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Abstract. Shipping transportation developed over years with the technological 
advancements. Modern ship navigation is conducted with the help of Automatic 
Radar Plotting Aid (ARPA) and Electronic Chart Display and Information Sys-
tem (ECDIS). Location map, marine traffic, geographical conditions, and obsta-
cles in a region can be monitored by these technologies. The obstacles may vary 
from icebergs and ice blocks to islands, debris, rocks, or other vessels in a given 
vicinity. In this study, we propose an approach for route optimization using two-
dimensional radar images and image segmentation in an environment with obsta-
cles. The navigation algorithm takes image segmentation results as an input and 
finds the optimal route (i.e. safest and shortest). One of the advantages of this 
study is that the obstacles are not solely polygonal, but they may be in any shape, 
size, and color. The proposed approach has some practical and computational 
limitations; however, the future unmanned vessels could benefit from the im-
proved applications of this route optimization approach in terms of energy con-
sumption, time, and workforce. 
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1 Introduction 

Maritime transportation is of significance in terms of global merchandise, since %90 of 
cargoes is carried by commercial ships. According to United Nations Conference on 
Trade and Development (UNCTAD, 2016), the number of total ships navigating 
through the world is 90917 with 1.8 billion deadweight tons. Maritime transportation 
will maintain its crucial position in the future due to new shipping routes (i.e. Arctic 
region), active global economy (i.e. One Belt One Road), technological advancements, 
such as unmanned vessels, and new energy sources. The global demand pushes the 
shipping industry to be cheaper, involve less risks, and be eco-friendly. In this study, 
the ship navigation problem is investigated with the aim of finding an optimal route 
(shortest and safest simultaneously) in a given maritime environment with obstacles 
using image processing. The idea is to see whether an optimal path could be found from 
the radar images collected from Automatic Radar Plotting Aid (ARPA), an electronic 
navigation equipment, after determining the obstacles such as other vessels, islands, 
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and icebergs. Since we are using static radar snapshots, the obstacles in this study are 
static, but in any shape or size rather than polygonal. The shortest path algorithm is not 
deterministic; therefore, we do not directly include distance, size etc. Moreover, infor-
mation regarding the weather and atmospheric conditions, such as wind, current, waves, 
and rain are not considered. One of the novelties of this study is that the safety distance 
to the obstacles can be predefined. We set it proportional to the size of obstacles to be 
more realistic.  

In the literature, route optimization problem is studied by considerable number of 
scholars. In a study, the optimal path on a given graph is computed by considering the 
ship turn angles and safety zone [1]. However, the special coordinates of graph are pre-
defined, which makes the approach semi-automatic and input dependent. In this study, 
we overcome this shortcoming by utilizing object segmentation regardless of spatial 
and temporal information. In other words, we do not need to have coordinates of obsta-
cles as priori data. There are applications in various other domains, such as medical, 
robotics, security, etc. using image processing [2-10]. The segmentation of objects on 
medical images has been a central task for some time, which requires abstracting se-
mantically significant information from the background [11]. In robotics, real-time 
tool/device navigation is performed by image-guided platforms, where an object can be 
traced through a set of sequential frames by state-of-the-art image processing algo-
rithms. Security applications, such as anomaly detection also extensively studied in the 
previous decades, which are dedicated to detecting suspicious activity by analyzing the 
optical flow between the sequential image frames. To the best of our knowledge, this 
is the first study for optimizing ship navigation combining image processing and com-
putational geometry. We processed simulated radar images as input and obtained the 
safest/shortest path using Dijsktra algorithm. 

The rest of the paper is organized as follows. Section 2 provides the methodology in 
a stepwise manner. Section 3 demonstrates the application on an empirical study. Fi-
nally, Section 4 concludes the paper by discussing the limitations of this study and gives 
the future research perspective. 

2 Methodology 

The steps of the methodology are provided in a stepwise manner in the followings. 
 
2.1 Radar Images 

Due to the complex structure of radar images, we adopted a formal image segmentation 
method. This complexity stems from ice melting, which is represented as gradually 
changing intensity patches on an image. This requires us to employ robust image seg-
mentation methods that tackle intensity inhomogeneity. 

