
EasyChair Preprint
№ 15796

CSD-Driven Speedup in RISC-V Processor

Farhad Ebrahimiazandaryani and Dietmar Fey

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 3, 2025

CSD-Driven Speedup in RISC-V Processor

Farhad EbrahimiAzandaryani and Dietmar Fey

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
{farhad.ebrahimiazandaryani,dietmar.fey}@fau.de,

Abstract. This paper introduces a synthesizable µ-architectural design
method to boost the performance of a given RISC-V processor architec-
ture by utilizing Canonical Signed Digit (CSD) representation during the
execution stage within the processor pipeline. CSD is a unique ternary
number system that enables carry/borrow-free addition/subtraction in
constant time O(1) regardless of word length N . The CSD extension
is exemplarily demonstrated to the Potato processor, a simple RISC-V
implementation for FPGAs. However, the method can also be applied
to other implementations in principle. Our performance boost due to
the CSD requires an overhead for conversion between binary and CSD
representation. This overhead is compensated by an extension to a seven-
stage pipeline architecture, featuring a three-step execution stage that
increases the throughput and the operating frequency and enables loop
unrolling, which is especially advantageous in applications with consec-
utive calculations, e.g., signal processing. By experimental results, we
compared our CSD-based ternary solution to the original implementa-
tion, which utilizes the usual pure binary number representation of the
operands. Our approach achieved a 2.41X increase in operating frequency
over the original RISC-V processor on FPGA, with over 20% of this gain
attributed to the CSD encoding. This enhancement resulted in up to a
2.40X improvement in throughput and a 2.37X reduction in execution
time for computation-intensive benchmark applications.

Keywords: Ternary· Canonical Signed Digit · FPGA · RISC-V.

1 Introduction

The ongoing demand for more computing power drives innovation in processor
technology, particularly in optimizing arithmetic operations, as they directly in-
fluence overall performance. A key example is multiplication, a frequently used
operation in fields like digital signal processing and machine learning, where
tasks often involve consecutive multiplication operations, such as filtering. Al-
though numerous algorithms have been developed to enhance binary multiplica-
tion, most are still limited by carry chain delays in partial product summation,
reducing their efficiency. From the 1960s to the 1990s, Avizienis [1], Parhami [2]
and others were already researching carry-free summation in ternary encoding
that worked in O(1), expediting operations like multiplication from O((logN)2)
to O(logN). However, adopting this encoding comes with trade-offs: it abandons

2 F. EbrahimiAzandaryani et al.

uniform number representation, introduces challenges in comparison operations,
and increases memory requirements, as three states instead of two must be stored
per digit. Nonetheless, CSD representation allows a unique number of represen-
tations of ternary operands and despite its potential, it has not been widely
integrated into standard processor architecture. In this work, we integrate this
encoding in the execution stage of a RISC-V processor and show performance
increment is feasible.

This paper proposes a µ-architectural design method employing CSD repre-
sentation during execution to enhance RISC-V processors’ performance. Instead
of using binary digits, CSD operates with balanced ternary digits [−1, 0,+1], en-
abling carry/borrow-free operations and faster computation. The architectural
shift focuses on transitioning the processor’s execution stage from binary to
ternary components while keeping the ISA intact. NOVA � , the name we gave
our processor, implements the introduced method supporting RV32IZmmul_Zicsr1
ISA, which includes integer multiplication instruction but omits hardware-based
division due to its low computational frequency. This trade-off optimizes the
processor for compute-intensive applications like deep learning, where multipli-
cation is more common. The key contributions of this paper can be summarized
as follows:

– CSD Integration: This is the first FPGA implementation of a RISC-V
processor that supports "M" ISA extension using CSD-operands in its µ-
Architrcture. The employed encoding features minimal Hamming weight,
indicating fewer non-zero digits and reducing the number of partial prod-
ucts. This lowers the computation effort required for multiplication, ulti-
mately improving performance and the latency of the execution unit in the
processor.

– Three-Step Execution: As a technical contribution, NOVA integrates an
optimized, balanced pipeline architecture in the execution stage by tripling
the Instruction Execution (IE1, IE2, IE3) stage, distributing multiplication
among them to increase performance. This architectural choice enables loop
unrolling leading to lower branch overhead and stall cycles.

