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Abstract: 

This paper presents a novel approach for technology assessment and software bug remediation 

through the integration of Genetic Algorithm (GA) with Temporal Convolutional Neural Networks 

(TCN), coined as GA-TCN. The combination of GA and TCN offers a robust framework for 

addressing challenges in software development, particularly in bug detection and resolution. By 

leveraging GA's evolutionary principles and TCN's temporal processing capabilities, this 

methodology achieves enhanced bug remediation effectiveness and technology assessment 

accuracy. The proposed GA-TCN framework operates in two phases. In the first phase, GA 

optimizes the parameters and architecture of TCN to tailor it specifically for bug detection and 

technology assessment tasks. Through iterative evolution, GA fine-tunes the TCN architecture to 

efficiently capture temporal dependencies in software code, thereby improving bug detection 

sensitivity and accuracy. In the second phase, the trained TCN model is deployed for real-time 

bug detection and technology assessment. TCN utilizes its temporal convolutional layers to 

analyze software code sequences, identifying patterns indicative of bugs or assessing the 

technological efficacy of code segments. 

Keywords: Genetic Algorithm, Temporal Convolutional Neural Networks, Technology 
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Introduction 

The ever-evolving landscape of technology and the increasing complexity of software systems 

pose significant challenges in evaluating technological advancements and ensuring the robustness 

of software applications. Traditional methods often fall short in handling the intricate interplay 

between evolving technologies and the dynamic nature of software behavior. To address these 

challenges, this research introduces a novel hybrid approach, referred to as GA-TCN (Genetic 



Algorithm and Time Convolution Neural Network), which synergizes the power of genetic 

algorithms (GA) and time convolution neural networks (TCN). The motivation behind the 

development of GA-TCN stems from the pressing need for innovative methodologies that can 

adapt to the rapid pace of technological progress and the growing intricacies of software 

ecosystems. Conventional evaluation techniques may struggle to keep pace with the continuous 

evolution of technologies, and conventional bug detection methods often lack the temporal 

understanding necessary to effectively capture the dynamic nature of software behaviors. GA-TCN 

seeks to bridge these gaps by combining the evolutionary optimization capabilities of genetic 

algorithms with the temporal learning process of TCN [1]. 

Genetic algorithms are employed in GA-TCN to tackle the challenge of optimizing feature 

selection. This evolutionary optimization process allows the model to iteratively select the most 

relevant features from the data, enhancing the efficiency of representation and contributing to the 

overall interpretability of the model. By leveraging the principles of natural selection, crossover, 

and mutation, genetic algorithms facilitate the creation of a feature set that is finely tuned to the 

complexities of the technological and software landscape under consideration. Recognizing the 

temporal dependencies inherent in software data is crucial for comprehensive bug training and 

technology evaluation. Time convolutional neural networks within the GA-TCN framework excel 

in capturing these temporal patterns. The temporal convolutional layers are adept at recognizing 

and learning sequences of events, enabling the model to comprehend the temporal dynamics of 

software behaviors over time. This temporal understanding significantly contributes to the model's 

ability to discern evolving patterns and adapt to changes in the software  

The GA-TCN framework is designed with versatility in mind, making it applicable to a broad 

range of technological domains. Its adaptability allows for effective evaluation of advancements 

in diverse technological landscapes, ensuring that the model remains relevant and powerful across 

various applications. The hybrid nature of GA-TCN, combining evolutionary optimization with 

temporal learning, positions it as a comprehensive solution capable of addressing multifaceted 

challenges in both technological assessment and software bug training [2]. 

Genetic Algorithm and Time Convolution Neural Network Integration 



The integration of Genetic Algorithm (GA) and Time Convolution Neural Network (TCN) within 

the GA-TCN framework is a key aspect of its innovative approach. This section outlines the 

architecture and functioning of GA-TCN, elucidating how these two components work 

synergistically to address the challenges of technological evaluation and software bug training. In 

the initial phase of GA-TCN, the genetic algorithm takes the reins of feature optimization. The 

raw input data, representing technological parameters or software features, undergoes a process of 

evolution guided by genetic principles. The algorithm starts by initializing a population of potential 

feature sets, each representing a different combination of features. These feature sets are evaluated 

based on their effectiveness in capturing relevant information. Through processes such as 

selection, crossover, and mutation, the genetic algorithm refines the population over multiple 

generations, converging towards an optimized feature set. The strength of the genetic algorithm 

lies in its ability to explore a vast search space efficiently. It navigates through different 

combinations of features, selecting those that contribute most effectively to the overall objective. 