Active Contour Models (ACM) have been one of the most popular methods in image 
segmentation [12]. There are two classes of active contour models: region-based and 
edge-based. Edge-based models use image gradients to stop the contour evolution when 
the contour reaches to object boundary. Classical edge-based ACM have an edge-stop-
ping and balloon force terms to adjust the motion of initial contour. The edge-based 
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stopping term is used for stopping the contour on the object boundary, whereas balloon 
force term is used for shrinking or expanding the active contour to provide flexibility 
for placing the initial curve far from the target object on image. Notably, the choice of 
balloon force is a challenging task such that if it is too large, evolving contour may leak 
through the weak boundaries. If the balloon force is not large enough, evolving contour 
may not snap bay-like parts of the irregularly shaped images [12]. Region-based active 
contours are preferable in image segmentation applications with weak object bounda-
ries. The reason is that region-based models do not use image gradients. Additionally, 
the location of initial contour does not affect the segmentation results significantly. One 
of the most common region-based ACM is Chan-Vese method which has been success-
ful for segmenting images with two regions that have distinct pixel intensity mean. 
Vese and Chan [13, 14] adopt a multi-phase level set formulation to discriminate mul-
tiple regions on an image. Due to the assumption that an image consists of statistically 
homogeneous segments, these models are called piecewise constant (PC) models [15]. 
However, the regions on images do not appear statistically homogeneous, and therefore 
PC models do not output desired segments on those types of images. To overcome these 
limitations, a piecewise smooth model is proposed [14]. A method to segment images 
with intensity inhomogeneity is also developed; however, both methods are computa-
tionally expensive [16].  

Considering the structure of radar images on which melting ice is represented in a 
gradually decreasing intensity, we adopt the method proposed by Li et al. [12] so that 
our segmentation core can handle inhomogeneity. The approach is to utilize a kernel 
function to embed a local binary fitting energy into a region-based contour model [12]. 
Here, the energy functional is minimized via variational level sets without re-initializa-
tion [17].  

Mumford Shah Functional. Mumford-Shah is one of the earliest segmentation models 
using variational calculus to minimize the energy in a formal way. Mumford Shah 
model aims to find an optimal contour C that separates the sub-regions from each other, 
and a u function that is smooth approximation of the image I. The energy functional 
proposed [18] is given as follows: 

 
 (1) 

 
where |C| represents the length of contour C.  

Nevertheless, non-convexity of the functional and unknown set C and u make energy 
minimizing difficult in Equation (1). To address these limitations, some alternative 
works have been proposed, i.e. Chan-Vese piecewise constant (PC), and Chan-Vese 
piecewise smooth (PS) methods.  

 
Piecewise Constant Model. Chan-Vese modified Mumford-Shah functional based on 
an assumption that the image u consists of two sub-regions, which are piecewise con-
stant. In other words, pixel intensities of these regions are represented by two constants. 
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The energy functional that Chan-Vese aims to minimize for an image I(x) is given as 
follows: 
 

 (2) 

 
where Cout and Cin represent the region outside and inside, c1 and c2 are two constants 
to approximate the pixel intensity inside and outside of the contour C. First two terms 
in Equation (2) are called global binary fitting energy. This energy can be minimized 
by the steepest descent method representing the contour C by zero level set. Notably, 
in Equation (2), c1 and c2 are related to global image properties, interior and exterior of 
the contour respectively. However, such image properties do not suffice if the image 
displays intensity and inhomogeneity inside and outside the contour. 

Piecewise smooth model and its difficulties. The PS model is proposed to address the 
limitations of PC model regarding image inhomogeneity [14, 16]. Rather than approx-
imating an image I by a piecewise constant function, the PS model utilizes two smooth 
functions u+(x) and u-(x) in the sub-regions of interior and exterior of the contour C, 
which can be expressed mathematically as in the following: 

 and , respectively. Function 

u+(x) and u-(x) are defined on mutually exclusive sub-regions respectively. However, 
the level set function is defined on the full domain. Additionally, smoothing the terms 

of u+(x) and u-(x), which are represented as  and  compli-

cates the minimization of the energy functional in such a way that these terms enforce 
the solution of two partial differential equations (PDEs) with the two unknown u+ and 
u- in each iteration throughout level set solution. Moreover, practical domain re-initial-
ization of the level set function to a signed distance function is required. Obviously, the 
need for extension of u+ and u- and the re-initialization of PDEs for u+ and u- increase 
the computational cost of PS model. 

 
Local Binary Fitting (LBF). Li et al. developed the LBF model incorporating the local 
image information in segmentation problem [12]. LBF can handle intensity inhomoge-
neities and is computationally more efficient than PS model. The main idea is to intro-
duce a kernel function to set a LBF energy functional as in the following: 
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where fixed parameters of  and are positive constants,  is a given 

vector valued image,  is a Gaussian kernel of which standard deviation is repre-

sented by , and  and  are the smoothing functions that approximate the image 
intensity in the vicinity of every x point, which is the center point of integral in Equation 
(3). In this kernel, localization property results in larger values at the points y near point 
x, whereas leads to smaller values as y departs from x. Therefore, the image intensities 
at the points where y is close to the point x weighs in the values of  and  which 
are to minimize the Equation (3). 

