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Abstract—Over the years, the capabilities of cell phones
have expanded far beyond their intended core functionality
of making and receiving calls. Modern smartphones are effec-
tively pocket-sized computers with a built-in display, CPU,
GPU, memory, storage space, and so on. Although these
advancements in mobile technology are impressive, they are
unfortunately limited by a constraint that is not present with
traditional computers: lack of a consistent power source. To
work around this limitation, mobile operating systems apply
optimizations to resource management that are not used with
traditional operating systems, and application developers must
take these limitations in to consideration as well. The need
to optimize this process has given rise to the development of
tools to analyze and identify how and when power is used.
In this paper, we present and compare various tools aimed at
performing this type of analysis on Android devices.

I. Introduction

Over the years, the capabilities of cell phones have
expanded far beyond their intended core functionality
of making and receiving calls. Modern smartphones are
effectively pocket-sized computers with a built-in display,
CPU, GPU, memory, storage space, and so on. Although
these advancements in mobile technology are impressive,
they are unfortunately limited by a constraint that is not
present with traditional computers: lack of a consistent
power source [1]. To work around this limitation, mo-
bile operating systems apply optimizations to resource
management that are not used with traditional operating
systems, and application developers must take these lim-
itations in to consideration as well. The need to optimize
this process has given rise to the development of tools
to analyze and identify how and when power is used. In
this paper, we present and compare various tools aimed
at performing this type of analysis on Android devices [2].

In order to understand power usage estimation, we
must first understand the fundamentals of what “power”
and “energy” refer to in this context as well as what
the differences are between the two. Within this context,
“power” refers to the pace at which work is done and
is estimated in watts. Energy, on the other hand, is
the amount of power utilized over the long run and
is communicated in joules. For example, a process that
utilizes 5 watts of power for 30 seconds is said to have

exhausted 150 joules of energy. Although power and energy
are relative, utilizing less power for a given process does
not imply that less energy is used in the long run. For
instance, an application may have a higher power usage
than another application with similar functionality, yet it
may use substantially less energy if the overall runtime of
the application is lower [3].

II. Measuring Power Consumption
Estimating power usage of smartphones is a challenging

task, particularly among Android devices, because of the
extremely diverse collection of available devices. Addi-
tionally, independent researchers’ ability to identify power
consumption patterns of a given smartphone application
or hardware component can be hindered by lack of access
to proprietary source code or hardware information. To
work around this, researchers must resort to reverse-
engineering.

Power can be estimated at two levels of granularity:
coarse-grained (at the application level) and fine-grained
(at the capacity level or guidance level). Coarse-grained
estimations give the general power utilization of the ap-
plication to help the client and analyzer of an application
and fine-grained will give actual data to investigate an
application at improvement time [4].

Various tools are available for measuring power usage,
and can provide various types of data depending on the
needs of the user. These tools can either be hardware-
based or software-based. In the following two subsections,
we discuss both types of tools.

A. Hardware-Based Measuring Tools
Hardware-based power measuring tools are very use-

ful for obtaining the most accurate and precise result,
however, these tools have several drawbacks. Specifically,
hardware-based tools tend to be very expensive, and even
if finances are not a limiting factor, the usage of these tools
requires an understanding of how to use them properly in
order to obtain an accurate result.

An example of one such external device is the Monsoon
Power meter, which can be used to measure the current
drawn from the battery by the cell phone [3]. Another



approach to utilizing an external hardware-based tool is to
mount a voltage meter over a resistor associated in series
with the cell phone’s power supply, enabling the current to
be measured from a voltage change. An external battery or
other external power supply can be used when measuring
power utilization. If price and knowledge of proper usage
are not limiting factors, hardware-based power measuring
tools are preferable to software-based tools thanks to their
ability to provide extremely precise data. In upcoming
sections of the paper, we will discuss hardware-based tools
further, as they are generally used to provide ground truth
values for software-based tools.

