
EasyChair Preprint

№ 1175

Probabilistic Maximum Range-Sum Queries on

Spatial Database (technical report)

Qiyu Liu, Xiang Lian and Lei Chen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 12, 2019

Probabilistic Maximum Range-SumQueries on Spatial Database
(Technical Report)

Qiyu Liu
HKUST

Hong Kong SAR
qliuau@cse.ust.hk

Xiang Lian
Kent State University

Kent, USA
xlian@kent.edu

Lei Chen
HKUST

Hong Kong SAR
leichen@cse.ust.hk

ABSTRACT
Maximum Range-Sum (MaxRS) query is an important operator in
spatial database for retrieving regions of interest (ROIs). Given a
rectangular query size a × b and a set of spatial objects associated
with positive weights, MaxRS retrieves rectangular regions Q of
size a × b, such that the sum of object weights covered by Q (i.e.,
range-sum) is maximized. Due to the inaccuracy of the location
acquisition, the collected locations of spatial objects are inherently
uncertain and imprecise, which can bemodeled by uncertain objects.
In this paper, we propose a Probabilistic Maximum Range-Sum
(PMaxRS) query over uncertain spatial objects, which obtains a set
γ ∗ of rectangles such that the probability that each region Q ∈ γ ∗

has the maximum range-sum exceeds a user-specified threshold
Pt . We show that determining whether a given region Q is in the
answer of PMaxRS query is as hard as #KNAPSACK problem, which
is the counting version of the classic knapsack problem and has
already been proved as #P-complete. To solve that, we put forward
an efficient PMaxRS_Framework based on pruning and refinement
strategies. In the pruning step, we propose a candidate generation
technique to reduce the search space. In the refinement step, we
design an efficient sampling-based approximation algorithm to
verify the remaining candidate regions. Extensive experiments are
conducted to demonstrate the effectiveness and efficiency of our
algorithms.

KEYWORDS
Probabilistic Maximum Range-SumQuery, Approximate Algorithm,
Uncertain Database

1 INTRODUCTION
With the prevalence of GPS-enabled mobile devices and the popu-
larity of location-based services, spatial data management has be-
come increasingly important for providing location-based services.
As a fundamental operator of spatial database, optimal location

queries [15, 31, 33–35, 37] have been well studied by the database
community, such as optimal location selection [15, 34], bichromatic

reverse nearest neighbor queries [31, 37] and top-k spatial queries

[33, 35]. Different from these queries which rank and select spa-
tial objects from a candidate set, a Maximum Range-Sum (MaxRS)
query [5, 13, 18, 24, 29] retrieves a region with a user-specified size
covering sites that users are most likely interested in. Formally, a
MaxRS query retrieves a × b rectangular regions Q that contain
objects with the highest sums of their weights (called range-sum).

Due to the usefulness in retrieving regions of interest (ROIs),
MaxRS queries over certain data have attracted a lot of attention
recently [5, 6, 10, 13, 23, 29]. However, in many real applications, the

data uncertainty exists in spatial database naturally due to various
factors such as privacy issues, data incompleteness, GPS device
inaccuracy or network transmission errors. As a consequence, it
is not trivial to obtain accurate MaxRS answers over uncertain
spatial databases, which, to the best of our knowledge, has not
been investigated so far. Below are two examples showing that
answering MaxRS queries under uncertain semantics is useful in
real applications.

uncertain

object

instances

𝑼𝟏

𝑼𝟐

𝑼𝟑

𝒖𝟏𝟐

𝒖𝟏𝟏

𝒖𝟏𝟑

𝒖𝟐𝟏

𝒖𝟐𝟐

𝒖𝟑𝟏

𝒖𝟑𝟐

𝑸𝟏

𝑸𝟐

𝑸𝟑

𝑸𝟒

𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝑼𝟏

𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝑼𝟐

𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝑼𝟑

𝑸𝟓

Figure 1: An example of the PMaxRS problem.
Example 1. (Discovering Future Traffic Jam). Given histor-

ical traffic data of a city, some trajectory mining algorithms like
[22] can discover the trajectory patterns and use them to predict
the next location of a car in the future. Such prediction algorithms
usually output a predicted location associated with a confidence
value (i.e., the probability). All the predicted locations and their cor-
responding probabilities form an uncertain database. By invoking
a MaxRS query over such an uncertain database, we can discover
possible jam regions with high probabilities at future timestamps,
which is the central issue for urban transportation management.

