for viewpoint selection based on surface quality for inspection of parts
developed in additive manufacturing.

Acknowledgments: This work was possible due to the financial and in-kind sup-
port, and efforts of many individuals from NSW Department of Primary Indus-
tries, University of Technology Sydney, and Meat and Livestock Australia.
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6 Appendix

Lemma: Let t, p and z be three column vectors in IRn and R is a n×n matrix.

Then for u(R, t) = ‖Rz×(p−t)‖
Rz•(p−t) , we have:

∂u

∂t
=

(Rz ·Rz)

((p− t) ·Rz)3u

(
(p− t) · (p− t)Rz− ((p− t) ·Rz)(p− t)

)
(25)

∂u

∂R
=

((p− t) · (p− t))

(Rz · (p− t))3u

(
(Rz · (p− t))Rz− (Rz ·Rz)(p− t)

)
zᵀ (26)

Note: To avoid notational confusion of using parentheses, u denotes the value of
function u(R, t).

Proof. Assume a and b are two column vectors in IRn. The auxiliary variable
κκκ is defined as a scalar function of two vectors a,b which first vector, a, is a
constant,

κκκ =
‖a× b‖2

(a · b)2
=

(b · b)(a · a)− (b · a)2

(b · a)2
=

(b · b)(a · a)

(b · a)2
− 1 (27)

The differential of κκκ is:

dκκκ =
2(b · db)(a · a)

(b · a)2
− 2(b · b)(a · a)(a · db)

(b · a)3

=
2(a · a)

(b · a)3

(
(b · a)b− (b · b)a

)
· db .

(28)

κκκ = u2 =⇒ dκκκ = 2u du (29)

by substituting:
a = Rz (30)

b = (p− t) (31)

db = −dt (32)

du =
dκκκ

2u
=

(a · a)

(b · a)3u

(
(b · a)b− (b · b)a

)
· (−dt) (33)

∂u

∂t
=

(a · a)

(b · a)3u

(
(b · b)a− (b · a)b

)
(34)

And also if:
a = (p− t) (35)

b = Rz (36)

db = dRz (37)
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du =
(a · a)

(b · a)3u

(
(b · a)b− (b · b)a

)
· dRz

=
(a · a)

(b · a)3u

(
(b · a)b− (b · b)a

)
zᵀ · dR

(38)

and finally:
∂u

∂R
=

(a · a)

(b · a)3u

(
(b · a)b− (b · b)a

)
zᵀ (39)