The rest of the paper is organized as follows: Section 2 provides an overview
of Signed Digit (SD) representation, with a specific emphasis on CSD repre-
sentation. Section 3 presents an extensive review of the current state-of-the-art
techniques in applying SD and CSD in the digital circuit design field. Section 4
provides a comprehensive overview of the method and its implementation within
an open-source RISC-V processor. Furthermore, Section 5 addresses the techni-
cal setup, tools, and benchmarks where NOVA is deployed, along with a detailed
presentation of the FPGA-based evaluation results. Finally, Section 6 concludes
the paper by summarizing the key findings and contributions of this research
work.
1 The RV32IZmmul_Zicsr ISA provides a RISC-V processor with a base set of in-

teger arithmetic instructions (RV32I), Multiplication extension excluding division
(Zmmul), and instructions for manipulating control and status registers (Zicsr).

https://github.com/Farhad-Ebrahimi/NOVACore

CSD-Driven Speedup in RISC-V Processor 3

2 Preliminary

In this section, a concise overview of the key concepts associated with SD rep-
resentation, specifically the CSD representation and its properties, is presented
as follows.

2.1 SD representation

Researchers have investigated the utilization of SD representation as an alterna-
tive approach to address the limitations associated with the conventional binary
representation[1][2]. According to a definition in [2], a generalized SD number
system to a radix r utilizes a digit set S = {−α,−(α − 1), . . . ,−1, 0, 1, . . . , β},
with α, β > 0 and α + β + 1 > r and r > 1. E.g., for the so-called bal-
anced Binary Signed Digit (BSD) system holds, that the digit set is symmet-
ric (α = β = 1), and for the radix holds, r = 2, which yields the digit set
S = {−1, 0,+1}. SD representation’s carry/borrow-free addition/subtraction
property accelerates arithmetic operations and facilitates efficient computation
in various applications [2]. Fig.1 illustrates the detailed design of a 32-digit
adder/subtractor for two provided SD numbers2, x = xn

31x
p
31x

n
30x

p
30...x

n
1x

p
1x

n
0x

p
0

and y = yn31y
p
31y

n
30y

p
30...y

n
1 y

p
1y

n
0 y

p
0 . Notably, the critical path has been constrained

to two adjacent digits, regardless of the input data word length. Nonetheless,
regular SD representation has drawbacks: it lacks uniqueness, allowing multiple
representations of the same number that complicates comparisons. Additionally,
it possesses a non-minimal Hamming weight, leading to more effort in result gen-
eration (e.g., more partial products in multiplication), and reducing performance
improvements.

Fig. 1. 32-digit SD/CSD Adder/Subtractor

2 x = (xn
i x

p
i) is to interpret as follows. In a strict digital system a ternary digit requires

two binary values, e.g. xn
i , and xp

i , called plus-minus coding. It codes a ternary digit
x as follows x = xp

i − xn
i , e.g. (1, 0) is equal to −1.

4 F. EbrahimiAzandaryani et al.

2.2 CSD representation

CSD representation is a specific form of radix-2 SD representation that possesses
distinct properties as follows [3]:

– Adjacent CSD digits are never both non-zero, meaning |di · di−1| ≠ 1, where
1 ≤ i ≤ N − 1, and N is the number of digits.

– It exhibits the minimum number of non-zero digits among various represen-
tations. Consequently, the probability of a CSD digit denoted as di being
non-zero is determined by:

P (|di| = 1) =
1

3

(
1 +

1

4N

)
– Utilizing the first property guarantees that each arbitrary number has a

unique and exclusive encoding ensuring the distinct representation of num-
bers.

The first two properties of CSD representation show that as the number of
digits N increases, the probability of a non-zero digit approaches 1

3 , reducing
the Hamming weight and capping the number of non-zero partial products to
N
2 in multiplications. In contrast, binary or regular SD representations have a
fixed probability of 1

2 , potentially producing up to N non-zero partial products.
Additionally, the third property allows for simple, digit-wise comparisons within
the ternary encoding, addressing the non-uniqueness issue present in regular SD
representation (see [4]).

