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Abstract 

               In this paper, we have studied the impact of electron plasma frequency on Jeans instability of radiative 

magnetized quantum plasma. The analysis is carried out within the framework of the normal mode analysis 

technique which is modified due to the contribution of electron plasma frequency. The dispersion relation is 

reduced for both longitudinal and transverse modes of propagation. The condition of Jeans instability is modified 

due to the presence of magnetic field and electron plasma frequency in the transverse mode of propagation. From 

the curve, it is clear that electron plasma frequency has destabilizing influence in the system but the presence of a 

quantum parameter is reduced the destabilizing effect of electron plasma frequency and stabilized the system. The 

research will help to understand the stellar evolution in astronomical plasma. 

Keyword – Electron plasma frequency, Quantum correction, Radiative heat-loss function, electrical resistivity, 

and magnetic field. 

1. Introduction  

                 The Jeans instability is the fundamental keywords to understand the star formation process 

which was discovered by Jeans [1] its play a crucial role in formation of astrophysical objects, i.e., stars 

are formed when dispersed matter in gaseous form starts coalescing together under the force of gravity 

continuously tries to shrink the objects and in this process, the density and temperature inside the stars 

rise. The time of billion years is required for the formation of heavenly objects while Jeans instability 

predicts it is a relatively faster process. According to Jean’s criterion, an infinite homogeneous self-

gravitating atmosphere is unstable for all wave numbers 𝑘 less than Jeans’ wave number 𝑘𝑗 = (
𝐺𝜌

𝑆
) 

where 𝜌 is the density, S is the velocity of sound in the gas, and G is the gravitational constant. This 

problem has been studied by several authors under varying assumptions of hydrodynamics and 

hydromagnetics, and a comprehensive account of these investigations has been given by Chandrasekhar 

[2] in his monograph on problems of hydrodynamics and hydromagnetics stabilities. He found that 

Jeans’ criterion remains unaffected by the separate or simultaneous presence of rotation and magnetic 

field. In this direction, the thermal instability in cooling and expanding medium including self-gravity 

and conduction in the neutral fluid dynamics has been investigated by Gomez-Pelaez and Moreno-

Insertis [3]. Nipoti and Posti [4] have studied the thermal stability of rotating optically thin plasma in a 

weakly magnetic field. The stability properties of thermal modes in cool prominence plasmas are 

investigated by Soler et al. [5]. Hobbs et al. [6] have investigated thermal instability in a cooling galactic 

corona fueling star formation in a galactic disk. Inoue and Omukai [7] have carried out the problem of 

thermal instability and the multiphase interstellar medium in the first galaxies. 

.It is well-known, the quantum effect plays an important role in structure formation through the 

gravitational collapsing process of astrophysical objects.  Pines [8] first introduced quantum plasma, he 

studied that the at very low temperature, the de Broglie wavelength 𝐵 =
ℎ

√2𝑚𝑒,   𝐾𝑏𝑇
(where 𝑚𝑒 ,   𝐾𝑏, 𝑇 are electron and ion masses, Boltzmann constant, and temperature )

 of electrons and ions is of the order of the dimension of the system, such as Debye length and Larmor 

radius. In this type of dense plasma system, the wave function is associated with particles overlap thus 

the plasma behaves like Fermi gas, and we would treat it as quantum plasmas. The quantum plasma 

system can be described by three well-known models, the Wigner-Poisson (WP) model, the Hartree 
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model, and the Schrodinger-Poisson (SP) model or quantum hydrodynamic (QHD) model. A quantum 

multi-stream model for one and two-stream plasma instabilities are presented by Hass [9] and also 

investigated the stationary states of the nonlinear Schrodinger-Poisson model. Masood et al. [10] 

investigated the self-gravitational instability of a multi-component quantum plasma using Bohm 

potential and statistical terms on electrons and ions. In this way, many authors [11-14] have discussed 

Jean’s instability including the different parameters in their research. Recently Sharma et al. [15] have 

analyzed the effect of electron inertia on radiative instability of optically thick plasma. Kumar et al. 

discussed the influence of the effect of photoelectron current on jeans instability of rotating quantum 

dusty plasma[16]. 

Thus, we find that a large number of studies are done for the quantum magnetohydrodynamic model 

(QMHD) with different parameters under various assumptions. But no one considers the quantum 

magnetohydrodynamic model with resistivity and electron inertia effect. 