B. Software-Based Measuring Tools
Software-based power measuring tools operate as ap-

plications installed on the device. These tools operate
by relying on numerical models that are created using
hardware-based measuring tools such as those described
previously. Various components of the device such as
the CPU, memory, GPS, and other sensors, each have
a unique model associated with them, which is used by
the application to generate the overall usage reports.
Application-based solutions for measuring power usage
have the advantage of being cheaper and easier to use than
their hardware-based counterparts, but are unfortunately
believed to be less accurate [5]. Determining an ideal
model to use for software-based solutions can be done
in two different ways. The fist method involves using
hardware-based tools to determine how much power is
used by various components of the device under different
circumstances and the second method involves adding
power usage monitoring to the firmware of the various
components in the device.

III. Battery-Draining Components of a Smartphone
In this section, we will describe the components of

a smartphone that contribute to battery drainage. In
a 2010 study published by Aaron Carroll and Gernot
Heiser, the power usage of various critical points of a
smartphone, such as the GPS, were measured. As part of
the testing, each component was subjected to various use
scenarios in order to determine how it impacted battery
drainage. As would be expected, the power drainage of
each component varied depending on usage. For example,
calls drained 834mW and GPS, 143-166mW on average.
Screen backlight amounts to between 7-8mW to 404mW
depending on brightness. It should also be noted that the
testing device is a 2.5G phone, and 3G drains more power
[6].

Smartphone components such as accelerometers, cam-
eras, GPS, compasses, gyroscopes, gravity sensors, light
sensors, proximity sensors, pressure sensors, network ra-
dios, flash memory, RAM, CPUs, and GPUs are also an
additional source of power drainage for a smartphone.
Figure 1 shows the significant parts of the cell phone that
use battery power. In light of the review via Carroll and

Heiser, the power usages of cell phone parts are talked
about beneath.

Fig. 1. Power consuming components of Smartphone

A. Screen

The screen light took power over the scope of a whole
number worth between 1 and 255. The power management
module constrains this. An ordinary Brightness control UI
gave the value somewhere in the range of 30 and 255. The
base backlight power is approximately7.8m W, and the
maximum is 414mW. The backdrop illumination devours
negligible power when incapacitated.

B. CPU and RAM

On average, a smartphone’s CPU and RAM account for
about 15% of device usage, however, that number can rise
higher when they are under heavy load such as when the
user is streaming videos or browsing the internet. About
7% to 10% of smartphone battery usage can be accounted
for by read and write operations performed to the phone’s
internal storage.

C. Network

Wi-Fi and GPRS are prominent supporters of the use of
force. Wi-Fi showed a throughput of 660.1 ± 36.8 KiB/s
and GPRS 3.8 ± 1.0 KiB/s. The expanded CPU and
RAM power for Wi-Fi mirrors the expense of handling
information with higher throughput. The impact of sign
strength on power brought about an expansion of GSM
power of30-percent, yet no impact on throughput.

D. GPS

Table I shows battery usage of the GPS component of
a smartphone under three different circumstances.



State Power(mW)
Enabled (Internal Antenna) 143.1 ± 0.05%
Enabled (External Antenna) 166.1 ± 0.04%
Disabled 0.0

TABLE I
GPS Energy Consumption

E. Bluetooth
To measure Bluetooth power usage, audio was played to

a Bluetooth headset. To determine the power usage of just
the Bluetooth radio without factoring in the power draw
from playing audio, the power draw from just playing
audio was measured and subtracted from the measured
draw from using a Bluetooth headset. The headset was
placed approximately 30cm from the phone for the close
benchmark and 10m in the far benchmark, as shown in
table II.

Benchmark Power (mW) Power (mW)
- Total Bluetooth
Audio baseline 459.7 -
Bluetooth (near) 495.7 36.0
Bluetooth (far) 504.7 44.9

TABLE II
Bluetooth power under the audio benchmark

F. Device Usage Scenarios
1) Audio Playback: A smartphone’s audio subsystem

typically consumes 33.1mW. Approximately 58% of this
energy is consumed by the codec, with the remaining
42% used by the amplifier. Overall, the audio subsystem
accounts for less than 12% of energy consumed. The ad-
ditional energy consumed in the high-volume benchmark
is more minor than 1mW compared with the low-volume
case.

2) Video Playback: To test battery usage when playing
back video, a 5 minute video without sound was played
at varying levels of screen brightness. The brilliance levels
with backdrop illumination power on were 30, 105, 180,
and 255. GSM power was remembered for the estimations.
The CPU is the greatest single benefactor of force. The
showcase subsystems represent 38% of total power, up
to 68% with the most extreme backdrop illumination
splendor. Immaterial power needs to stack the video from
the SD card.