2.3 Encoding

A radix-2 CSD representation is a redundant expression of binary numbers that
allows for more than 2 values per digit. In other words, each digit di should
be encoded using two bits (r = 2). In practice, Table 1 showcases the two most
commonly utilized encodings [5]. Encoding 1 can be characterized as a sign-value
representation that adheres to the following relation:

di = (−1)d
s
i × dvi (1)

where dsi and dvi represent the sign bit and the value bit, respectively. To de-
termine the encoding that corresponds to each digit in the first scheme, Eq. (1)
provides the corresponding computation. Encoding 2 called Positive-Negative,
allows an additional valid representation of 0 when dpi = 1 and dni = 1, which
is useful in some arithmetic implementations and is used in this research. The
corresponding encoding of each digit in the second scheme can be achieved by
employing Eq. (2).

di = dpi − dni (2)

CSD-Driven Speedup in RISC-V Processor 5

Table 1. Two common encodings used in the binary representation of a CSD digit

SD/CSD digit Encoding 1 Encoding 2

di dsi dvi dpi dni

−1 1 1 0 1
0 0 0 0 0
0 1 0 1 1
1 0 1 1 0

3 Prior works

This section thoroughly explores the latest techniques and designs related to SD
and CSD representation. By examining these approaches, it aims to provide a
detailed understanding of the current advancements in utilizing these represen-
tations.

Recent research [4] has shown that switching from conventional binary num-
ber representation to alternative schemes can significantly improve processor
arithmetic logic unit performance. This is due to the reduced logic depth in these
systems, which can surpass the speed of traditional binary circuits. However, a
key limitation is the lack of unique representations for integers, requiring the
processor to revert to binary for tasks like comparisons, where distinct number
representation is necessary.

The work in [6] focuses on a ternary processor leveraging Carbon Nanotube
Field Effect Transistor (CNTFET)-based ternary logic for the control unit and
memory. This approach demonstrates performance improvement and power ef-
ficiency compared to traditional binary systems. However, it faces challenges at
the circuit level, particularly with carry chain propagation. Unlike our method,
which uses base-2 with CMOS technology and benefits from established infras-
tructure, their design employs a base-3 system and does not adopt a redundant
number representation, complicating effective carry chain management and lim-
iting optimization potential for processor performance.

The work presented in [7] introduces a comprehensive design and verifica-
tion framework for developing a fully functional emerging ternary processor uti-
lizing balanced ternary number representation based on ternary logic. While
arithmetic operations like addition and subtraction show improved efficiency in
ternary logic, more complex operations such as multiplication present additional
challenges compared to binary counterparts. The results primarily remain con-
ceptual, lacking concrete implementation details. In contrast, our approach is
grounded in a binary logic system that operates on ternary-represented numbers
as data operands. In the work by [8], CSD encoding has been leveraged in the
development of a Neural Network-based image compression architecture. While
effectively deployed on FPGA platforms for grayscale image processing, the in-
vestigation underscores the unexplored domain of extending this methodology

6 F. EbrahimiAzandaryani et al.

to color image compression, attributed to the intricate complexities associated
with the employed encoding scheme.

Researchers in [9][10] have explored the use of CSD-encoded coefficients in
FIR filter designs, highlighting several key benefits. Specifically, CSD reduces
the number of additions required during multiplication, a central operation in
FIR filters, resulting in lower computational complexity and improved numerical
stability, especially in FPGA implementations. However, while non-binary digits
boost filter performance, they can introduce complexity and increase implemen-
tation costs, which is particularly problematic for smaller-sized FIR filters where
the overhead might outweigh the performance gains. These insights into CSD’s
efficiency in filter design have inspired its application in the execution stage of
general-purpose processors, aiming to tackle computation bottlenecks effectively.

In [11], the authors introduced a ternary representation to improve processor
performance and computational efficiency within their proposed architecture.
However, this design is constrained by its support for only the base RV32I in-
struction set, limiting its applicability in AI and signal processing fields where
performing additional instructions directly can offer more speed-up compared to
the traditional indirect techniques e.g. add/shift loop for multiplication.

While researchers have explored the application of SD/CSD representation
across various domains, yielding valuable outcomes, none of the proposed solu-
tions specifically addressed the demands of computation-intensive applications
to alleviate bottleneck issues related to binary encoding in processors.

4 Proposed design method in a RISC-V core

This section presents an in-depth overview of the proposed method and its im-
plementation in an open-source RISC-V processor [12] that suffers from a com-
putation bottleneck in the execution stage.

