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Abstract

Reward shaping is a technique used to improve the efficiency of learning optimal policies
in sequential decision-making problems. However, it can be difficult to design auxiliary
rewards that effectively guide the agent’s learning, and this often requires significant time and
expertise from domain experts. In this paper, we propose an approach based on the optimal
rewards methodology that learns a new reward function for better learning by adapting a
given reward function. This can be formulated as a meta-learning problem, and we propose
to solve it using a bi-level optimization framework. However, standard methods used in
literature for this type of problem are not scalable, so we propose to use an implicit-gradient
technique. Our method is shown to be effective in both a) learning optimal rewards and b)
adaptive reward shaping.

1 Introduction

The reward function is a key component of any reinforcement learning (RL) algorithm. It defines the goals of
the agent and the feedback it receives for its actions. Providing a reward function that is dense, meaning
that rewards are received frequently and consistently, and useful, meaning that it effectively guides the agent
towards the desired behavior, can significantly improve the sample efficiency of RL algorithms (Dorigo &
Colombetti, 1994). Early work in RL often relied on hand-crafted reward functions for simple tasks such as
controlling a bicycle(Randlgv & Alstrgm, 1998). However, as RL has been applied to more complex tasks,
reward shaping has become a popular technique for improving the efficiency of learning. Reward shaping
involves modifying the rewards the agent receives to guide it towards the optimal policy. In recent years,
reward shaping has been successfully applied in a variety of complex tasks such as solving the video game
Doom. (Lample & Chaplot, 2017; Song et al., 2019).

One of the main challenges in reward design is ensuring that the rewards are dense and informative. Dense
rewards are those that are received frequently and consistently, which is important for the agent to learn
quickly. Informative rewards are those that provide useful feedback about the agent’s actions, which is
essential for the agent to learn the correct behavior. It is also important to ensure that the rewards are
aligned with the desired behavior of the agent. Even small changes to the reward function, that may seem
intuitive, can often result in sub-optimal or undesired behavior (Ho et al., 2019; Asmuth et al., 2008). As
such a lot of work in reward shaping has focused on potential based rewards (PBRS); as one can guarantee
policy invariance (Ng et al., 1999; Laud & DeJong, 2003; Marthi, 2007; Harutyunyan et al., 2015)

Even with potential based methods, it can be challenging to translate human intuition about the problem
into actual rewards. For example, in most games an agent would need to keep an eye on various resources like
health and mana and promote building of skills and inventory items (OpenAl, 2018). However it is difficult
to translate these into specific numerical rewards. Furthermore even if converted to numerical rewards, their
relative combinations can be very dynamic, and designers usually have to experiment with many different



functions to see which work best. Finally even after all such considerations the new rewards may be not be
very reliable or in some cases counter-productive. This raises the main challenge we try to address here, a
method that allows for a) easy specification of rewards while helping learning and b) robustness to ill-specified
rewards.

To address these challenges of designing rewards, we propose an approach regarding utilization a given
auxiliary reward function. The term "auxiliary" is used to distinguish it from the primary reward, whose
optimization is guaranteed to solve the given task. The auxiliary or helping reward is an additional reward
provided by the user to aid in the learning process. Our goal is to utilize the guidance of the given reward
function while ignoring the mis-specified or unbeneficial signal it might contain. This is done by adapting the
auxiliary reward function in a way that aligns it with the primary reward, by doing so, the agent can make
use of the guidance provided by the auxiliary reward function to learn more efficiently.

This naturally produces an online bi-level optimization problem. The inner-level constitutes of policy optimiza-
tion under an auxiliary shaping reward function, and the outer-level optimizes the parameterized auxiliary
reward function for maximization of the true primary reward. Changing auxiliary rewards dynamically
shapes the inner policy optimization procedure and allows ensuring that the policy converges to the one that
exhibits the desired behavior. We use the method of implicit gradients(Krantz & Parks, 2002) to do the outer
optimization in a scalable fashion. We then conduct experiments on different environment with our proposed
method for both a) optimal reward learning and b) adaptive reward shaping.

2 Preliminaries

We first describe the notations followed in the paper followed by a description of and . We also summarize the
implicit gradient method which is used in this work for the outer optimization via gradient based methods.

