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Abstract—By 2030, the number of mobile IoT connections
in China will reach a scale of billions. Therefore, efficiently
transmitting more data within limited time and resources has
become an urgent problem to address. In this paper, we consider
a novel hybrid non-orthogonal multiple access (NH-NOMA)
system based on downlink transmission links with opportunis-
tic time allocation. We develop a new hybrid non-orthogonal
multiple access model based on time allocation, where the data
transmitted by users in different time slots is rederived. To
maximize the system’s data transmission while meeting the users’
data requirements, we transform the non-convex optimization
problem into a convex optimization problem, obtaining the
solution to the optimization problem. Finally, simulation results
demonstrated that a time allocation based hybrid multiple access
system achieves higher data transmission efficiency compared to
traditional orthogonal multiple access systems and time division-
based hybrid systems. This system effectively utilizes users with
favorable channel conditions to maximize their data transmission
while ensuring the basic communication needs of other users.

Index Terms—Hybrid Non-Orthogonal Multiple Access, oppor-
tunistic time allocation, data throughput, non-convex optimiza-
tion, priority service scenarios

I. INTRODUCTION

In the development of 6G, Non-Orthogonal Multiple Access
(NOMA) technology will play a crucial role in meeting the
higher data rates, lower latency, and greater connection density
required by 6G networks [1]. To further enhance system
spectral efficiency and throughput, NOMA is often combined
with other orthogonal multiple access (OMA) technologies
to form hybrid NOMA schemes. Reference [2] indicates that
Frequency Domain NOMA (FD-NOMA) not only significantly
enhances spectral efficiency but also achieves higher data
transmission rates and better user fairness through optimized
spectrum resource allocation and power control. Time Domain
NOMA (TD-NOMA), on the other hand, enables multi-user
access within the same time interval [3]. In traditional TD-
NOMA, each user transmits only in one time slot. However,
literature [4] views NOMA as an additional component to
OMA, allowing each user to be scheduled for data transmis-
sion similar to OMA, but unlike OMA, the time slot of the
scheduled user can also be utilized by other users. Therefore,
this paper adopts this user grouping method to achieve the
coexistence of OMA and NOMA.

In NOMA systems, resource allocation and power manage-
ment are among the key issues. Research indicates that by
optimizing power allocation strategies and resource scheduling
algorithms, it is possible to maximize system capacity and
minimize energy consumption while meeting users’ require-
ments of Quality of Service (QoS). For example, literature
[5] proposed a dynamic power allocation method based on
users’ Channel State Information (CSI), which effectively
reduces system power consumption. In [6], under a given total
system power constraint, the maximum power Pk allocated to
each user is limited to ensure fairness. The study addresses
the problem of maximizing transmission rates in FD-NOMA
systems using both centralized and distributed algorithms. In
[7], under constraints on QoS and power, the study compares a
deep reinforcement learning algorithm with traditional greedy
and genetic algorithms, and the proposed deep reinforcement
learning algorithm achieves higher throughput rates. In [8],
considering joint power and time resource allocation, a Joint
Generalized Energy Efficiency Maximization (GEE-Max) de-
sign is proposed for the downlink transmission of hybrid
TDMA-NOMA systems. The study utilizes Sequential Convex
Approximation (SCA) and novel Second-Order Cone (SOC)
methods to address non-convex problems. It demonstrates that
hybrid TDMA-NOMA systems with opportunistic time allo-
cation outperform traditional resource allocation with equal
time allocation in terms of minimal required transmit power
and achieved total throughput. Incorporating an intelligent
reflecting surface module in literature [9], the study focuses
on reducing system energy consumption through optimized
allocation of reflecting surfaces, user grouping, angle settings,
and power distribution.

Previous studies on novel hybrid NOMA (NH-NOMA)
[4] have primarily focused on minimizing system energy
consumption while meeting user demands. However, this ap-
proach does not directly reflect the specific data transmission
volumes for each user. Additionally, past research has derived
channel capacities under equal time allocation, which limits
the ability to leverage advantages for users with better channel
conditions in priority service scenarios, thereby potentially
reducing overall system performance. The main contribution
of this paper is to consider time allocation and rederive the



achievable data transmission volumes for each user in a NH-
NOMA system. Resource allocation aims to achieve maxi-
mum data throughput while meeting each user’s minimum
data requirement. By introducing slack variables or Taylor
expansions, the non-convex optimization problem transforms
into a convex problem. Finally, the optimization results are
discussed and analyzed based on a set of benchmark scenarios.