Example 2. (Privacy-preserving Crowd Detection). Many
applications such as location-aware advertising, route planning
and spatial crowdsourcing [1, 2, 9] require the location information
of possible crowds. Thus, crowd detection, which discovers the
densely distributed users or workers, is important in location-based
services. However, due to the consideration of protecting user’s
privacy, instead of concrete location of a user, we get the distribution
of each user’s location which has been disturbed before sending
to the server by some specific privacy-preserving algorithms like
[30]. Figure 1 illustrates the scenario in Example 2.U1,U2 andU3
are three users whose location information has been disturbed
due to privacy issues. ui j denotes the possible position of user
Ui . On such uncertain data, a MaxRS query retrieves the possible
locations of crowdswith high confidence for location-based services
like advertisement recommendation and task assignment in spatial
crowdsourcing.

Note that, Example 2 is a special case where all the weights are
set to 1. The term weight used in this paper could be defined with
different semantics which is related to different applications, such
as the score of a restaurant, the potential of customer or simply 1
so that range-sum reflects the COUNT of objects in a region.

Qiyu Liu

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL Qiyu and Xiang, et al.

To support MaxRS operator over an uncertain database, we pro-
pose a Probabilistic Maximum Range-Sum (PMaxRS) query on un-
certain databases. Under the uncertain setting, each spatial object
has multiple possible instances associated with different positions,
weights and probabilities. The inputs of a PMaxRS query are: (i) a
set of uncertain objects U, each object associated with a weight
and a probability, (ii) the query size a × b of rectangular regions,
and (iii) a user-specified probabilistic threshold Pt . The PMaxRS
output is the position of a rectangleQ , such that the probability that
Q has the maximum range-sum (namely, the PMaxRS probability)
exceeds threshold Pt .

Challenges. To the best of our knowledge, no prior research
has studied the MaxRS problem with the location uncertainty, and
current solutions to the MaxRS problem over certain databases [13,
15, 29] cannot be easily applied to the uncertain scenario. Besides,
like many other queries on uncertain databases [8, 19, 25, 27, 36],
the PMaxRS problem suffers from the exponential cardinality of
possible worlds [3] over uncertain data (i.e., O(KN), where N is
the number of objects and K is the average number of instances
per uncertain object). Theoretically, we will show that verifying
whether a given region is the PMaxRS solution, a special case of the
PMaxRS problem, is as hard as the #KNAPSACK problem, which has
been shown to be #P-complete [16]. This inspires us to design ap-
proximation algorithms to speed up the PMaxRS query processing
with small accuracy loss.

Contributions.We list the major contributions as follows:

• We formulate the PMaxRS problem in the context of uncer-
tain databases by using possible worlds semantics. To answer
PMaxRS queries efficiently, we propose a two-phase algo-
rithm, called PMaxRS_Framework, based on pruning and
refinement strategies.
• We derive an upper bound of the PMaxRS probability, based
on which we design candidate selection rules to significantly
reduce the search space.
• Due to the #P-hardness of the verification whether a candi-
date region is the PMaxRS solution, we design a sampling-
based approximate refinement algorithm. We prove that by
an appropriate selection of the sample size, the sample error
can be arbitrarily small with high probability.
• We conduct extensive experiments using several datasets
with different parameter settings to demonstrate the effec-
tiveness and efficiency of our proposed algorithms.
• We show that our PMaxRS_Framework can be easily extended
to answer PMaxRS queries of circular case.

Organization. The rest of our paper is organized as follows. In
Section 2, we formally define the PMaxRS problem and introduce
the PMaxRS_Framework. In Sections 3 and 4, we discuss details
of each component in PMaxRS_Framework, including the pruning
bound, space traversing algorithm, and refinement techniques. In
Section 5, we present our experimental results and analyze the
effects of various parameter settings. Previous works on the MaxRS
problem and uncertain data management are reviewed and com-
pared with our work in Section 6. Finally, in Section 7, we conclude
this paper.