2.1 Reinforcement Learning with Learnt Rewards

In this section we provide a brief summary of using dynamic objectives for reinforcement learning. Unlike
structure prediction there is a larger body of work which uses some form of meta-learning in reinforcement
learning(Sorg et al., 2010; Singh et al., 2010; Zheng et al., 2018). Our formulation of reward learning follows
from the work of Lewis et al. (2010); Singh et al. (2010) and recently Zheng et al. (2018)

Notation A Markov Decision Process (MDP) is specified by a tuple (S, A, P,7p,7,do). S is the state space,

A is the set of actions, P: S x A x S — [0, 1] are the transition probabilities, 7, : S X A = [~ Rmax, Rmax)

is the primary reward function, v € [0, 1] is the discount factor and dy is the inital state distribution. A

policy 7 : S x A — [0, 1] takes as input a state action pair (s,a) , and provides the probability with which

the agent takes the action a when observing state s, i.e. w(s,a) = Pr(a; = a|s; = s). The goal in this case is

to optimize the cumulative discounted primary rewards J obtained by the policy. If we denote by Sy, A, Ry
T

be the state, action and reward at time ¢, then the objective is J(0,rp,7) = Ex,[  ~'rp(St, As)]. The policy
t=0

gradient theorem (Sutton et al., 2000) provides a way to obtain gradient estimates of the value J (0) via
sample runs on the MDP. The optimal parameter §* = argmax J(f) can then be obtained using gradient
based optimization using these estimated gradients. The policy gradient is given by:

T T .
VJ(0) = Exr, Oplog(mo(s,a)) 7' "'rp(S;, 4;) (1)

t=0 j=t

Auxiliary Rewards In many cases the objective J(6,7,) can be difficult to optimize due to lack of strong
supervision (Ng et al., 1999). A natural method to help training is to modify the original reward function
with an auxiliary reward function which incorporates domain knowledge. Formally we include a new reward
function 74y, such that the objective to optimize is now J (6,7, + raus). However adding such an auxiliary
reward can change the optima of the objective and lead to the agent learning a different policy than the one
desired(Ng et al., 1999). Ng et al. (1999) provides an approach which guarantees the invariance of policy



optimality. Their key idea is that invariance can be maintained by a potential function based auxiliary reward
Viz. rous = yP(s") — ®(s), where ® : § — R is a potential function. Wiewiora et al. (2003) have shown that
Q-learning with PBRS is equivalent to Q-learning with with a different initialization of Q-values, which limits
the extent of potential based methods.

2.2 Implicit Gradient Method

Implicit gradient technique allows one to analytically obtain the gradient from the resultant of an optimization
process directly. A particular instance of this technique relevant for the current work is that for a optimization
problem of the form:

p* = arg;nin JPrim(e* (¢)v ¢)

such that (2)
0*(¢) = argmin JAux(ea ¢)
0

one can find the ‘meta-gradient‘ of ¢ as:

8 8 -1 8 a a(JPrlm(e*(¢)7¢)
%%(JAux(Qv ¢)):| |:Cr9¢89(JAux(07 (z))) 90 (3)
+ a(JPrinl(H*(¢)a ¢))

¢

This result is obtained by using the characteristic equation for the inner optimization viz. dgJaux(6,¢)|g=e« = 0
The above result is valuable as it only requires the value of the optimal 6% to obtain the gradient wrt ¢,
and does not depend on how the inner optimization is conducted. In contrast, if the inner optimization
is conducted via gradient descent, one can use the automatic differentiation to backpropagate through the
optimization. It can be proven that the two results are identical (Krantz & Parks, 2002); but when the
required hessians multiplications can be done efficiently, then the implicit method is more scalable. Moreover
if the inner optimization is not perfect then the backprop through optimization route is dependent on choice
of optimization, number of steps and other choices.

