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Abstract. The present paper aims to show the numerical results of an incompressible fluid flow in 

curved pipes for three-dimensional space using a fluid-structure interaction (FSI) model. A 

tetrahedral element is employed to discretize the Navier-Stokes equation for a fluid part and the 

elastic model for the solid domain. Strong coupling is used for FSI iteration to satisfy the balance 

conditions at the fluid-solid interface. The current approach is firstly validated by comparison of 

numerical solution with experimental data for a 90-degree curved pipe in the rigid wall using the 

CFD model. In addition, the pressure wave propagation in a straight tube is used for FSI validation. 

Then the algorithm is adopted for calculating the FSI method for the 90-degree curved pipe. The 

comparison of the FSI and CFD model is shown in detail in this curved pipe. The present work can 

be used for bio-mechanical prediction, such as the blood flow in coronary artery vessels. 

Keywords: CFD, Curved pipes, incompressible fluid flow, fluid-structure interaction, Navier-Stokes 

equation. 

1. Introduction 

The study of pulsatile fluid flows in the laminar regime is particularly interesting in many 

engineering applications, especially for blood flow in physiological circulation. These flows are 

characterized by a function of velocity or pressure that varies with time. Among them, the oscillating 

flow in curved pipes plays an important role and is investigated by many researchers, including 

experiments and numerical methods [1,2]. Detailed analysis of unstable fluid flow in a curved pipeline 

is important for several reasons. First, fluid flow in a curved tube is considered a fundamental fluid 

mechanics problem. Many investigators have studied the analytically fully developed flow; however, it 

is not straightforward for curved pipes. Therefore, the numerical problem approach seems to be an 

appropriate way to gain insight into the flow phenomena occurring in the region of curved pipes. Second, 

the unsteady flow in the curved pipes is also closely related to the flow phenomenon occurring in the 

coronary/arterial vessels of the vascular problem, which is a very challenging problem at present. 

In oscillating flows, the interaction between viscous and inertial effects originates from the 

deviation of the velocity profile from the parabolic shape of a steady flow. When studying the laminar 

flow through ducts, even a small curvature has a non-negligible effect on the flow. These effects 

originate from centrifugal force creating a pressure gradient and secondary flows. The secondary flow 

in a curved pipe depends on the Womersley parameter, Reynolds number, and Dean number [3]. In the 

field of cardiology, pulsating flow is of particular interest to blood circulation and vascular aging. There 

has been much research on flow in curved pipes in previous work; however, most employ rigid models 

using the CFD approach. Moreover, the effect of elastic walls is mentioned very little. Therefore, this 

study aims to focus on the unsteady fluid flow in curved pipes in three-dimension by using the FSI 

model and comparing the results with the CFD approach by numerical method. 

2. Numerical method 

2.1. Equations for incompressible blood flow 
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The fluid domain is denoted by f with the boundary f . The incompressible Navier-Stokes 

equations can be written in f  by arbitrary Lagrangian-Eulerian formas follows [4]: 

 

2 2 2
* * *

2 2 2
( ) ( ) ( ) x

u u u u p u u u
u u v v w w g

t x y z x x y z

         
             

          
     (1a) 

 

2 2 2
* * *

2 2 2
( ) ( ) ( ) y

v v v v p v v v
u u v v w w g

t x y z y x y z
  

         
             

          
 (1b) 

 

2 2 2
* * *

2 2 2
( ) ( ) ( ) z

w w w w p w w w
u u v v w w g

t x y z z x y z
  

         
             

          
 (1c) 

And the continuity equation in f given by: 

 0
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 (2) 

where ρ is the fluid density, u, v, w represents the velocity in x, y, z direction, gi represents the body 

force in i-direction, and μ denotes the dynamic viscosity of the fluid. u*, v*, and w* represent the 

components of mesh velocity, and p is fluid pressure. For the CFD method, the solid wall is assumed to 

be a rigid body, and the mesh velocity (u*, v*, w*) is set to zero. 

Equations (1) and (2) are the governing equations for fluid dynamics. Solving this equation to 

obtain the velocity and pressure field by the FEM method is described in ref. [4]. 

2.2. Equation for elastic structure of wall 

The structure domain is denoted by s  with the boundary s . The deformation of the wall in the 

Lagrangian form is written in three-dimensional Cartesian coordinate system by: 
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where s is density of solid, dx, dy, dz represents the displacement in x, y, z direction of solid, and ij

denote the components of stress tensor: 
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The relation of stress and strain can be written by compact form as follows: 
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where 
ij is components of strain tensor: 
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and: 
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The constitutive equations of the solid domain in large deformation are explained in Ref. [5]. 