To harness CSD computation benefits initially, integrating a Binary-to-CSD
(B2C) circuit is unavoidable. This circuit converts incoming binary values into
CSD numbers in IE1, before their utilization in the next steps for arithmetic
instructions execution. We are favoring [5] due to its low time complexity which
is employed in NOVA architecture for B2C purposes. Refer to [5] for detailed
conversion guidelines. The efficient computation achieved by CSD representation
is attributed to the constrained carry chain (see Fig.1), limited to two adjacent
digits. Subtraction operations benefit from this constraint as the requirement
for the negative value of the second operand can be met by individually inter-
changing the positive and negative bits (ypi and yni) for each digit. This approach
allows the adder circuit to effectively compute A+ (−B) instead of requiring a
separate circuit for A−B. Consequently, the overall circuit design is simplified,
and the computational efficiency of subtraction operations is enhanced. In binary
representation, N ×N multiplication produces N non-zero partial products. In
contrast, CSD multiplication reduces this number to N/2 in the worst case be-
cause at least one of every two adjacent digits is always zero, resulting in a zero
partial product. A bitwise OR operation on adjacent partial products, as shown

CSD-Driven Speedup in RISC-V Processor 7

IE
1
-

P
re

p
ro

c
e
ss

in
g

IE
2
-

P
a
rt

ia
l

P
ro

d
u

c
t

S
u

m

IE
3
–

P
a
rt

ia
l

P
ro

d
u

c
t

S
u

m

𝑝0
0−3𝑝1

0−3𝑝2
0−3𝑝3

0−3𝑝4
0−3𝑝5

0−3𝑝6
0−3𝑝7

0−3

S
D

/
C

S
D

 A
d

d
e
r

Fig. 2. Pipelined CSD multiplier unit along with internal structure of employed blocks.

DMEM

A
L
U

Decoder

RF

Sign
P
C

Wishbone

IMEM

4

+

3216

Branch
BPU

M
U
x

M
U
x

M
U
x

M
U
x

C
2

BA
U

LU

alu-x-source

Immediate-value
shift amount
csr -value

program counter
rs1-forwarded

alu op

WB

rs2-forwarded

alu-y-source

Immediate-value

shift amount
csr -value

program counter

Mem

IE2 IE3IE1
alu op

csr-value

Normalization

Forwarding

MU

rd-data

C
SR

 U
n

it

B2C

B2C

Forwarding
Unit

× ××

csr op

alu op

M
U
X

M
U
X

M
U
X

M
U
X

Forwarding

M
U
X

Fig. 3. The overall architecture of NOVA with a detail view of the execution stage.

8 F. EbrahimiAzandaryani et al.

in Fig. 2, effectively filters out the zero values. This allows only the non-zero
products to continue to the next stages of the multiplication tree in IE2 and
IE3, enhancing overall performance. Additionally, using SD/CSD adder circuit
for partial sum computation improves performance from O(logN)2 to O(logN),
thereby increasing the efficiency of arithmetic operations. After the execution
unit performs the instruction and generates the final result, it becomes neces-
sary to convert the result back into binary representation for storage in memory
or register files. The C2B (CSD to binary) conversion is straightforward and
can be achieved by decomposing the result into a positive (yp) and one negative
(yn) vector. This is followed by performing binary summation of yp and yn

′
with

C0 = 1, where yn
′

is the one’s complement representation of yn. The output is
the binary equivalent of the CSD unit result, excluding the overflow bit in this
sequence. All these steps can be executed in O(logN).

Certainly, the developed arithmetic instructions involve several steps. Ini-
tially, the input values are transformed from binary to CSD using the B2C mod-
ule. Subsequently, the Arithmetic Unit (AU)/Multiplication Unit (MU) executes
the instruction using the converted operands. Finally, the outcome is converted
to binary encoding using the C2B module, yielding the final result. However,
the sequential conversions involved in this process may introduce delays that
impact the critical path of the overall operation, potentially resulting in slower
performance compared to binary computations and diminishing the advantages
of fixed time-frame calculations using CSD. Increasing the number of pipeline
stages emerges as a promising solution to address this bottleneck, which is dis-
cussed in detail in the next section.