3 Implicitly adjusting reward functions

3.1 Learning Auxiliary Rewards

When the reward function r, is sparse the objective J(6,r,) can be difficult to optimize due to lack of
strong supervision (Ng et al., 1999). A natural method to help training is to add auxiliary rewards 7z
such that the objective to optimize is now J(6,r, + 74us). However adding such an auxiliary reward can
change the optima of the objective and lead to the agent learning a different policy than the one desired(Ng
et al., 1999). However as mentioned earlier, this technique is neither very satisfactory (due to (Wiewiora,
2003; Laud & DelJong, 2003) limitation) but still requires some expertise in creating numerical rewards from
intuitive ideas (Song et al., 2019; Jaderberg et al., 2019). One way around this issue is the intrinsic optimal
rewards framework (Singh et al., 2004; Sorg et al., 2010) where a new rewards is learnt while simultaneously
optimizing a policy under those rewards. Building on this idea of learning intrinsic rewards, we want to
change the auxiliary rewards 744, in such a way that learning a policy 7y using them, improves the primary
the primary objective J(6,7,) . If we parameterize the auxiliary rewards as 74, this can be written as the
following bi-level objective:

¢ = argmax J(0(¢),rp) s.t. 0(¢) = argmax J(0,7s)
¢ 0

Intuitively € is learnt to improve via the rewards r4 Zheng et al. (2018); Bechtle et al. (2019) solve this
problem via alternate maximization of  and ¢, where 6 is updated o improve J(f,ry), while ¢ is updated to
improve J(6(¢),r,). However their method unrolls the inner optimization only a few steps. We instead are
going to use the implicit gradient method to directly obtain the "meta-gradients" of ¢.



Reward Shaping with Auxiliary Rewards Often experts can design useful helper rewards which can
be helpful for the agent by providing rewards for the agent to visit a certain state or perform an action
sequence (Niekum et al., 2010). Such helper rewards can be made available to r4. Similarly the primary
rewards can also be used in rg. In fact, Hu et al. (2020) explicitly consider learning state based weights of
auxililary helper rewards; and Zheng et al. (2018) optimize a combination of intrinsic/auxiliary rewards and
extrinsic/primary rewards. In this work we allow for externally specified helper rewards r, and give a generic
form for r4 and as:

re = (2o(s,a)rn(s,a) + fo(s,a))

Objective regularization An ideal reward function is not only dense, but also instructive and instantaneous.
To favour learning dense instantaneous rewards, we modify the the outer objective to have a small penalty
for sparse additive rewards fy and allow the method to adjust its discount function 4 € (0,1) as well. The
latter allows our method to modify temporal distribution of auxiliary rewards as well. Putting it all together
we can now specify the exact objective we use for learning auxiliary rewards.

T¢(57a) :TP(SJG’)+Z¢(S>a)rh(sva)+f¢(57a) (4)
¢" = argmax J(O(9),7p,7) = Mvsl* + Aro (1 fo]) (®)
st.  6(¢) = argrenax J(0,74,74) (6)

where A, and Ay are hyperparameters and o is the sigmoid function.

3.2 Estimation of Implicit Gradient

By Equation 3, the implicit gradient of ¢ is given by:

-1

8¢J(07 ¢) = —09J(0,9) 8(3,0‘](97 ) 83),9‘](97 ) (7)

Hg Hd)

where 85) ¢ and ag ¢ refers to the second order derivatives.

For deterministic computation (such as in supervised learning), all the partial derivatives in Equation
equation 7 are exactly computable by automatic differentiation. However this is not so for the reinforcement
learning case. As such we need to find efficient ways to compute these terms, ideally in the same way as the
standard policy gradient is computed. Notice that the first term in the above expression is just the partial
gradient for J with respect to policy parameters. As such this can be replaced by the usual policy gradient
expression (Equation 1). Next one also observes that the same policy gradient terms also appears inside the
second order derivatives. Hence if one can compute the partials of the the policy gradient with respect to the
parameters ¢, 6, one can use the corresponding expressions to compute the "meta-gradient".

Remark 1. Note that the gradients with respect to ¢ are to be computed from the optimized value of 6. As
such an inefficiency arises from the need to rerun the new policy mp=(p) to compute the required gradients.
One can improve the efficiency by reusing the data generated for estimating the inner optimization gradient
(i.e using wg and do off-policy correction for estimation of the gradients at wg«.

4 Experiments

In this section, we present the results from our experiments. We conducted three groups of experiments.
First we do exploratory experiments on a simple environment ( cartpole ) to explore how our model works
in presence of beneficial, irrelevant and harmful auxiliary rewards. Next we test our method on Mujoco
continuous control tasks (Duan et al., 2016) to show how our method can use auxililary rewards. Finally,
we deploy our method for learning intrinsic rewards where we follow the procedure espoused in Zheng et al.
(2018). We conduct both the second and third experiment on a few Mujoco continuous control tasks (Duan
et al., 2016) viz Hopper, HalfCheetah, and Walker2d. Finally
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Figure 1: Return curves for all methods on discrete ad continuous cartpole with a) Harmful rewards and b)
Random rewards. The x-axis is time steps durin training. The y-axis is the moving window of average return.