The rest of the paper is organized as follows: Section II
introduces the NH-NOMA model and provides a detailed
derivation of the user’s data transmission under this model.
Section III describes the problem and its solutions. Simulation
results are presented in Section IV. Section V concludes the
paper.

II. SYSTEM MODEL

Consider a downlink transmission of a traditional Single-
Input Single-Output (SISO) TDMA network consisting of K
users. In this system, both the base station and all users are
equipped with a single antenna, with the users assumed to
be uniformly distributed on one side of the base station. Let
hm denote the channel gain of user Um. Assuming the base
station can obtain CSI from users. Specifically, it broadcasts
pilot signals to all users, users receive these pilot signals,
estimate their channel gains based on the received signals, and
then feed back the estimated channel gains to the base station.
After receiving CSI feedback from all users, the base station
sorts the users based on their channel quality, specifically
|h1|2 > |h2|2 > . . . > |hK |2, the users are correspondingly
sorted as U1, U2, ..., UK .To enable each user to achieve OMA
transmission, the available transmission time T is divided into
K slots, which are used for orthogonal transmission for each
of the K users, with the length of each slot denoted as ti
for i = 1, 2, ...,K, ti are optimization variables and may
not necessarily be equal. Allowing users with better channel
conditions to transmit first, while also enabling weaker users
to cluster together in each time slot, as illustrated in Figure
1. Considering each time slot, using NOMA technology to
superimpose the information of users with poorer channel
conditions onto the current time slot. This allows all users
to achieve orthogonal transmission between time slots while
enabling non-orthogonal transmission within each time slot.
Therefore, the signal transmitted by the base station in the
i-th time slot is:

Xi =

K∑
j=i

√
pi,jxi,j (1)

where ui,j represents the Uj in the i-th time slot (i ≤ j), pi,j
denotes the power allocated to ui,j , and xi,j represents the
signal sent to ui,j .

Assuming the channel follows quasi-static flat Rayleigh
fading, which means the channel coefficients remain constant
within each transmission block but independently vary be-
tween different blocks.

To ensure each user can decode without signal interference
in their corresponding time slot as OMA transmission, the
decoding process in each time slot begins with decoding the

Fig. 1: novel hybrid NOMA transmission system.

last user UK first, proceeding in reverse order of user indices
from the highest to the lowest, where channel gains are corre-
spondingly from smallest to largest, using SIC as illustrated in
Figure 2. In the i-th time slot, the Signal-to-Interference-plus-
Noise Ratio (SINR) for weak user Um(m ≥ i) decoding its

own signal is:SINRm
i,m =

|hm|2 pi,m
|hm|2

∑m−1
j=i pi,j + σ2

, The SINR

with which strong user Un(i ≤ n < m) decodes the signal

of weak user Um is:SINRn
i,m =

|hn|2 pi,m
|hn|2

∑m−1
j=i pi,j + σ2

. Ac-

cording to the SIC order, the SINR for the weak user Um must
satisfy SINR = min{SINRm

m,i, SINRn
m,i} = SINRm

m,i.
Therefore, if Um can successfully decode its own signal, Un

will certainly be able to decode and remove U ′
ms signal with

effective SIC. Then the SINR of the Uj in the i-th time slot
is:

SINRi,j =
|hj |2 pi,j

|hj |2
∑j−1

k=i pi,k + σ2
(2)

Where |hj |2 represents the squared magnitude of the channel
gain for Uj , and σ2 denotes the noise power at Uj in the i-
th time slot. Assuming the noise power is normalized, i.e.,

σ2 = 1. When j = i, SINRi,i =
|hi|2 pi,i

σ2
, at which point

the user’s interference is reduced to only noise.
Then, The total amount of data that the system can transmit

in the i-th time slot is given by:

Sum(i) = ti ×
K∑
j=i

log(1 + SINRi,j) (3)

Meanwhile, the data of Uk can be transmitted before the k-
th time slot, then the total amount of data that Uk can transmit
in one time frame is:

Nk =

k∑
i=1

ti × log(1 + SINRi,k) (4)

Fig. 2: Successive Interference Cancellation (SIC) Technique
Employed in the i-th Time Slot.