3) Phone Calls: Estimating force usage of a GSM call
incorporates stacking the dialer application, dialing a
number, and settling on a 57-second decision. Along these
lines the time spent in the call was roughly 40 seconds,
expecting a 7-second association time. The complete
benchmark runs for 77 seconds. GSM power rules in this
benchmark at 832:4 ± 99:0 mW. Android cripples the
backdrop illumination during the call.

4) Web Browsing: The power utilization for web-
browsing workload using both GPRS and Wi-Fi connec-
tions. The benchmark ran for 490 seconds which consisted

of loading the browser application, selecting a website, and
browsing several pages.

5) Camera Usage: The camera is quite possibly the
main bit of equipment on a smartphone. Notwithstanding,
it additionally can deplete the battery a lot. The first and
most apparent explanation is that it is a different piece of
components. Although, by far, most of the camera battery
channel comes from screen and processor utilization. Your
presentation is required as a viewfinder, and some OEMs
even knock up the brilliance of the display when in camera
mode. Moreover, every advanced smartphone probably has
some post-processing, and that likewise requires additional
handling power.

G. Causes of Battery Drainage
In addition to battery drainage caused by the

previously-discussed usage scenarios, software bugs can
also cause significant battery drainage. The following
subsections describe some examples of battery-draining
bugs.

1) Missing Sensor Deactivation Bugs: To use a sensor,
an application needs to register a listener with OS and
specify a sensing rate [9]. When the use of sensors is
finished, its listener should be unregistered in time. Forget-
ting to un-register sensor listeners can cause unnecessary
sensing operations.

2) Wake Lock Registration Bugs: Some smartphone
applications will establish a so-called “wake lock” that
instructs the operating system to keep the device’s screen
on and not allow the device to enter a low-power state.
This is useful for applications that need access to system
resources for an extended period of time, however, an
application’s failure to release a wake lock after it is no
longer needed can cause the device’s battery to drain at
a faster rate.

3) Unnecessary Sensor Utilization: Any use of the
device’s sensors results in battery drainage, however, this
is acceptable if the use of the sensors provides meaningful
benefits to the user. For cases in which an application
activates a device sensor but does not meaningfully use the
data that it acquires from the sensor, power is effectively
being wasted by the application in question.

H. Causes from Event-driven Programming
In programming, Event-driven computer programs are

programming in which the program’s progression is dic-
tated by events, for example, client activities (mouse
clicks, key presses), sensor yields, or message passing
from different projects or threads. Event-driven computer
programs are prevailing in graphical UIs and different
applications (e.g., JavaScript web applications) that focus
on playing out specific activities in light of client input.[7]
This is likewise valid for programming for smartphones
drivers.

An ordinary client confronting smartphone application
is composed of many events controllers with events being



a client or outer exercises.[7] The programmer needs to
monitor every conceivable event and when it is triggered
and manipulate the wake locks likewise.

The Dialer app in smartphones applications executes
the dialing function of the smartphone. The application is
set off when the client gets an approaching call or taps the
telephone symbol to settle on an outgoing call. To execute
this call or function, the application unequivocally primary
tains three wake locks: FULL-WAKE-LOCK for keeping
the screen on (e.g., in the circumstances like when the
client is dialing the numbers to call), PARTIAL WAKE
LOCK for keeping the CPU on (e.g., if there should
arise an occurrence of an approaching consider when the
telephone is turned off), and PROXIMITY SCREEN OFF
WAKE LOCK which turns the vicinity sensor on and off
(to recognize client’s closeness to the telephone).

To deal with the three wake locks, the application
expressly keeps a state machine where the states address
the lock conduct, i.e., which lock should be obtained and
delivered, and the ”condition” of the telephone addresses
the state advances. The conditions are different and
incorporate occasions, for example, (a) if the telephone
gets a call, (b) if the telephone is squeezed against the
client’s ear wherein case the closeness sensor triggers the
screen to go off, (c) if the call closes, (d) if a wired or
Bluetooth headset is connected (e.g., in a call), (e) if the
telephone speaker is turned on, (f) if the telephone slider
is opened in the middle of calls, and (g) if the client clicked
home caught in a call. For every one of these setting off
occasions, the telephone changes the condition of the wake
lock state machine, gaining one and delivering another.