4.1 Exploratory Experiments

In these experiments how and whether our method is robust to random and actively harmful helper rewards.
For this we conduct experiments in the cartpole environment. For the harmful rewards case, we give the
external reward of —0.1 when the deviation angle of the pole becomes small. In the second experiment, we
choose a random reward function with values in [—1, 1].

The goal of the two tests is to show that our methods can identify the harmful shaping rewards and useless
shaping rewards and downweigh or negate them. In Figure la, we plot the performance of the different
algorithms with the actively negative reward on both discrete as well as continuous cartpole. Similarly in
Figure 1b, we plot the performance of the different algorithms with the random reward on both environments.
Since it is meaningless to provide the result of a standard algorithm such as PPO with these rewards, we plot
the methods which use these rewards as advice viz DPBA (Harutyunyan et al., 2015), BIPARS(Hu et al.,
2020) and our method.

We can see from the figures that DPBA does not work at all with random and harmful rewards. This is not
unexpected as it is designed with the idea of the rewards being helpful. The other two methods i.e. ours and
BIPARS (Hu et al., 2020) are able to adjust to the reward function. In the first experiment, both are able to
figure out that the rewards are actually harmful and are able to flip them around to create useful rewards.
Similarly for the random rewards they are able to learn when the random rewards are helpful and adjust
accordingly. Note further that our method has a small advantage over the BIPARS method. We believe this
is due to the advantage which implicit gradient methods have over differentiable optimizers when the inner
optimization is not perfect. Implicit methods are able to better characterize the optima better, leading to
better gradients and faster learning.

4.2 Learning to Shape Rewards

In each task, the agent is a robot composed of several joints and should decide the amount of torque to apply
to each joint in each step. For these experiments, we follow the procedure of Hu et al. (2020). The primary
reward is the predefined reward function in Gym. We use the reward function from Tessler et al. (2019) as
the shaping reward. These shaping rewards are designed to constrain the average torque applied at the joints
to be below 0.25. More specifically, f(s,a) = w(0.25 — 1+ ZiLzl |a;|), where L is the number of joints, a; is the
torque applied to joint i, and w is a task-specific weight. As baselines we used the BIPARS method of Hu
et al. (2020), the potential advice method DPBA (Harutyunyan et al., 2015) and dynamic potential method
PBRS of Devlin & Kudenko (2012). Our result is presented in Figure 2
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Figure 2: Return curves for all methods on MujoCo domains. The y-axis is the moving window of average
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Figure 3: Return curves for all methods on MujoCo domains. The x-axis is time steps durin training. The
y-axis is the moving window of average return. We have indicated the standard error of the trials on the chart

4.3 Learning Optimal Rewards

In this experiment, we use our method for learning intrinsic rewards for the task i.e. r, = 0, and only fy
is being learnt. Following Zheng et al. (2018) in this experiment, the environments are tested in a delayed
reward setting. Specifically, the primary rewards are changed from the default reward to one which aggregated
over a window of N=20 steps before providing them to the agent. This sparsifies the reward and makes credit
assignment difficult; and learning helpful auxiliary rewards can be very useful. We also run the experiment
with purely the the learned auxiliary rewards i.e. 7, = 0 to see how useful they are for solving the task. As
baselines we used the LIRPG method of Zheng et al. (2018) along with a PPO (Schulman et al., 2017) based
agent '. Our result is presented in Figure 3

The red and green curves are for our method. Similar to Zheng et al. (2018) we run experiments via using
both auxiliary plus primary rewards ans well as purely auxiliary reward (Oursqys). The corresponding
versions of LIRPG are labeled LIRPG and LIRPG7,. From the results its clear that our method usually is
able to match LIRPG and sometimes performs better than it. Another interesting observation is that our

LOur experiments were done directly by modifying https://github.com/Hwhitetooth/lirpg



method can sometimes lag behind direct gradient based learning. We believe that this is due to the inner
optimizer not reaching its fixed point during early stages. In such a case the gradient produced by our method
can be biased. This is not surprising as works have found that it is usually better to use backpropagated
gradient for truncated inference.