2 PROBLEM DEFINITION
In this section, we formulate the PMaxRS problem by using the
possible worlds semantics [3]. For quick reference, all the notations
and symbols used in this paper can be found in Table 1.

Table 1: Notations and descriptions.
Notation Description
U an uncertain database
N the number of uncertain objects
Ui an uncertain object

ui1, · · · , uiK K instances of an uncertain objectUi
PW the space of all possible worlds
pw a possible world
γ ∗ the solution set of the PMaxRS problem
Pt the probability threshold
Qx a rectangular region centering at x

Qx .sum(pw) range-sum of Qx over possible world pw
Prmaxrs (Qx) PMaxRS probability of given region Qx

2.1 Preliminaries
We first formally define the MaxRS problem over a certain database.

Definition 1. (MaxRS). Given a user-specified a ×b rectangular

query region and a set of spatial objects O = {o1,o2, · · ·oN }, each
object oi ∈ O associated with a non-negative weightwi , and a location

li ∈ R
2
, the MaxRS problem aims at retrieving an optimal rectangular

region Qx ∗ centered at location x
∗
and with size a × b such that:

Qx ∗ = argmax
x ∈R2

∑
li ∈Qx

wi , (1)

where li ∈ Qx is the shorthand of li falls into the region Qx .

Note that, we adopt the rectangular shape of region Qx follow-
ing previous researches on the MaxRS problem [5, 13, 18, 24, 29].
However, we find that all of our theoretical results can be naturally
extended to the circular cases. Unless otherwise specified, the term
“region” refers to the rectangular region hereafter.

2.2 Probabilistic Data Model
Definition 2. (Uncertain Spatial Object). An uncertain spatial

object is defined asUi = {ui1,ui2, · · · ,uiK }, whereui1, · · · , anduiK
are K possible instances of Ui . Each instance ui j ∈ Ui is associated
with a non-negative weight wi j , an existence probability pi j and a

spatial position li j ,
1
with constraint

∑K
j=1 pi j = 1.

Let U = {U1,U2, · · · ,UN } be a collection of uncertain spatial
objects, i.e., an uncertain spatial database.

Definition 3. (PossibleWorld). A possible worldpw = {ui j |i =
1, 2, · · · ,N } is defined as a materialized instance ofU where each un-

certain objectUi takes an instance ui j . The appearance probability of

a possible world pw is Pr(pw) =
∏N

i=1 pi j .
2
Let PW denote the whole

space of pw, i.e., PW = U1×U2×· · ·×UN where

∑
pw ∈PW Pr(pw) = 1.

For the uncertain spatial objects shown in Figure 1, the corre-
sponding weights and probabilities of all instances are shown in
Table 2. On such an uncertain database, a possible world could be
pw = {u11,u22,u31} and its probability is 0.3 × 0.5 × 0.8 = 0.12.
1Our definition and solution to the discrete case could be easily extended to the
continuous case where each uncertain object is associated with a continuous density
function by using re-sample technique like bootstrap. Due to the space limitation, we
only discuss the discrete case.
2By following the convention [21, 25, 27], we assume that uncertain objects in the
database are independent of each other.

Probabilistic Maximum Range-SumQueries on Spatial Database (Technical Report) SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL

Table 2: An example of a probabilistic spatial database.
Uncertain Objects Possible Instances Weights Probabilities

U1
u11 0.8 0.3
u12 0.5 0.6
u13 1.0 0.1

U2
u21 0.7 0.5
u22 0.4 0.5

U3
u31 0.9 0.8
u32 0.6 0.2

Table 3: An example of PMaxRS probabilities.
Region Optimal on Possible Worlds PMaxRS Probability
Q1 {u11, u21, u32 }{u11, u22, u32 }{u13, u22, u32 } 0.07

Q2
{u12, u21, u31 }{u12, u21, u32 }{u13, u21, u31 }
{u13, u21, u32 }{u13, u22, u32 }

0.36∗

Q3 None 0

Q4
{u11, u21, u31 }{u11, u22, u31 }{u12, u22, u31 }
{u13, u22, u31 }

0.52∗∗

Q5 {u11, u21, u31 }{u12, u22, u32 } 0.18
*: PMaxRS probability≥ 0.3 **: PMaxRS probability≥ 0.5

2.3 The PMaxRS Problem
Different from MaxRS problem over an exact database, for a given
rectangular region Qx with size a × b centered at x , we consider
the probability that Qx is the MaxRS solution, which is called the
“PMaxRS Probability”. By using the possible worlds semantics, the
PMaxRS probability can be defined as follows.