III. PROBLEM FORMULATION AND SOLUTION

A. Problem Formulation

In this section, we have developed a data transmission
maximization optimization design for the NH-NOMA system.
In this optimization design, the slot length is also treated
as an optimization variable, jointly optimized with power
allocation. It requires that the total length of segmented slots
equals the length of one time frame T, and the total power
allocated to users across all time slots does not exceed the
total power Ptotal that the base station can provide. To ensure
the optimization problem is realistic, we require that the
power allocated to users must be greater than or equal to 0,
furthermore, to ensure each user operates in an orthogonal
transmission mode within their corresponding slot, the power
allocation for Ui in the i-th slot must not be zero, i.e., Pi,i > 0.
In addition, we require that under the given total power,
minimum data rate requirement Nmin must be satisfied to
ensure QoS for every user.

This optimization problem can be formulated as follows:

(P1): max
pi,j ,ti

K∑
i=1

Sum(i) (5)

s.t.
K∑
i=1

ti = T, (6)

K∑
i=1

K∑
j=i

pi,j ⩽ Ptotal, (7)

pi,j ⩾ 0,∀j > i, i ∈ {1, ...,K}, (8)
pi,i > 0, i ∈ {1, ...,K}, (9)
Nk ⩾ Nmin, k ∈ {1, ...,K} (10)

However, there are some challenges in solving P1. Firstly,
unlike the equal time allocation considered in the work [4],
the joint allocation of time and power resources introduces
additional complexity, making the resolution of the problem
and the evaluation of design parameters more challenging.
Secondly, the optimization objective turns to the total data
transmitted by the system from a convex function of system
energy consumption. It can be seen from P1 that not only is
the objective function non-convex, but also the constraints (10)
form a non-convex set. The non-convex nature increases the
complexity of solving the optimization problem. Finally, due
to the constraints in (7) and (10), if available power budget
cannot meet the minimum quality of service requirements for
users, the optimization problem P1 may become infeasible.
Therefore, these factors must be comprehensively considered
when solving P1.

B. Problem Solution

In this optimization scheme, we introduce slack variables
and the Taylor series expansion to transform the problem into
a convex optimization problem for solving. On one hand,
if the non-convex problem can be successfully transformed
into a convex problem, it benefits from stronger theoretical

guarantees. On the other hand, using the Taylor series for
approximation can ensure the convergence and stability of
iterative methods.

We will first address the objective function. Due to the
involvement of high-dimensional variables and complex func-
tions in the objective function, using the Taylor series expan-
sion may become impractical. Therefore, we introduce new
slack variables γ to relax the original non-convex parts and
transform the objective function into a convex form. The
objective function can be expressed as:

max
pi,j ,ti,γ

γ (11)

a new constraint needs to be added:
K∑
i=1

K∑
j=i

ti log(1 + SINRi,j) ⩾ γ (12)

Notice that the objective function (11) becomes convex, but a
new non-convex constraint (12) is also introduced. Now, we
handle the non-convexity of (12) by introducing new slack
variables αi,j and βi,j as follows:

(1 + SINRi,j) ≥ αi,j (13a)
log(1 + SINRi,j) ≥ βi,j (13b)

αi,j ≥ 2βi,j (13c)
K∑
i=1

K∑
j=i

tiβi,j ≥ γ (13d)

Where i ∈ {1, ...,K}; j ∈ {i, ...,K}; (13a) is intended to
separate and convexly approximate the variables in SINRi,j

further, while (13b) to (13d) are aimed at constraining the
variables in (13a) to satisfy equation (12).