2.3. CFD method based on FEM formulation on unstructured grid 

In this work, the pressure/velocity variable is linearly/quadratically interpolated in a finite 

element. Fig. 1 shows a P2P1 finite element for a tetrahedral element [6], where the pressure variable is 

allocated on the vertices and the velocity variables are on both vertices and mid-nodes.  

 

Fig. 1. Degrees of freedom assigned for the P2P1 finite element [6] 

The governing equations (1) and (2) are solved by the fractional method, using the straightforward 

approach for the non-linear convection term. The body force is neglected in this work. The procedure 

of the fractional three-step scheme can be written as: 
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where t is the time step; the superscript n denotes the time level. In this procedure, the intermediate 

velocity u̅, v̅, and w̅  are solved by the momentum equation (8). Then, the pressure is obtained by solving 

the Poisson equation (9), and finally the velocity is corrected by using the calculated pressure (10). 

Equations (8), (9), and (10) are called strong formulations, and weak formulations are obtained 

by multiplying two sides of these equations with test functions and applying the divergence theorem. 

Finally, linear systems are obtained on each equation of (8), (9), and (10). An iterative solution (e.g., 

conjugate gradient) is employed to solve these linear systems to get the velocity and pressure field at 

each time level. 

2.4. FSI formulations 

The governing equations for solid deformation (3) with constitutive equations (5) and (7) are 

discretized by the Galerkin method on the 10-node tetrahedral element (Fig.1). The stress-strain relation 

in equation (6) is non-linear with respect to displacement d. The Lagrangian method is used for this 

geometry non-linearity. The FEM discretization for solid deformation was explained in previous works 

[6]. This section shows the coupling of incompressible fluid flow and elastic structure at the interface. 

Let denote the fluid and solid domains (FS interface) interface by ,f s f s f s      . In the 

implicit coupling method, the velocity and traction need to satisfy the continuum conditions at the 

interface. When a no-slip condition is applied, the velocity of the fluid is similar to that of a solid on 
f s , and the balance condition can be written as follows: 

 ; ;
yx x

dd d
u v w

t t t

 
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  
  (11) 

Due to the force equilibrium condition, the traction should also be continued along the FS interface: 
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It is noted that the direction of the unit normal vector of solid ns is opposite to that of fluid nf 

when the grids of fluid and solid domain along the FS interface are conformed. 

The flow chart of the fluid-structure interaction is illustrated in Fig. 2. The fluid solver to calculate 

velocity and pressure is conducted first in each iteration using the Dirichlet condition in equation (11). 

The traction of fluid acting on the solid wall is computed using the computed velocity and pressure. This 

traction is the Neumann boundary condition in equation (12) for a solid solver. A convergence checking 

is performed for displacement at the interface. The solution is convergence when this displacement is 

not changed with the previous iteration, and the next time step is carried out. Otherwise, the process is 

continued and repeated for the next iteration. 

 

Fig. 2. Flow chart of FSI coupling method 

3. Results and discussions  

Firstly, the CFD code is validated for the curved pipes by comparing it with experiment data. In 

addition, a fluid-structure interaction code is confirmed with previous results. Then the FSI code is 

employed to simulate the case of the curved pipes. Finally, some discussions and the comparison of 

CFD and FSI modules will be drawn. All the simulations in this work are carried out on a desktop PC, 

and the code was implemented by Fortran 90 language programming. 

3.1. CFD validation for curved pipes 

Firstly, a CFD code is validated by comparison of numerical results with experimental data and 

previous works for the 90-degree curved pipe. The geometry of the benchmark test case, as provided in 

Refs [1, 2], is shown in Fig. 3. The pipe with a radius of a = 4 mm and a curvature radius R = 24 mm. A 

tetrahedral element is used for this three-dimension test case. We only simulate a half domain because 

of symmetry; the grid is shown in Fig. 4. An independent test is carried out, and the comparison of 

velocity in the y direction is shown in Fig. 5  for three grid resolutions (course grid, medium grid, and 

fine grid). The medium grid is employed for the next simulation since it is fine enough for accuracy with 

a short elapsed time. 
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Fig. 3. Geometry of a curved pipe 

The code is validated by the two cases: steady and unsteady problems. For the former case, a 

fully developed profile for the velocity at the inlet is set and the Reynolds number is set by Re = 300. A 

velocity profile at the centerline of section A-A (from inner to outer of the section) is presented in Fig.6  

for comparison with previous data. It is clear that the present results are in good agreement with the 

experimental data as well as the numerical solution of ref [1]. 