2. Equation of the problem 

  In this piece of work, we consider an infinite self-gravitating homogeneous plasma medium, 

which comprises electrons and single charged ions with electrical resistivity. The plasma is immersed 

in an ambient uniform magnetic field �⃗⃗� (0,0, H) is in the z-direction. The basic radiative QMHD set of 

equations follows,  

 

𝜕�⃗� 

𝜕𝑡
 =  −

𝛻𝛿𝑝

𝜌
+ 𝛻𝛿𝑈 + 

1

4𝜋𝜌
(𝛻 × ℎ⃗ ) × �⃗⃗� +

ℏ2

4𝑚𝑒𝑚𝑖
𝛻

(𝛻2𝛿𝜌)

𝜌
                                                     (1) 

𝜕𝛿𝜌

𝜕𝑡
 =  −𝜌𝛻. �⃗�                                                                                                                                              (2)   

𝛻2𝜕𝑈 =  −4𝜋𝐺𝛿𝜌                                                                                                                                        (3) 

1

(𝛾 − 1)

𝜕𝛿𝜌

𝜕𝑡
−

𝛾

(𝛾 − 1)

𝑝

𝜌

𝜕𝛿𝜌

𝜕𝑡
+ 𝜌(ℒ𝜌𝛿𝜌 + ℒ𝑇𝛿𝑇) = 𝜆𝛻2𝛿𝑇                                                            (4) 

𝛿𝑃

𝑃
 =  

𝛿𝑇

𝑇
 + 

𝛿𝜌

𝜌
                                                                                                                                          (5) 

𝜕ℎ⃗ 

𝜕𝑡
= 𝛻 × (�⃗� × �⃗⃗�  )   + ∇2ℎ⃗ +

𝑐2

𝜔𝑝𝑒
2

𝜕

𝜕𝑡
∇2ℎ⃗                                                                                           (6) 

𝛻. ℎ⃗  = 0                                                                                                                                                         (7) 

The above equations (1)-(7) represent momentum transfer equation, continuity equation, Poisson’s 

equation, heat equation for a perfect gas and state equation, idealized Ohm’s law with electron plasma 

frequency and resistivity, Gauss’s law respectively. 

 Where, �⃗� (𝑉𝑥, 𝑉𝑦, 𝑉𝑧), is the fluid velocity, 𝛿𝑝 is the fluid pressure, 𝑈 gravitational potential, 

 ℎ⃗ (ℎ𝑥 , ℎ𝑦, ℎ𝑧, ) is the magnetic field, 𝛿𝜌 is the fluid density, 𝐺 gravitational constant, 𝛾 is the ratio of 

two specific heat, 𝛿𝑇 is the temperature,  𝜆  is the thermal conductivity, ℒ𝜌 is the partial derivatives of 

the density dependent (𝜕ℒ 𝜕𝑇⁄ )𝑇 heat-loss function, ℒ𝑇 is the partial derivatives of the temperature 

dependent (𝜕ℒ 𝜕𝑇⁄ )𝜌 heat-loss functions, 𝛿𝑇 is the temperature, ℏ Plank’s constant divided by 

2𝜋,𝑚𝑒 𝑎𝑛𝑑 𝑚𝑖 are the electron and ion mass, and 𝜔𝑝𝑒 is the electron plasma frequency.  

Combining equation (4) and (5), we obtain the expression for 𝛿𝑝 as 

𝛿𝑝 =  (
𝛼 + 𝜎𝐶2

𝜎 + 𝛽
)𝛿𝜌                                                                                                                                            (8) 

https://www.researchgate.net/publication/332664379_Effect_of_photoelectron_current_on_jeans_instability_of_rotating_quantum_dusty_plasma?_sg=lL5kNzBwm0CDGP2yR-QHCjSqWLvzVXfCLrVH0oBSVPQr5X_sKbEB_-zxY1dH8rxXBeU3NdKChcbGyT2YTPBnrs0__hTJ-mtz4e5Yf5ML.s5Sja87R-EVZCKKUSB7ebTK0J4g3D2fWvitLtavX-eGRuDWXSOIw83ig187t4qS7zvRhBQFbRSl9sOqmx-Pr3g
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Where 𝜎 = 𝑖𝜔 is the growth rate of the perturbation, and 𝐶 = (
𝛾𝑝

𝜌
)
1

2⁄
 is the adiabatic velocity of 

sound in the medium, 𝑠 =  𝛿𝜌 𝜌⁄  is the condensation of the medium.  The parameter 𝛼 𝑎𝑛𝑑 𝛽 are 

𝛼 = (𝛾 − 1) (ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝑘2𝑇

𝜌
)  𝑎𝑛𝑑 𝛽 =  (𝛾 − 1) (

ℒ𝑇𝑇𝜌

𝑝
+
𝑘2𝑇

𝑝
)   

We assume that all the perturbed quantities vary as 

𝑒𝑥𝑝{𝑖(𝑘𝑥𝑥 + 𝑘𝑧𝑧 + 𝜔𝑡)}                                                                                                                                   (9) 

Where 𝜔 is the frequency of harmonic disturbances, 𝑘𝑥  and 𝑘𝑧 are the wave numbers in perpendicular 

and parallel direction to the magnetic field, respectively, such that 𝑘𝑥
2 + 𝑘𝑧

2 = 𝑘2  

Using equation (1) - (9) we obtain the following matrix relation. 