Clearly, the constraint in expression (13c) forms a convex
set. To overcome the non-convexity issue of (13a), new slack
variables ϕi,j are introduced, ensuring that

|hj |2 pi,j
|hj |2

∑j−1
k=i pi,k + σ2

≥ (αi,j − 1)ϕi,j

ϕi,j
(14)

Accordingly, the constraints in (14) can be decomposed into
the following two constraints:

|hj |2 pi,j ≥ (αi,j − 1)ϕi,j (15a)

|hj |2
j−1∑
k=i

pi,k + σ2 ≤ ϕi,j (15b)

Clearly, (15b) represents a convex set since both sides of the
inequality are linear expressions. However, (15a) remains non-
convex, where the left side is a linear expression and the right
side is a simple function composed of two variables. Therefore,
we consider an approximation using a first-order Taylor series
expansion, expanding the simple function on the right side into
a linear expression of two variables. Then, it transforms into
the following constraint:

|hj |2 pi,j ≥ (α
(0)
i,j − 1)ϕ

(0)
i,j + ϕ

(0)
i,j (αi,j − α

(0)
i,j )

+ (α
(0)
i,j − 1)(ϕi,j − ϕ

(0)
i,j ) (16)



Where α
(0)
i,j and ϕ

(0)
i,j represent the initial values of αi,j and

ϕi,j , respectively. Using these approximations, the constraints
in (13a) can be rewritten as convex constraints in (15b) and
(16).

Now, we address the non-convexity of the constraint in
(13d). Similar to the previous approximation, the non-convex
constraint in (13d) is rewrite by using a new slack variable
zi,j as

tiβi,j ≥ zi,j (17a)
K∑
i=1

K∑
j=i

zi,j ≥ γ (17b)

Then, the right side of (17a) is approximated using an upper
bound convex approximation through the first-order Taylor
series expansion. Therefore, (17a) can be reformulated as:

t
(0)
i β

(0)
i,j + β

(0)
i,j (ti − t

(0)
i ) + t

(0)
i (βi,j − β

(0)
i,j ) ≥ zi,j (18)

Where t
(0)
i and β

(0)
i,j represent the initial values of ti and βi,j ,

respectively. The constraint in (13d) can be rewritten as convex
constraints in (17b) and (18).

In summary, the non-convex constraint of (12) can be
equivalently represented by the set of convex constraints:
(13c), (15b), (16), (17b), and (18). Therefore, the constraint
on the minimum data transmission requirement Nk for user k
can be redefined as the following convex constraints:

k∑
i=1

zi,k ≥ Nmin (19)

Through the aforementioned relaxation, the original non-
convex optimization problem P1 can be equivalently written
as the following approximate convex optimization problem:

(P2): max
Γ

γ (20)

s.t. (6) ∼ (9), (13c), (15b), (16), (17b), (18), (19) (21)

Where Γ consists of all optimization variables, i.e., Γ =
{pi,j , ti, γ, αi,j , βi,j , ϕi,j , zi,j} for any i ∈ {1, . . . ,K} and
j ∈ {i, i+ 1, ...,K}.

Specifically, by solving the approximate convex optimiza-
tion problem P2, we obtain the solution to the original non-
convex optimization problem P1. However, when using Taylor
series expansion to transform a non-convex optimization prob-
lem into a convex one, the choice of initial point is crucial.
That’s because Taylor series expansion is a local approxima-
tion method, and the choice of the expansion center (i.e., the
initial point) directly affects the accuracy of the approximation
and the quality of the optimization results. Therefore, based
on previous experience, the time slots are initially set to equal
lengths, i.e.,ti = T/K(∀i ∈ {1, ...,K}). The optimal power
allocation from the P-min problem is used as the initial power
allocation for this optimization problem. These initial values
are then used to determine the corresponding slack variables
by substituting them into equations (13a), (13b), (14), (17a),
and (17b). Since P2 is a convex problem, the optimal solution
can be quickly obtained using established optimization tools.

IV. SIMULATION RESULT

In this section, simulation results are provided to demon-
strate that within a single time frame, the proposed novel
hybrid NOMA (NH-NOMA) based on joint time and power
allocation achieves higher data transmission, OMA with equal
time and power allocation, OMA with joint time and power op-
timization (OMA-tp), and HNOMA with equal time allocation
(HNOMA-tEq) are used as benchmark schemes. All schemes
are assumed to use the same minimum quality of service
requirements. Table I presents the time allocation scheme for
NH-NOMA. In the simulation, it is assumed that the users’
channels are independently and identically distributed (i.i.d.)
complex Gaussian random variables, with the noise power at
all users being σ2 = 1. The length of a time frame is set to
10 seconds.