 

Fig. 4. Tetrahedral element for curved pipe problem 

 
 

Fig. 5. Velocity in y component for test grid Fig. 6. Validation of steady flow (Re = 300) 
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Fig. 7. Validation of unsteady flow (T/4) 

For the unsteady test case, the boundary condition of ref [2] is adopted, and the comparison of 

present solutions with those of ref [2] is shown in Fig. 7. Again, the results agreed well with previous 

works. 

3.2. FSI validation 

After validating the code for a curved pipe by the CFD method (using a rigid model for the wall), it 

needs to validate the code for the FSI method. A common benchmark case for FSI validation is the pressure 

wave propagation in a straight flexible pipe problem. The schematic is shown in Fig. 8. The length and 

diameter are set by L = 5.0 cm and D = 1.0 cm, respectively. The thickness of the solid wall is set by t = 0.1 cm. 

The density and viscosity of fluid are ρf = 1.0 g/cm3 and μ = 3∙10-3 Pa. The Young’s modulus and Poisson ratio 

for solid walls are set by ρs = 1.2 g/cm3 and   = 0.3. The detailed simulation setting is provided in ref. [7]. 

Fig. 9 shows the pressure field and deformation of the solid wall for the two instants time: t = 0.5 ms 

and t = 10 ms, which, a factor of 10 for clarity, enhances the wall deformation. The pressure at the centerline 

at different time instants is plotted in Fig. 10 . It is noted that wave propagation only appears for the elastic 

wall. For the rigid wall model, the pressure is not changed in time. The displacement and pressure at the inner 

of the pipe wall are shown in Fig. 11. The present results agree well with previous research in the literature. 

 
Fig. 8. Geometry of straight pipe problem 

  
Fig. 9. Pressure field and wall deformation 



Nguyen Manh Hung, Trinh Trung Tien, Vu Duc Quyen, Ta Xuan Tung, Nguyen Trung Dinh, Sang Truong Ha 8 

 
Fig. 10 Pressure at centerline (FSI vs. CFD) 

  
 Fig. 11 Pressure and displacement at inner pipe 

3.3. FSI effect in 900 pipe 

Lastly, the FSI model is employed to simulate the curved pipe test. The 900 pipe presented in 

section 3.1 is used for this simulation. Two boundary conditions are employed: Fixed pressure or 

velocity at the inlet. The outlet is set by zero pressure. For the former case, the comparison of the 

pressure field is shown in Fig. 12 and Fig. 13 for different instants time. It is shown that the pressure 

wave propagates along the pipe with a limited velocity. In contrast, the CFD method established nearly 

the constant pressure gradient for the first time. For the velocity at the inlet case (Re = 600), the 

comparison of pressure at the centerline is shown in Fig. 14. Fig 15 shows the secondary flow on the 

section A-A with velocity vector and contour field. Because of wall deformation effect, the elastic wall 

case by FSI formula shows a little bigger in magnitude velocity near the wall.  

 

 

 

 

 

 

 

 

Fig. 12. Pressure contour at time =1.0 ms {a) Rigid wall; b) elastic wall} 

a

) 

b

) 
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Fig. 13. Pressure at centerline (rigid wall and elastic wall). Pressure boundary condition at inlet. 

Fig. 14. Pressure at centerline (Velocity boundary condition at inlet, Re = 600): a) Rigid wall, b) Elastic wall 

 

 
 

Fig. 15. Secondary flow on section A-A (Re = 600): a) Rigid wall, b) Elastic wall 

 

 

a) b) 
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4. Conclusion 

The present work used FSI and CFD formulas to investigate the incompressible flow in curved 

pipes. The 10-node tetrahedral element was employed for both the fluid and structure grids. The 

incompressible flow was solved using the fractional step scheme, and the Lagrangian method was used 

to handle the nonlinear behavior of the stress-strain relation. For the CFD method, the wall was fixed, 

and a non-slip condition was applied to this boundary. On the other hand, the FSI method employed a 

moving wall for the fluid solver, and the grid was updated every time-step to avoid lousy quality 

elements. CFD and FSI methods were validated by comparing the results with experimental data or 

previous numerical solutions. From the numerical results, the CFD method could not provide an exact 

solution for the pressure propagation wave since the pressure was nearly developed in the full domain 

at the first time step. Similar results for the 90-degree curved pipe, the effect of the deformed wall was 

depicted on both boundary conditions. This study can be employed for simulating the blood flow in the 

coronary/artery in the human body because the effect of the curved pipe and an elastic wall are 

significant in these problems. 
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