𝑋𝑖𝑗𝑌𝑗 = 0,   𝑖, 𝑗 = 1,2,3,4,                                                                                                                                (10) 

  Where 𝑋𝑖𝑗 is a 4 × 4 matrix whose elements are,  

𝑋11 = (𝜎 +
𝑘2𝑉2

𝐴1
),         𝑋12 = 0         𝑋13 = 0,              𝑋14 =

𝑖𝑘𝑥

𝑘2 (𝑇
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
) 

 𝑋21 = 0, 𝑋22 = (𝜎 +
𝑘𝑧

2𝑉2

𝐴1
) , 𝑋23 =  0, 𝑋24 = 0,  

𝑋31 = 0, 𝑋32 =  0,      𝑋33 = 𝜎 , 𝑋34 =
𝑖𝑘𝑧

𝑘2 (𝑇
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
),   

𝑋41 =
𝑖𝑘𝑥𝑘

2𝑉2

𝐴1
,    𝑋42 = 0, 𝑋43 = 0, 𝑋44 = −(𝜎2 +𝑇

2 +
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
) 

Where 𝑉 = 
𝐻

(4𝜋𝜌)1 2⁄   is the Alfven velocity, 𝐶′ = (
𝑝

𝜌
)
1

2⁄
 are isothermal velocities of sound, 

respectively. Also we have assumed the following substitution.  

𝛺𝐽
2 = (𝑘2𝐶2 − 4𝜋𝐺𝜌), 𝛺𝐼

2 = (𝑘2𝛼 − 4𝜋𝐺𝜌𝛽),

𝑇
2 = (

𝜎𝛺𝐽
2 + 𝛺𝐼

2

𝜎 + 𝛽
),   𝑚 = 𝑘2, 𝐴1 = (𝜎𝑓 +m), 𝑓 = (1 +

𝑐2𝑘2

𝜔𝑝𝑒
2 ),   

The general dispersion relation can be obtained from the determinant of the matrix of equation (10) 

gives the general dispersion relation as  

𝜎 (𝜎 +
𝑘2𝑉2

𝐴1
)(𝜎 +

𝑘𝑧
2𝑉2

𝐴1
)(𝜎2 +𝑇

2 +
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
) − 𝜎

𝑘𝑥
2

𝑘2 (𝑇
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
)(

𝑘2𝑉2

𝐴1
)(𝜎 +

𝑘𝑧
2𝑉2

𝐴1
)

= 0                                                                                                                               (11) 

The dispersion relation (11) shows the combined influence of electron inertia, electrical resistivity, 

quantum correction, radiative heat-loss function, thermal conductivity and gravitating mode of the 

system. If we neglect the effect of electron inertia, resistivity, quantum correction and strength of the 

magnetic field, then dispersion relation (11) is similar to Ibanez [11].  

3. Discussion 

For the detailed investigation of the influence of electron inertia and electrical resistivity 

including the radiative magnetized quantum plasma, the dispersion relation is discussed for parallel and 

perpendicular propagations. 
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3.1 Parallel propagation 

In this parallel propagation, we assume all the perturbations are longitudinal to the direction of 

the magnetic field (𝑘𝑥 = 0,   𝑘𝑧 = 𝑘). Thus, the dispersion relation (11) can be simplified as 

𝜎 (𝜎 +
𝑘2𝑉2

𝐴1
)

2

(𝜎2 +𝑇
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
) = 0                                                                                        (12) 

The equation (12) shows the combined effect of thermal conductivity, magnetic field, self- gravitation, 

quantum plasma, electrical resistivity, heat loss function, and electron inertia, the above equation has a 

tree independent factors, each represents the different parameters. The first factor of equation (12) is 

𝜎 = 0 and represents the natural stability of the system. The second factor of equation (12) gives the 

second-order equation as,  

    𝜎2𝑓 + σ m + 𝑘2𝑉2 = 0                                                                                                                       (13) 

The dispersion relation (13) is affected by the presence of electron inertia, resistivity, and magnetic field 

but is dispersion relation does not effect by heat loss function and quantum correction. Now the third 

factor of the equation of (12) is equating to zero and solved it we get the dispersion relation.   