It can be observed from Figure 3a that the proposed NH-
NOMA achieves the highest data transmission. Specifically,
NH-NOMA significantly outperforms OMA-tp, which also
uses joint time and power allocation. HNOMA-tEq exhibits
the worst performance, this is because equal time allocation
means that users with poor channel conditions still receive the
same transmission time, leading to inefficiency. Additionally,
as the number of users increases, the performance of all four
transmission schemes declines. This is due to the relative
reduction in power allocated to each user and the increase in
interference, leading to a decrease in each user’s signal quality,
and formulating an optimal power allocation strategy becomes
more complex and challenging, potentially decreasing resource
utilization efficiency.

Figure 3b shows that as the minimum data transmission
requirement for users increases, the total data throughput
achieved by NH-NOMA decreases. This is because, on one
hand, the stronger users’ signals increase interference for
weaker users. On the other hand, the increased signal require-
ments of weak users mean that the system needs to allocate
more time and power to ”accommodate” users with poor
channel conditions, thus consuming a significant amount of
resources and reducing overall performance.

As shown in Figure 3c, as the maximum system power
increases, the total data transmission capacity of all trans-
mission schemes rises, with the proposed NH-NOMA scheme
exhibiting the most significant increase. This is because with
increased available power, better power scheduling can be
achieved, resulting in a higher signal-to-interference ratio.
The NH-NOMA scheme optimally allocates time and power
based on user channel conditions, further enhancing resource
utilization efficiency.

Figure 4 illustrates that under the same minimum data
requirement constraint, NH-NOMA based on time allocation
can meet the data demands of most users, users with better
channel conditions achieve data rates far exceeding other users.
It can be seen from table I that the time slot for the user with
the best channel conditions is allocated the majority of the
time. This is because, allocating the same resources to the user
who can transmit data in the form of OMA and has the best



(a) Total data throughput vs. user num. (b) Total data throughput vs. min data. (c) Total data throughput vs. P max

Fig. 3: The relationship between data throughput and some metrics for different transmission schemes.

TABLE I: the time allocation of NH-NOMA

Time allocation in NH-NOMA
Channels t1(s) t2(s) t3(s) t4(s) t5(s) t6(s) t7(s) t8(s) t9(s) t10(s)
Channel 1 4.757 0.951 0.512 0.514 0.507 0.510 0.544 0.562 0.586 0.555
Channel 2 5.574 0.825 0.458 0.460 0.446 0.437 0.431 0.461 0.448 0.459
Channel 3 5.570 0.569 0.484 0.488 0.491 0.494 0.483 0.490 0.488 0.443

channel yields the highest return. This system ensures that key
users can still enjoy high-speed, low-latency communication
even under heavy overall system load. It is suitable for priority
service scenarios in resource-limited environments, such as
prioritizing critical tasks in enterprise networks or meeting
high service quality demands for specific user groups.

Fig. 4: The amount of data transmitted per user under different
transmission schemes under identical conditions.

V. CONCLUSION

In this paper, we propose a novel hybrid NOMA system
(NH-NOMA) based on time allocation for downlink trans-
mission. Specifically, we consider allowing users to access
multiple time slots while ensuring that each user can achieve
OMA transmission in their respective slots, and jointly allocate
time and power to maximize the system’s data transmission
capacity. Due to the non-convex nature of the optimization
problem, we employ slack variables and Taylor expansion to
transform the problem into a convex one for resolution. The
results demonstrate that under the same minimum required
transmission data, NH-NOMA with time allocation consis-
tently achieves higher total data transmission compared to

equal time allocation hybrid NOMA and traditional TDMA.
In addition, the results demonstrate that NH-NOMA exhibits
favorable properties in priority service scenarios, where users
with favorable channel conditions can maintain high service
quality even under heavy system loads, while other users
receive basic service.
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