The architecture of NOVA, shown in Fig. 3, consists of the IF, ID, IE (IE1,
IE2, IE3), Mem, and WB stages. By dividing the execution stage into three
parts, the B2C conversion result can be accessed immediately by the MU for
partial product calculation in constant time O(1) during IE1 or registered for
use by the AU in IE2. C2B conversion occurs in IE3, reducing conversion de-
lays and maintaining the advantages of CSD representation over binary. The
IE1 stage also provides outputs for logical instructions (Shift, XOR, AND, OR)
through the Logical Unit (LU), with results available for subsequent instruc-
tions via the forwarding unit to prevent data hazards. Meanwhile, the CSR unit
manages operations on control and status registers, essential for tasks like sys-
tem monitoring. Data hazards require careful handling in NOVA’s architecture.
When an instruction in IE1 needs the result of a previous instruction in IE2/IE3,
particularly one involving arithmetic calculations, a stall of one or two cycles is
necessary. This stall ensures that operands are accurately retrieved for the com-
putation in IE1, as the required operand will be available later in the Mem stage.
However, suppose the output from an Add/Sub instruction in IE2 is used as in-
put for another Add/Sub instruction in subsequent cycles. In that case, it can be
forwarded through the forwarding unit without stalling. Caution is needed here
because repeatedly forwarding partial results in CSD or SD representation can
lead to pseudo-overflow. To mitigate this issue, a normalization unit is essen-
tial to address the problem in a fixed time without significantly affecting circuit

CSD-Driven Speedup in RISC-V Processor 9

performance. As discussed earlier, due to the deeply pipelined execution unit,
NOVA can support loop unrolling for both arithmetic and logical instructions.
This reduces stall cycles and efficiently fills the 3-step pipeline of the execution
stage, resulting in higher throughput.It is important to note that logical oper-
ations, such as Shift, AND, OR, and XOR, must be executed using traditional
binary representation. This limitation arises from CSD encoding, which primar-
ily optimizes arithmetic instructions but does not enhance logical operations.
However, since these logical instructions are not part of the critical path, they
do not disrupt the overall functionality of the data path. Consequently, while a
different approach is necessary for these operations, their effect on the circuit’s
performance and data path functionality is minimal.

5 RESULT AND DISCUSSION

This section details the technical setup and benchmarks used for the FPGA
experiments. It presents the results obtained from an open-source RISC-V core
[12], the Potato processor (PRISC-V), as the original core tested with various
configurations, alongside results from NOVA.

5.1 Technical setup, tools, and benchmarks

In FPGA implementation, the Xilinx Vivado 2023.1 design suite software was
used for synthesis, mapping, placement, and routing. Additionally, the Ultra96-
v2 (XCZU3EG-1SBVA484I) from the Zynq Ultrascale+ development board fam-
ily was chosen as the FPGA platform to establish results in all tables and figures
in this section. The results provided are specifically derived from the analysis
conducted using the specified synthesis tool and FPGA board chosen for the pro-
cessor’s implementation and may differ when using alternative synthesis tools or
FPGA boards, reflecting variations in architecture and optimization strategies.
The efficiency evaluation of cores made use of applications from the Mibench
suite [13], as well as three well-known applications widely used for processor per-
formance, memory bandwidth examination, and matrix multiplication, namely
Dhrystone [14], Schönauer vector triad [15], and Matmul[16]. The chosen applica-
tions span various domains, including signal processing and telecommunications,
automotive, networking, error-checking, sorting, and arithmetic calculations.

We conducted a thorough evaluation of performance metrics, including through-
put, execution time, and resource utilization, to assess computational efficiency
in NOVA versus PRISC-V(full binary). Both support the same 32-bit ISA and
in-order execution. PRISC-V configurations include a 5-stage pipeline with/out
DSP (PRISC-VDSP/PRISC-V), a 7-stage pipeline with/out DSP (PRISC-VIIDSP
/PRISC-VII) featuring a 3-step execution stage. All five architectures are identi-
cal as Fig. 3 except IE stage where PRISC-V configurations do not include con-
version circuits and its 7-stage configurations the multiplier is implemented in
three steps: IE1 computes four partial products in parallel (PP1 = X15:0×Y15:0,
PP2 = X31:16×Y15:0, PP3 = X15:0×Y31:16, and PP4 = X31:16×Y31:16). IE2 and
IE3 add these partial products in a binary tree model to produce the final result.