IV. Examples of Software-Based Measuring Tools
A. PETrA

PETrA is a desktop application written in Java that
can be used by Android app developers to measure power
usage of their application when it is executed in various
circumstances. It is compatible with Android 5 (Lollipop)
and higher and relies on power usage models to generate
its results [8].

B. Android Profiler
Google’s official tool for application power usage is

the the Android Profiler, which was initially released
with Android Studio 3.0 and replaced the older Android
Monitor tools. The purpose of the tool is to provide
developers with information about how their app uses a
device’s CPU, memory, network, and battery. The energy
profiler appears as a row in the profiler window when you
run your app on a connected device or Android Emulator
running Android 8.0 (Oreo) or higher.

C. Test Environment Setup for PETrA and Android
Profiler

• Selected applications from different criteria
• Download those applications

• Run the selected Android applications on the selected
tool(Petra/Android Profiler)

• Analyzing the measurements
• Report the results of applications

ID Name Category
1 Newson News/Magazine
2 Notepad Tool
3 Oxford Dictionary Tool
4 Angry Bird Game
5 YouTube Video
6 Bubble Blast Game
7 Sniper Shooter Game
8 Accu Battery Tool
9 Google Map Navigation Tool
10 Calculator Tool

TABLE III
Applications table and their category

PETRA shows the configuration view. Using this win-
dow, the developer can customize PETRA concerning the
location of the apk file, the ANDROID MONKEY options,
the ANDROID MONKEYRUNNER script location, the
number of times (i.e., runs) the energy measurements must
be computed, the location of the ANDROID SDK, and
the location of the XML file containing the power profile
of the device. Regarding the ANDROID MONKEY con-
figuration, it is possible to set the number of interactions
(e.g., keystrokes, gestures) to send to the app and the time
that must elapse between interaction and the next one.

Fig. 2. PETrA work flow



Fig. 3. PETrA tool

Fig. 4. PETrA tool, installing app and resetting inner
process

D. Implementation of PETrA

PETRA’s workflow is shown in Figure 2. PETRA starts
with a pre-processing phase, which entails installing the
app (step 1), cleaning the app cache, and resetting the
Android tools that PETrA needs to make its estimations
(step 2) [8]. Such pre-processing phases are needed to
create a good test environment not influenced by the
previous app executions. Subsequently, step 3 of Figure
2 exercises the app using (1) ANDROID MONKEY tool,
or (2) an ANDROID MONKEY RUNNER script [?].

ANDROID MONKEY generates pseudo-random streams
of user events such as clicks, touches, or gestures, as well
as several system-level events to perform stress-testing of
the app under analysis. ANDROID MONKEY RUNNER
is an API for controlling an Android device [?].

Fig. 5. Android Energy Profiler

E. Implementation of Android Profiler
The Android Profiler in Android Studio 3.0 and higher

replaces the Android Monitor tools. The Android Profiler
tools provide real-time data to help you to understand
how your app uses CPU, memory, network, and battery
resources. The Energy Profiler emerge as a row in the
Profiler window when you run your app on a connected
device or Android Emulator running Android 8.0 (API
26) or higher.

If prompted by the Select Deployment Target dialog,
choose the device to which to deploy your app for
profiling. If you have connected a device over USB but
do not see it listed, ensure that you have enabled USB
debugging. Click anywhere in the Energy timeline to open
the Energy Profiler. When you open the Energy Profiler, it
immediately starts displaying your app’s estimated energy
usage. To open the Energy Profiler, follow these steps:
Select View > Tool Windows > Profiler or click Profile in
the toolbar.

We used the Android Profiler and the ten applications,
which we tested manually by running each test case five
times and taking an average of them. In figure 6, we can
see the readings of each application.

V. Inspect network traffic with Network Profiler
When application makes a solicitation to the organi-

zation, the smartphone should utilize the power-hungry
mobile or WiFi radios to send and get packets. The radios
use power to move information or packets. However, it uses
additional power to remain alert.