𝜎3 + 𝜎2𝛽 + 𝜎 (𝑗
2 +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
) +𝐼

2 + 𝛽
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
= 0                                                                  (14) 

The dispersion relation (14) is modified by thermal conductivity, quantum correction, and radiative 

heat loss function of the medium. This mode does depend not depend on the electron inertia, 

resistivity, and magnetic field. The condition of Jeans instability is obtained by a constant term of 

dispersion relation (14) is given as 

(𝛾 − 1) (ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝑘2𝑇

𝜌
) +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
(
ℒ𝑇𝑇𝜌

𝑝
+
𝑘2𝑇

𝑝
) <

4𝜋𝐺𝜌

𝑘2
                                          (15) 

The equation (15) represents a modified condition of Jeans instability due to the quantum correction 

but is independent that electrical resistivity, magnetic field and electron inertia in the longitudinal 

mode of propagation.  

3.2 Perpendicular propagation 

For this case, we assume all the perturbation are propagating perpendicular to the direction of the 

magnetic field, we take 𝑘𝑥 = 𝑘,   𝑘𝑧 = 0. The dispersion relation (11) can be written as  

𝜎4𝑓 + 𝜎3(𝑓𝛽 +m) + 𝜎2 (𝑓𝑗
2 + 𝑓

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+ 𝑘2𝑣2 + 𝛽m)

+ 𝜎 (𝑓𝐼
2 +m𝑗

2 +
𝑓𝛽ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+
mℏ2𝑘4

4𝑚𝑒𝑚𝑖
+ 𝛽𝑘2𝑣2) +𝐼

2m +m𝛽
ℏ2𝑘4

4𝑚𝑒𝑚𝑖

= 0                                                                                                                                (16) 

The dispersion relation (16) shows the combined influence of the magnetic field, electron inertia, 

quantum correction, thermal conductivity, radiative heat-loss functions, and gravitating mode of the 

system. Thus equation (16) represents a gravitating Alfven mode modified by quantum correction, 

electron inertia, thermal conductivity, and radiative heat-loss functions. In the absence of quantum 

correction, radiative heat-loss function and thermal conductivity effect, this dispersion relation (16) are 

similar to obtained by Uberoi [12] excluding rotation effect in that case. If we ignore the quantum 

correction effect, then (16) reduces to that of Bora and Talwar [13]  

The condition of instability is obtained from the constant term of the dispersion relation (16), and it is 

given by 
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[𝑘2(𝛾 − 1) {(ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝑘2𝑇

𝜌
) +

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
(
ℒ𝑇𝑇𝜌

𝑝
+
𝑘2𝑇

𝑝
)} <

4𝜋𝐺𝜌

𝑘2
  ]                       (17) 

We write the dispersion relation (16) in non-dimensional form, for showing the effects of different 

parameter on growth rate of instability, as  

𝜎∗4𝑓 + 𝜎∗3(𝑓𝛽∗ + ∗𝑘∗2) + 𝜎∗2{𝑓(𝑘∗2 − 1) + 𝑓𝑄∗𝑘∗2 + 𝑘∗2𝑉∗2 + 𝛽∗∗𝑘∗2}

+ 𝜎∗{𝑓(𝑘∗2𝛼∗ − 𝛽∗) + ∗𝑘∗2(𝑘∗2 − 1) + 𝑓𝛽∗𝑄∗𝑘∗2 + ∗𝑘∗4𝑄∗ + 𝛽∗𝑘∗2𝑉∗2}

+ ∗𝑘∗2(𝑘∗2𝛼∗ − 𝛽∗) + 𝛽∗∗𝑘∗4𝑄∗ = 0                                                                (18) 