Functional  can be minimized with respect to level set , and the gradient 
descent is expressed as follows: 

 

 (4) 

 
In order to secure stability, a distance regularization term is added to Equation (4). 

Final form of functional is as follows: 
 

 (5) 

 
Interested readers are referred to Li et al. [12] for further details about the solution 

for minimization of Equation (3). Parameters  and  control the weight of integrals 

over interior and exterior regions of the contour C.  and  are given in the Equation 
(6) as follows: 

 

 (6) 

 
Notably, the standard deviation  has a significant role in scaling the region from 

initial neighborhood to the entire image and must be chosen optimally to avoid unde-
sirable outputs and high computational cost. 

 
Local Fitted Image. Zhang et al. improved the idea of Li et al. in terms of decreasing 

the computational cost by eliminating the convolution terms from being computed in 
each iteration [17]. Their local fitted image (LFI) is formulated as follows: 
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where constant of  and  are expressed as follows: 

 

 (8) 

 
where  is a rectangular window function which is to be convolved with a stand-
ard deviation  and size of 4k+1 by 4k+1, where k can be selected as the greatest 
integer less than . They proposed to minimize the difference between the original 
image and the fitted image by solving an energy functional in the frame LFI. Formal 
representation of this energy is as follows: 

 

 (9) 

 
Energy in Equation (9) can be minimized by the steepest descent method for which 

the flow is expressed as follows: 
 

 (10) 

 
where  the regularized Dirac function. Hence, the total level set formulation is de-
fined as in the following: 

 

 (11) 

 
Notably, Equation (11) avoids the need for re-initialization of level set which de-

creases the computational cost as well. Due to massive numbers of obstacles on radar 
images, we reduced the input size of path planning task by zooming predefined location 
on a radar image.  

 
2.2 Simulated images 

Border detection. Border detection consists of two steps. First, we separate the black 
pixels from foreground and then delineate the contour that circumscribe the objects. 
Obtaining spatial information of the border contour is a significant step to create obsta-
cles for path planning phase. 
 
Thresholding. Thresholding is one of the basic approaches of image segmentation 
which generates binary images from gray scale images [19]. Basic image thresholding 
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is adopted to isolate object pixels from the background of original image. The philoso-
phy of the image thresholding is to partition the image based on the intensity value of 
the pixels with respect to pre-determined threshold (T) such that if a pixel’s intensity is 
less than T, thresholding substitutes the pixel with a black pixel. 
 
Boundary tracing. We use a Matlab function, bwboundary that implements Moore-
Neighbour tracing algorithm [20]. This algorithm is initiated at a black pixel toward 
any direction. Each time it hits a black pixel, it backtracks the white pixel that it previ-
ously departed from. This case repeats, if it meets a black pixel. The algorithm termi-
nates when it revisits the starting pixel. 
 
Border expansion. Border expansion consists of two steps. First one is dedicated to 
find outermost points on the object border. This can be achieved by finding the convex 
hull points of the border. We stretch the convex points in the desired amount. Signifi-
cantly, we must note that border inflation is proportional to object size. In the last step, 
we need to have a continuous curve to circumscribe the objects so that safe path com-
putations will be accurate. To this end, we fit a contour using imresize routine provided 
by Matlab. Notably, obstacle borders are expanded proportionally to their areas. We 
computed areas of obstacles, which are 2D contours, using polyarea routine provided 
by Matlab.  
 
Determining outermost points of objects’ borders. Border expansion is completed by 
computing the convex hull which is the smallest convex set that contains the points 
[21]. The algorithm is as follows [22]: 
 

Algorithm QUICKHULL 
QuickHull(a,b,S) 
if isEmpty(S) then return() 
else 
c ← indexOf(maxDistance from ab) 
A ← rightPoints(a,c) 
B ← rightPoints(c,b) 
return QuickHull(a,c,A)+(c)+QuickHull(c,b,B) 

 
Interpolation for encapsulating new object borders. Bilinear interpolation is one of the 
basic resampling techniques and used for producing a reasonably realistic image. Image 
scaling is performed by moving the pixels in a certain direction based on the given scale 
parameter. However, some pixels may not be assigned to appropriate values during 
scale-up process if the scale factor is a non-integral. To handle this case, appropriate 
intensity or color values are assigned to these gaps so that output image does not have 
holes (non-valued pixels).  