Utilizing the Network Profiler, we can see short spikes
of network profiler for spikes, which imply that application
requires the radios to turn on as often as possible or to
remain alert for extensive stretches to deal with many



Fig. 6. Average chart of five test run of each app

short demands near one another. This example shows
that we might have the option to advance application for
improved battery execution by batching network demands,
decreasing the occasions the radios should send or get
information. This likewise permits the radios to switch
into low-power mode to save battery in the more drawn-
out holes between grouped solicitations.

A. Network Profiler overview
Android Studio 3.1, as of late, emerged from beta. It

has many elements, for example, kotlin build up checks,
D8 compiler, and furthermore a redid Network Profiler.

From the beginning of DDMS, we could generally check
how network information was being burned-through, yet
the current emphasis of profiler has added an entirely
different arrangement of provisions. We should look at
them.

Most importantly, the network chart looks quite perfect.

B. Energy Estimation while using Network
We can see in figure 8 that when network usage is

increasing then energy usage is also increasing.
I have used OkHttp to estimate the network usage

sending and receive HTTP-based network requests.

C. OkHttp
OkHttp is a library created by Square for sending

and getting HTTP-based network demands. It is based
on top of the Okio library, which attempts to be more
proficient in perusing data by composing information than
the standard Java I/O libraries by making a common
memory pool. It is likewise the underlying library for
Retrofit library that provides type security for burning-
through REST-based APIs.

The OkHttp library executes the HTTP Url Connection
interface, which Android 4.4 and later forms currently use.
Along these lines, when utilizing the manual methodology
portrayed in this part of the aide, the fundamental Http
Url Connection class might be utilizing code from the

Fig. 7. Network Profiler

Fig. 8. Energy & Network Profiler

OkHttp library. Notwithstanding, there is a different API
given by OkHttp that makes it more straightforward to
send and get network demands, which is portrayed in this
aide.

What’s more, OkHttp v2.4 likewise gives a more re-
freshed method of overseeing URLs inside. Rather than
the java.net.URL, java.net.URI, or android.net.Uri classes,
it gives another Http Url class that makes it more
straightforward to get an HTTP port to parse URLs and
canonicalize URL strings.

VI. Discussion
We presented PETRA and Android Profile software-

based tools to estimate the energy consumption of Android
apps at method level granularity. The measures of average
energy consumption for ten applications from various
categories are studied. To understand their energy pattern,
we analyzed the most energy-consuming methods in the
study’s application. Our result shows that the application
has a significant variation in the amount of consumed
energy.

Some findings blamed built-in systems for retrieving
and displaying advertisements with the app for higher
energy consumption. Other findings suggested using the
.jpeg image format instead of other file types like .gif and



.png. Our findings indicate that poor coding choices in
the design of applications are primarily responsible for
the higher-than-necessary consumption. Our research is
consistent with others. One of the studies revealed that
by analyzing and tweaking the design of Wikipedia, energy
consumption could be reduced by 30% without affecting
the user experience.

Tests were run using an Android smartphone, with
Gmail declared as the ”greenest” mobile site tested. After
researching, it came out that Apple is one of the worst
phones in a battery. Nevertheless, this is primarily due to
the site not having a version optimized for mobile use.

VII. Conclusions and Future Work
Advancement in power use of smartphone use has

become a significant field for research in the present I.T.
world. The essential purposes behind battery depleting
in cell phones are Network Data Communication like
Multimedia Streaming, GPS, WiFi, and Signal Dead
Spots. Utilization situations like significant degree of back-
light, high-goal Video Playbacks, Graphics, Rich Gaming,
and Heavy Computing Processes are the fundamental
wellsprings of influence utilization. Different reasons for
power wastage are Application Energy Bugs, No-Sleep
Bugs, Unnecessary utilization of Sensors, and consistently
running Background Processes. Wake Locks and Sensors
can likewise rapidly deplete the battery if the software
engineers neglect to un-register it on schedule. This
examination featured the issues and the answers for the
advancement of energy utilization in cell phones.

We presented PETRA and Android Profiler as software-
based tools for the estimation of the energy consumption
of Android apps at method level granularity. The measures
of average energy consumption for ten applications from
various categories are studied. Our result shows that the
applications have a significant variation in the amount
of consumed energy. To understand their energy pattern,
we analyzed the most energy-consuming methods in the
study’s application.
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