This optimized feature set serves as the foundation for the subsequent phase of the GA-TCN 

framework. With the optimized feature set in hand, the Time Convolution Neural Network (TCN) 

takes center stage. The TCN component of GA-TCN is designed to capture the temporal 

dependencies inherent in technological and software data. Traditional convolutional layers operate 

in a spatial context, but TCN extends this to the temporal domain. It utilizes dilated convolutions 

to increase the receptive field, enabling the network to learn long-range dependencies and temporal 

patterns [3]. 

The architecture of the TCN component includes multiple dilated convolutional layers, each 

capturing different time scales. This hierarchical approach allows the model to grasp both short-

term and long-term temporal relationships in the data. The temporal aspect becomes crucial in 

software bug training, where understanding the sequence of events leading to a bug is essential for 

effective detection and remediation. 

Synergistic Operation 

The synergy between the genetic algorithm and the TCN component is a defining feature of GA-

TCN. The optimized feature set, generated by the genetic algorithm, serves as input to the TCN, 

ensuring that the neural network focuses on the most relevant and informative features. This 

collaboration enhances the interpretability of the model, as the selected features are not only 



optimized for relevance but also contribute to a more meaningful representation of the underlying 

technological or software dynamics. 

The iterative nature of the genetic algorithm, coupled with the temporal learning capabilities of 

TCN, creates a feedback loop that refines the model's understanding over successive iterations. 

This synergistic operation empowers GA-TCN to adapt to changing technological landscapes and 

evolving software behaviors, making it a robust solution for advanced technological evaluation 

and software bug training [4]. 

In the subsequent sections, we delve into the experimental setup, results, and discussions, 

providing empirical evidence of the efficacy of GA-TCN in comparison to traditional methods. 

This section details the experimental configuration employed to assess the performance of the GA-

TCN framework. The experiments were designed to evaluate its effectiveness in both 

technological advancement assessment and software bug training scenarios. The chosen datasets, 

evaluation metrics, and comparison benchmarks are discussed to provide a comprehensive 

understanding of the experimental context. 

For technological evaluation, datasets representing diverse technological parameters were curated. 

These datasets encompassed various domains, including but not limited to telecommunications, 

energy systems, and computational processing. The selection aimed to cover a wide spectrum of 

technological advancements, ensuring the versatility of GA-TCN across different domains. In the 

context of software bug training, datasets containing historical records of software behaviors and 

bug occurrences were compiled. These datasets spanned different software applications and 

systems, capturing the temporal dynamics of software operations. The diversity of software 

datasets aimed to showcase GA-TCN's adaptability in addressing software bug detection 

challenges across various contexts [5], [6]. 

To assess the performance of GA-TCN, a set of comprehensive evaluation metrics were employed. 

For technological evaluation tasks, metrics such as accuracy, precision, recall, and F1 score were 

considered. These metrics provided a holistic view of GA-TCN's ability to accurately assess and 

predict technological advancements. In the realm of software bug training, metrics like precision, 

recall, F1 score, and area under the receiver operating characteristic curve (AUC-ROC) were 

utilized. These metrics gauged the model's effectiveness in identifying and classifying software 



bugs, accounting for both false positives and false negatives. The performance of GA-TCN was 

benchmarked against traditional methods commonly used in technological evaluation and software 

bug training. This included conventional machine learning approaches, as well as standalone 

implementations of genetic algorithms and time convolutional neural networks. The comparison 

aimed to highlight the added value and efficiency brought about by the integration of genetic 

algorithms and TCN in the GA-TCN framework. 

The datasets were divided into training and validation sets to facilitate robust model training and 

evaluation. Cross-validation techniques were applied to mitigate overfitting and ensure the 

generalization capability of GA-TCN. The model's parameters were fine-tuned during training to 

achieve optimal performance. Experiments were conducted on a computing infrastructure 

equipped with GPUs to expedite the training of the neural network components. The software 

environment comprised widely-used deep learning frameworks and genetic algorithm libraries. 

The seamless integration of these tools facilitated the implementation and execution of the GA-

TCN framework [7]. 

Results 

The results section provides a detailed analysis of the performance achieved by the GA-TCN 

framework in comparison to traditional methods across technological evaluation and software bug 

training scenarios. In the assessment of technological advancements, GA-TCN demonstrated 

superior performance compared to traditional methods. The accuracy, precision, recall, and F1 

score metrics consistently outperformed standalone genetic algorithms and conventional machine 

learning approaches. The evolutionary optimization by the genetic algorithm contributed to a 

refined feature set, enabling the TCN component to capture intricate patterns in the technological 

data. The temporal understanding of TCN facilitated the recognition of evolving trends and 

dynamics, leading to more accurate predictions of technological advancements [8]. 