Bilinear interpolation takes average of the adjacent 2x2 window of known pixel val-
ues, which gives the interpolated value. The weight of each 4-pixel values is based on 
the Euclidean distance of pixels to the each of the known points. The algorithm devel-
opment is given below.  
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Let us assume, we are after finding the value of a function f at the (x, y) point. Con-
sider the value of f at the four points, , ,
, , 

 
 (12) 

 (13) 

 (14) 

 (15) 

 (16) 

 
Shortest path algorithm. In this study, Dijkstra algorithm is employed for shortest path 
between two predefined points.  The algorithm is given as follows [23-24]: 

 
Algorithm DIJKSTRA (G,w,s) 
d[s] = 0 
for each v∈V-{s} 
do d[v] = ∞ 

S = ∅ 
Q = V 
while Q ≠ ∅ 
do u = extractMin(Q) 
S = S ∪ {u} 
for each v ∈ adj{u} 
do if d[v] > d[u] + w(u, v) 
then d[v] = d[u] + w(u, v) 

 
Smoothing process. Having characteristic maneuvers, the path we found is not realistic 
in terms of ship navigation. After obtaining the shortest and safest path, smoothing is 
conducted by using the conventional smooth routine in MATLAB. 

3 Empirical Study 

In this section, an empirical evaluation of the proposed approach is presented based on 
the radar images. 

11 1 1( , )W x y= 12 1 2( , )W x y= 21 2 1( , )W x y=

22 2 2( , )W x y=

2 1
1 11 21

2 1 2 1

( ) ( ) ( )x x x xf x f W f W
x x x x
- -

= +
- -

2 1
2 12 22

2 1 2 1

( , ) ( ) ( )x x x xf x y f W f W
x x x x
- -

= +
- -

2 1
1 2

2 1 2 1

( , ) ( , ) ( , )y y y yf x y f x y f x y
y y y y
- -

= +
- -

2 2 1 1 2 1
11 21 12 22

2 1 2 1 2 1 2 1 2 1 2 1

( ) ( ) ( ) ( )y y x x x x y y x x x xf W f W f W f W
y y x x x x y y x x x x

æ ö æ ö- - - - - -
» + + +ç ÷ ç ÷- - - - - -è ø è ø

[ ] 11 12 2
2 1

21 22 22 1 2 1

( ) ( )1
( ) ( )( )( )
f W f W y y

x x x x
f W f W y yx x y y

-é ù
= - - ê ú-- - ë û



9 

3.1 Radar Images 

The input of the proposed system is a snapshot of a radar image where the ship is at the 
center as a dot. Generally, radar images (see Fig. 1 (a)) have annotations, and mark-ups 
on it which must be cleaned. We impainted the images manually; therefore, the input 
will be the image shown in Fig. 1 (b).  
 

 
(a) 

 
(b)  

Fig. 1. (a) Radar Screen (Courtesy of Buffalo Computer Graphics) and (b) manually impainted 
real radar image. 

To perform the segmentation, an initial contour must be placed. This initial contour 
evolves the around the boundary of foreground objects as the result of image segmen-
tation process as shown in Fig. 2 (a). Initial contour localization is not automatically 
done due to the ‘region’ related sensitivity of segmentation algorithm. In Fig. 2 (a), a 
region that has similar intensity with the desired output is selected as the initial contour. 
In Fig. 2 (b), output mask of the segmentation is shown.  
 

 
(a) 

 
(b) 

Fig. 2. (a) Initial contour is manually placed, and (b) segmented radar image. 
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Note that, shortest path algorithm takes a binary matrix as an input, where ones rep-
resent the obstacles and zeros represent the background. Hence, the image shown in 
Fig. 2 (b), which is stored as a binary matrix in computer, can be passed to shortest path 
algorithm. 

  
  

 
(a) 

 
(b) 

Fig. 3. (a) All obstacles are segmented, and (b) merged radar image. 

However, the vast number of segmented objects (see Fig. 2 (b) and Fig. 3(a)) se-
verely increase the computational time to compute the shortest path yet may lead ship 
to penetrate through the group of objects. To avoid this case, we propose to merge the 
obstacles which are in high proximity to each other (see Fig. 3 (b)). Merging process is 
done using a MATLAB routine called bwconvhull. Here, the merged obstacles are 
shown, and the image is the input of shortest path algorithm. 