10 F. EbrahimiAzandaryani et al.

Table 2. Comparative Logic and Network delay for binary/CSD multipliers

Article Net delay (ns) Logic delay (ns)

BinMulDSP 3.441 4.201

BinMul 8.132 3.027

CSDMul 8.305 2.256

5.2 Experimantal results

Initially, we analyzed the critical path delays of a 32-bit binary ALU and a 32-
digit CSD ALU, both passing through the multiplier module. Table 2 illustrates
that the binary multiplier, utilizing DSP (BinMulDSP), features a logic delay of
4.201 ns and a network delay of 3.441 ns. In contrast, the binary multiplier with-
out DSP utilization (BinMul) has a lower logic delay of 3.027 ns but suffers from
a higher network delay of 8.132 ns, reducing the efficiency of a non-DSP binary
multiplier. Despite an optimized logic delay of 2.256 ns in the CSD multiplier,
it has a substantial network delay of 8.305 ns, overshadowing its performance.
A more detailed analysis shows that 35% and 48% of the reported logic and
network delays in CSD multiplication are due to the conversion circuits. Deeply
pipelining the multiplication unit effectively reduces network delay, making de-
signs with lower logic delays well-suited for enhancing performance. As a result,
the CSD multiplier stands out as a compelling option.

The frequency values reported in Table 3 represent the maximum frequencies
that each core was able to operate with, ensuring there were no timing violations
or clocking issues. As depicted in Table 3, NOVA achieves a 2.41X frequency
boost over PRISC-V, with a 1.62X increase in FFs and 1.37X in LUTs due to
its 3-step execution and encoding scheme. When compared to PRISC-VDSP ,
NOVA improves frequency by 2.12X which comes with an increase in resource
usage—2.61X more LUTs and 1.85X more FFs while PRISC-VDSP , uses 12 DSP
blocks occupying a large area. Deep pipelining enhances PRISC-VII’s frequency
by 1.97X, matching PRISC-VIIDSP ’s, 1.74X improvement. NOVA, achieves 22%
better performance, though it consumes 1.23X LUTs and 1.08X FFs than PRISC-
VII, and 1.24X FFs than PRISC-VIIDSP. Despite higher resource usage, NOVA
remains competitive due to its frequency gains. In Fig. 4 (a) and Fig. 4 (b), we
compared NOVA with all PRISC-Vconfigurations to illustrate the performance

Table 3. Resource Utilization and Maximum Operating Frequency

Article SRC (LUTs, FFs, DSP) Freq_Max (MHz)

PRISC-V 4212, 1425, 0 114

PRISC-VDSP 2206, 1251, 12 130

PRISC-VII 4641, 2141, 0 225

PRISC-VIIDSP 2660, 1864, 4 225

NOVA 5762, 2309, 0 275

CSD-Driven Speedup in RISC-V Processor 11

(a) (b)

Fig. 4. Relative Throughput and Execution time for Various Applications.

improvement achieved by the employed method in terms of throughput and exe-
cution time. These metrics are measured using internal timers. The results have
been normalized to the outcomes of the 5-stage DSP-less design, PRISC-V, serv-
ing as a reference for evaluating the efficiency of other cores. NOVA achieves a
2.40X throughput improvement over PRISC-V, especially in compute-intensive
tasks like Dhrystone, SHA256, and Matmul, and 2.17X in memory-bound ap-
plications like Schönauer vector triad and CRC32. When compared to PRISC-
VDSP, NOVA shows a 2.10X boost in compute-intensive tasks and 1.83X in
less demanding ones. The increase in pipeline stages for both PRISC-V and
PRISC-VDSP yields a 1.96X and 1.73X improvement respectively, but NOVA
still surpasses them by over 22%, thanks to its efficient encoding scheme. Re-
garding execution time, NOVA offers a 2.37X reduction in compute-intensive
tasks and a 2.11X reduction for memory-bound tasks over PRISC-V. PRISC-
VII and PRISC-VIIDSP achieve 1.95X and 1.73X reductions compared to their
5-stage counterparts. However, NOVA still achieves over 20% better performance
than both of them for compute-intensive tasks highlighting the effectiveness of
NOVA’s CSD encoding and its capability to enhance processor performance. To
evaluate NOVA’s loop-unrolling capability, we tested it on the Schönauer vector
triad, a memory-bound application. Despite inherent performance limitations,
3-way unrolling for 9×106 iterations reduced execution time from 3.5 seconds to
2.5 seconds. However, due to limited compiler support and insufficient instruc-
tions, the full theoretical benefits were not achieved.