In the domain of software bug training, GA-TCN showcased remarkable effectiveness. The 

precision, recall, F1 score, and AUC-ROC metrics indicated a significant improvement over 

conventional method. The optimized feature set generated by the genetic algorithm proved crucial 

in highlighting relevant aspects of software behavior, while the temporal learning capabilities of 

TCN enabled the model to identify subtle patterns leading to bug occurrences. This integration of 



genetic algorithms and TCN not only enhanced bug detection accuracy but also reduced false 

positives and false negatives, resulting in a more reliable bug detection system. Comparative 

analyses against standalone genetic algorithms and TCN implementations revealed the added value 

of the integrated GA-TCN framework. The hybrid model consistently outperformed these 

individual methods, emphasizing the synergy between evolutionary optimization and temporal 

learning. The comprehensive understanding of both static and dynamic aspects of the data, 

achieved through the collaboration of genetic algorithms and TCN, proved instrumental in 

surpassing the capabilities of traditional approaches. One notable strength of GA-TCN is its 

adaptability to diverse technological domains. The framework demonstrated consistent 

performance across datasets from various technological landscapes. This versatility positions GA-

TCN as a robust solution applicable to a wide array of industries and technological sectors [9]. 

Discussion 

The superior performance of GA-TCN can be attributed to its ability to leverage the strengths of 

genetic algorithms and TCN in a synergistic manner. The evolutionary optimization refines the 

feature set, focusing on the most relevant aspects of the data, while the temporal learning ensures 

a nuanced understanding of temporal patterns. This combination enables GA-TCN to adapt to 

changing technological landscapes and dynamic software behaviors, addressing the limitations of 

traditional methods. The adaptability and versatility of GA-TCN make it a promising tool for 

industries seeking efficient technological evaluation and reliable software bug detection. The 

results suggest that the integration of genetic algorithms and TCN contributes to a holistic model 

capable of handling complex and evolving datasets. While GA-TCN exhibits notable strengths, it 

is essential to acknowledge its limitations. Further research could explore methods to enhance 

interpretability, scalability, and real-time applicability. Additionally, investigating the impact of 

hyperparameter tuning and exploring alternative evolutionary algorithms could contribute to the 

refinement of the GA-TCN framework [10]. 

Conclusion 

In conclusion, the GA-TCN framework presents a groundbreaking approach to advanced 

technological evaluation and software bug training by synergizing genetic algorithms and time 

convolution neural networks. The experimental results underscore the framework's efficacy in 



outperforming traditional methods across diverse datasets and scenarios. The collaborative 

optimization by genetic algorithms and temporal learning by TCN create a powerful synergy, 

allowing GA-TCN to adapt to evolving technological landscapes and dynamic software behaviors. 

The adaptability of GA-TCN to various domains positions it as a versatile solution for industries 

seeking to enhance technological assessment and software bug detection. The refined feature sets 

generated by genetic algorithms contribute to the model's interpretability, while the temporal 

learning capabilities of TCN enable it to capture intricate temporal patterns. This combination 

results in a comprehensive understanding of both static and dynamic aspects of the data. However, 

acknowledging the limitations, further research is warranted to enhance interpretability, 

scalability, and real-time applicability. Exploring alternative evolutionary algorithms and fine-

tuning hyperparameters could contribute to the ongoing refinement of GA-TCN. Despite these 

considerations, the current findings establish GA-TCN as a promising tool in the realm of 

advanced technological evaluation and software bug training. 

The implications of GA-TCN extend beyond the experimental setting, suggesting a paradigm shift 

in how we approach technological evaluation and software bug detection. Industries adopting GA-

TCN can benefit from a more robust and adaptive model, leading to improved decision-making 

processes and enhanced software quality assurance. Applications of GA-TCN span across diverse 

sectors, including telecommunications, energy systems, finance, healthcare, and more. Its 

adaptability and effectiveness make it a valuable asset in addressing the unique challenges posed 

by different technological landscapes and software environments. 

The success of GA-TCN opens avenues for future research and development. Exploring 

interpretability enhancements, scalability improvements, and real-time applications will be crucial 

for further refining the framework. Additionally, investigating the impact of different evolutionary 

algorithms and fine-tuning hyperparameters could contribute to optimizing GA-TCN's 

performance. As technology continues to advance, the need for sophisticated evaluation methods 

and robust bug detection systems will persist. GA-TCN provides a foundation for ongoing 

exploration and innovation in these areas, offering a glimpse into the potential of hybrid models 

that harness the strengths of both evolutionary optimization and temporal learning. In this era of 

rapid technological evolution, the GA-TCN framework stands as a testament to the potential of 

combining genetic algorithms and time convolution neural networks. Its ability to adapt, learn, and 



perform in diverse scenarios positions GA-TCN as a frontrunner in the pursuit of advanced 

technological evaluation and software bug training. The findings presented here lay the 

groundwork for continued advancements in the field, emphasizing the significance of collaborative 

and hybrid approaches in addressing the complex challenges of our technological landscape. 
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