 

 
(a) 

 
(b) 

Fig. 4. (a) The shortest path where the ship’s position is at the center of the image, and (b) the 
shortest path starting from top left to bottom right. 
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Fig. 4 (a) represents the shortest path from the center of the image to the desired 
destination. In order to show the applicability and generality, we use whole image as a 
region with obstacles as shown in Fig. 4 (b).  It is assumed that the ship starts to navigate 
intended region from the top left point through the bottom right corner. The shortest 
and safest path is successfully found as in Fig. 4 (b). 
 

 
(c) 

 
(d) 

Fig. 5.  (a) Screenshots of the zoomed region, and (b) closer look to the zoomed region. 

Nevertheless, the shortest path we found passes nearby obstacles as seen in Fig. 5 
(a) and Fig. 5 (b), which is still not a desired case. To address this constraint, we propose 
to establish a ‘safe zone’ circumscribing each obstacle.  This safe zone can be deline-
ated by expanding the obstacle border. We tested that object boundary can expand from 
the outermost points (convex hull points) of the obstacle borders. We set the expansion 
amount directly proportional to obstacle area. Note that both for convex hull and poly-
gon area calculation, we used MATLAB routines. After border expansion from convex 
points, we interpolated the new boundary using imresize to recapture the original shape 
of obstacles. Considering the large size of radar images and extensive computational 
cost for processing them, we reduced the number of obstacles by zooming a particular 
area of the radar image. 
 
3.2 Simulated images 

In the empirical study, the ship approaches a two-dimensional region with obstacles. 
The obstacles might be icebergs, islands, and also other ships. As it is seen in the Fig. 
6 (a), the static obstacles are not polygonal and instead they might appear in any shape 
and size. The particulars of the ship are omitted and only the pivot point of the ship is 
considered as a navigating object. The ships must not touch the obstacles so as to nav-
igate safely.  Similarly, underwater of the icebergs are not observed visually, and it is 
mostly voluminous than the seen part. Therefore, the distance to the obstacles should 
be adjusted. In the Fig. 6 (b), the borders of the obstacles are detected. Besides any 
numerical assignments can be set for the safety distance of obstacles, we consider their 
sizes for the intended problem. 
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(a) 

 
(b) 

Fig. 6. (a) The region that the vessel encounters, and (b) borders of obstacles are detected for safe 
navigation. 

The shortest and safest path is found as given in Fig. 7 (a). To make it more realistic, 
the optimal route is smoothened (see Fig. 7 (b)).   

 

 
(a) 

 
(b) 

Fig. 7. (a) The shortest path that the vessel navigates safely, and (b) the shortest path with smooth-
ing 

4 Conclusions 

Autonomous on-board management systems, including self-navigation, are highly im-
portant as they increase the speed and safety of the shipping operations. In this study, 
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image processing approaches are implemented for determining the shortest and safest 
path based on static radar images. After processing images, Dijsktra algorithm is em-
ployed for two types of images (i) manually impainted real radar images and (ii) simu-
lated images. Following conclusions are reached: any obstacles (ships, ice blocks, is-
lands, etc.) observed on the radar screen can be processed; the obstacles in any shape, 
size and color are easily segmented; safe zones are calculated and tested for simulated 
images successfully; safe zones can also be considered for manually impainted real 
radar images; and, safe zones are determined based on the obstacles’ volume.  

Yet the proposed approach currently has certain limitations hindering its practical 
applicability, such as the high computation time required to process the images and run 
the algorithm and the facts that the obstacles are static and iceberg volume of underwa-
ter and weather and atmospheric conditions are not taken into account. Particularly, the 
environment, targets, and obstacles of the sea change continuously and the proposed 
approach needs to take this dynamism into account. Nevertheless, the work presented 
demonstrates that processing of radar images has potential to aid ship navigation and 
should be explored as a research direction.  

Future work includes processing image sequences to mimic real time video analysis. 
Our goal is to plug the computational core we designed here to the on-board ships to 
conduct real time surveillance. Secondly, we argue that parallelization of the shortest 
path algorithm will decrease the computational time considering the large size of radar 
images, i.e. 619x619. Real radar images rather than manually impainted real radar im-
ages should also be extracted for processing. Lastly, instead of using convex points of 
the contours around obstacles for offsetting the border outward, constant velocity level 
set propagation can be used as a more formal mathematical approach [25]. Embedding 
the proposed algorithm to the ship’s radar systems should be studied. Shortest path 
should be found in a dynamic manner; therefore, new shortest path algorithms (i.e. de-
terministic, heuristic approaches) can be deployed. 
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