6 Conclusion

In conclusion, this paper presented a synthesizable µ-architectural design method
that improved RISC-V processor performance by integrating CSD representa-
tion into the execution stage and extending the pipeline to seven stages. While
the method introduced some conversion circuits and resource utilization over-
heads, it proved to be effective, especially in computation-hungry applications
like signal processing. Its implementation on an open-source RISC-V processor

12 F. EbrahimiAzandaryani et al.

showcased its adaptability to other architectures, making it a promising solu-
tion for performance enhancements. Experimental results demonstrated a 2.41X
boost in frequency, up to a 2.40X increase in throughput, and a 2.37X reduction
in execution time for computation-intensive benchmark applications, where over
20% of the gain was due to the CSD encoding.

References

1. Avizienis, A., 1961. "Signed-digit number representations for fast parallel arith-
metic". IRE Transactions on electronic computers, (3), pp.389-400.

2. Parhami, Behrooz. "Generalized signed-digit number systems: a unifying frame-
work for redundant number representations." IEEE Transactions on Computers
39, no. 1 (1990): 89-98.

3. Hashemian, Reza. "A new method for conversion of a 2’s complement to canonic
signed digit number system and its representation." Conference Record of the
Thirtieth Asilomar Conference on Signals, Systems and Computers. IEEE, 1996.

4. M. Reichenbach, J. Knödtel, S. Rachuj and D. Fey, "RISC-V3: A RISC-V Com-
patible CPU With a Data Path Based on Redundant Number Systems," in IEEE
Access, vol. 9, pp. 43684-43700, 2021.

5. Ruiz, G.A. and Granda, M., 2011. "Efficient canonic signed digit recoding". Mi-
croelectronics journal, 42(9), pp.1090-1097.

6. Karthikeyan, S., Reddy, M.C.K. and Monica, P.R., 2017, August. Design of
CNTFET-Based ternary control unit and memory for a ternary processor. In
2017 International Conference on Microelectronic Devices, Circuits, and Systems
(ICMDCS) (pp. 1-4). IEEE.

7. Kam, Dongyun, et al. Design and evaluation frameworks for advanced riscbased
ternary processor. 2022 Design, Automation Test in Europe Conference Exhibition
(DATE). IEEE, 2022.

8. Kiran, M.L., Nikhileswar, K., Ramanaiah, K.V. (2021). FPGA Implementation of
CSD-Based NN Image Compression Architecture. ICTACT Journal on Microelec-
tronics, 16(102), 102.

9. Srivastava, A.K., Raj, K. (2022). An Efficient FIR Filter Based on Hardware Shar-
ing Architecture Using CSD Coefficient Grouping for Wireless Applications. Wire-
less Personal Communications, 123, 3433-3448.

10. Lee, H., Sobelman, G.E. (2002). FPGA-based Digit-Serial CSD FIR Filter for
Image Signal Format Conversion. Microelectronics Journal, 33(5-6), 501-508.

11. F. EbrahimiAzandaryani and D. Fey, ExTern: Boosting RISC-V core performance
using ternary encoding, Microprocessors and Microsystems, volume 107(2024),
https://doi.org/10.1016/j.micpro.2024.105058.

12. K.K Skordal, D. Siorpaes, P. Cotret & J. Thomas. Potato Project, (2023).
https://opencores.org/projects/potato

13. Guthaus, Matthew R., et al. "MiBench: A free, commercially representative em-
bedded benchmark suite." Proceedings of the fourth annual IEEE international
workshop on workload characterization. WWC-4 (Cat. No. 01EX538). IEEE, 2001.

14. Weicker, Reinhold P. "Dhrystone: a synthetic systems programming benchmark."
Communications of the ACM 27.10 (1984): 1013-1030.

15. Hofmann, J., Eitzinger, J. and Fey, D., 2015. Execution-cache-memory performance
model: Introduction and validation. arXiv preprint arXiv:1509.03118.

16. Benson, Austin R., and Grey Ballard. "A framework for practical parallel fast
matrix multiplication." ACM SIGPLAN Notices 50.8 (2015): 42-53.

	CSD-Driven Speedup in RISC-V Processor