Where the various non-dimensional parameters are defined as 

𝜎∗ =
𝜎

√4𝜋𝐺𝜌 
,  𝑘∗ =

𝑘𝐶

√4𝜋𝐺𝜌
, 𝑄∗ =

ℏ2𝑘𝑗
2

4𝑚𝑒𝑚𝑖
, 𝑉∗ =

𝑉√4𝜋𝐺𝜌

𝐶
, 𝜆∗ =

(𝛾−1)𝑇𝜆√4𝜋𝐺𝜌

𝜌𝐶2 
,   ℒ𝜌

∗ =
(𝛾−1)𝜌 ℒ𝜌

𝐶2√4𝜋𝐺𝜌
,   ℒ𝑇

∗ =

(𝛾−1)𝜌 𝑇ℒ𝑇

𝜌√4𝜋𝐺𝜌
, 𝛼∗ = (

1

𝛾
(ℒ𝑇

∗ + 𝜆∗𝑘∗2) − ℒ𝜌
∗),   𝛽∗ = (ℒ𝑇

∗ + 𝜆∗𝑘∗2),     ∗ =
√4𝜋𝐺𝜌

𝐶2 
,𝐼

∗2 = (𝑘∗2𝛼∗ − 𝛽∗),

𝑗
∗2 = (𝑘∗2 − 1)                                                                                                                                        (19)    
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Fig.1 The growth rate (𝜎∗) is plotted against the non-dimensional wave number ( 𝑘∗) with variation 

in the magnetic field 𝑉∗ = (0, 0.5, 1, 1.5), keeping the values of other parameters are fixed, as ℒ𝜌
∗ =

∗ = ℒ𝑇
∗ = ∗ = 𝑄∗ = 0.5 𝑎𝑛𝑑 𝑓 = 0   

0.0 0.1 0.2 0.3 0.4 0.5

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

G
ro

w
th

 r
at

e 

  

 

Wave number 

  

 V
*
 = 0.0

 V
*
 = 0.5

 V
*
 = 1.0

 V
*
 = 1.5

 



6 
 

Fig.2 The growth rate (𝜎∗) is plotted against the non-dimensional wave number ( 𝑘∗) with variation 

in the magnetic field 𝑉∗ = (0, 0.5, 1, 1.5), keeping the values of other parameters are fixed, as ℒ𝜌
∗ =

∗ = ℒ𝑇
∗ = ∗ = 𝑄∗ = 0.5 𝑎𝑛𝑑  𝑓 = 0.5 
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Fig.3 The growth rate (𝜎∗) is plotted against the non-dimensional wave number ( 𝑘∗) with variation 

in the Electron inertia f = (0, 0.5, 1, 1.5), keeping the values of other parameters are fixed, as ℒ𝜌
∗ =

ℒ𝑇
∗ = ∗ = ∗ = 𝑉∗ = 0.5 𝑎𝑛𝑑 𝑄∗ = 0  
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Fig.4 The growth rate (𝜎∗) is plotted against the non-dimensional wave number ( 𝑘∗) with variation 

in the Electron inertia f = (0, 0.5, 1, 1.5), keeping the values of other parameters are fixed, as ℒ𝜌
∗ =

ℒ𝑇
∗ = ∗ = ∗ = 𝑄∗ = 0.5 𝑎𝑛𝑑 𝑄∗ = 0.5  
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Fig.5 The growth rate (𝜎∗) is plotted against the non-dimensional wave number ( 𝑘∗) with variation 

in the quantum correction 𝑄∗ = (0, 0.5, 1, 1.5), keeping the values of other parameters are fixed, as 

ℒ𝜌
∗ = ℒ𝑇

∗ = ∗ = ∗ = 𝑉∗ = 0.5 𝑎𝑛𝑑 𝑓 = 0  
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Fig.6 The growth rate (𝜎∗) is plotted against the non-dimensional wave number ( 𝑘∗) with variation 

in the quantum correction 𝑄∗ = (0, 0.5, 1, 1.5), keeping the values of other parameters are fixed, as 

ℒ𝜌
∗ = ℒ𝑇

∗ = ∗ = ∗ = 𝑉∗ = 0.5 𝑎𝑛𝑑 𝑓 = 0.5 

From the curves, we find that in figure 1-2, the magnetic field has a stabilizing impact in the 

system but the presence of electron inertia the system is unstable. In figure 3-4 we conclude 

that the electron inertia has a destabilizing effect but in the presence of quantum parameter the 

destabilizing effect is reduced. In the curve 5-6, we see that the quantum parameter have to 
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stabilize effect but in the presence of electron inertia the system is destabilized so that the 

quantum parameter tries to decrease the destabilizing effect 

4. Conclusion  

The present problem has been analyzed in the framework of the quantum fluid theory. 

We have derived a general dispersion relation using normal mode analysis and QMHD 

equation. In the case of parallel propagation, the Jeans instability is modified in the presence 

of radiation and quantum correction but is independent of the electron inertia and electrical 

resistivity. The dispersion relation for the perpendicular mode is affected by all the parameters. 

The gravitational instability is obtained which is modified by electrical resistivity, thermal 

conductivity, radiative heat-loss function, and quantum correction. From the curves, we find 

that the magnetic field and quantum correction have to stabilize effect but electron inertia has 

a destabilizing effect on the growth rate of instability.  
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