5 Related Work

Relation to Meta Learning Meta-learning broadly refers to the idea of learning to learn and has been
for tasks like multi-task and structural transfer (Metz et al., 2019; Gupta et al., 2018), adaptive learning
(Mendonca et al., 2019; Meier et al., 2018) and other RL applications (Xu et al., 2020; Oh et al., 2020). The
key idea in meta-learning in all these applications is to make the model ’aware’ of the ’learning process’ and
choose suitable parameters to improve learning (Franceschi et al., 2017; Thrun & Pratt, 2012; Kirsch et al.,
2019). As such the ideas in this work are closely related to meta-learning. Specifically, the idea of learning
parameterized objectives (in our case ¢) has been explored in supervised learning (Sung et al., 2017).

Implicit Gradients The method of implicit gradients (Dontchev & Rockafellar, 2009; Krantz & Parks, 2002)
naturally occurs whenever one deals with hierarchical optimization. They provide an analytical technique
for differentiable optimization (Vlastelica et al., 2019), and so have been used for building such layers in
neural-networks (Amos & Kolter, 2017; Agrawal et al., 2019). They have also been used for few-shot learning
(Rajesvaran et al., 2019; Lee et al., 2019) and automatic hyper-parameter optimization (Lorraine et al., 2020).

Learning Training Losses Earlier works such as that of Wu et al. (2018); Huang et al. (2019) have
attempted to learn training losses for supervised learning with neural networks. Since the auxiliary and
primary rewards combined to create the 'inner’ policy optimization objective, our works can be considered
similar as trying to 'meta-learn’ an objective loss for increasing a model performance. However, there are
multiple vital differences between them. First, these works rely on ‘unrolling’ one/few-step gradient updates
in the inner optimization and then backpropagate through those updates. This leads to poor scalability
especially when the inner optimization takes hundreds of steps. Secondly, our goal is not to create a new
objective but instead learn to combine various user specified rewards.

Learning Rewards Recent literature in reinforcement learning have followed the basic meta-learning
framework for learning functions for trajectory returns (Xu et al., 2018), TD learning targets (Xu et al., 2020),
and update rules(Oh et al., 2020; Kirsch et al., 2019). Bechtle et al. (2019) have also used meta-learning
to learn new rewards for multi-task RL application. Our work is based on the optimal reward framework
(Singh et al., 2004; 2010; Lewis et al., 2010; Sorg et al., 2011) The basic framework we considered in this work
is very similar to that of Zheng et al. (2018) and Hu et al. (2020). However, the key difference lies in the
update rule we develop. Similar to the literature on learnable losses (Bechtle et al., 2019; Wu et al., 2018),
these works treat the inner and outer optimization step as computations in a single graph and backpropagate
through truncated optimization process. They suffer from improper characterization of the model/optimizee
parameters as, unlike supervised learning, the gradients are highly stochastic, needing unrolling for many
more time steps.

Sparse Rewards and Reward Shaping FEarly work of reward shaping Dorigo & Colombetti (1994);
Randlgv & Alstrgm (1998) focuses on designing the shaping reward function F, but ignores that the shaping
rewards may change the optimal policy. Ng et al. (1999) in their seminal works proved that potential-based
reward shaping retains policy optimality. Dynamic potential-based advice (DPBA) Harutyunyan et al. (2015)
directly incorporates any external auxiliary reward by transforming said rewards into potentials. While
variants of PBRS have been succesfully used in many applications Devlin & Kudenko (2012); Marthi (2007);
Grzes & Kudenko (2008); the results of Wiewiora (2003); Laud & DeJong (2003) in some sense gives limits
to the extent of potential based shaping.

Other works have used the key ideas of reward shaping for multi-agent reward shaping Devlin & Kudenko
(2011); Sun et al. (2018), belief shaping Marom & Rosman (2018), ethics shaping Wu & Lin (2018), and meta
learning rewards Zou et al. (2019); Zheng et al. (2018). Similar to this work, Jaderberg et al. (2019) propose
a population based optimization process for learning intrinsic rewards and achieve spectacular performance
on Quake III.
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