Definition 4. (The PMaxRS Probability). For a given regionQx ,

its PMaxRS probability over an uncertain spatial database, denoted

by Prmaxrs (Qx), is defined as follows,

Prmaxrs (Qx) =
∑

pw ∈PW
δ (Qx | |pw) · Pr(pw), (2)

where δ (Qx | |pw) is an indicator function:

δ (Qx | |pw) =

{
1, if Qx .sum(pw) = max∀x ′ Qx ′ .sum(pw);

0, otherwise,

where Qx .sum(pw) denotes the range-sum of region Qx on possible

world pw , i.e.,

Qx .sum(pw) =
∑

∀ui j ∈pw,li j ∈Qx

wi j . (3)

According to Definition 4, given a possible world (actually, can
be regarded as a certain database) pw ∈ PW and a region Qx , the
indicator function δ (Qx | |pw) denotes whether regionQx covers the
highest range-sum over possible world pw (we call Qx is optimal

on pw if δ (Qx | |pw) = 1). Thus, δ (Qx | |pw) ·Pr(pw) is the probability
that regionQx is in the answer of the exactMaxRS query on possible
world pw . Then, Prmaxrs (Qx) can be interpreted as the probability
that Qx is optimal among all possible worlds pw ∈ PW .

In the previous example of Figure 1 and Table 2, we consider
PMaxRS probabilities of 5 candidate rectangular regions Q1 to Q5,
whose locations are shown in Figure 1. Table 3 lists possible world(s)
and PMaxRS probabilities of Qi (i.e., Prmaxrs (Qi)). As an exam-
ple, Q4 is optimal on possible worlds {u11,u21,u31}, {u11,u22,u31},
{u12,u22,u31} and {u13,u22,u31}, and its corresponding PMaxRS
probability is the sum of probabilities of these 4 possible worlds,
which is 0.52.

With the definition of the PMaxRS probability, a PMaxRS query
could be defined as an operator over an uncertain spatial database
which retrieves all the regions with PMaxRS probabilities larger
than a user-specified threshold.

Definition 5. (The PMaxRS Query). Given a set of uncertain

objectsU = {U1,U2, · · · ,UN }, the size of query region (a,b), and a
probability threshold Pt , a PMaxRS query retrieves a set of regions γ ∗

with size a × b such that for ∀Qx ∈ γ
∗
, Prmaxrs (Qx) ≥ Pt ; namely,

the result of a PMaxRS query is:

γ ∗ = {Qx | Prmaxrs (Qx) ≥ Pt }. (4)

For the example discussed above, if the probabilistic threshold Pt
is specified as 0.5, then Q4 is in the PMaxRS solution set. Similarly,
if Pt = 0.3, then both Q2 and Q4 are PMaxRS query answers.

Hardness. Intuitively, answering PMaxRS query is exponen-
tially hard. According to Definition 5, for arbitrary region Qx , di-
rect calculation of the PMaxRS probability, Prmaxrs (Qx), requires
enumerating all possible worlds, which yields

∏N
i=1 |Ui | = O(K

N)

time complexity. To theoretically demonstrate the hardness of the
PMaxRS query, we show that, the dicision version of the PMaxRS
problem, i.e., determining whether a given region Qx is in the an-
swer set of the PMaxRS query over an uncertain database, is already
as hard as the #KNAPSACK problem, which is the counting version
of the classic 0-1 KNAPSACK problem and has already been shown
as #P-complete [16]. Theorem 1 reveals the hardness as follows.

Theorem 1. (PMaxRS Hardness). Given an uncertain data-

base U and a rectangular region Qx , the verification of whether

the PMaxRS probability Prmaxrs (Qx) exceeds the user-specified prob-

abilistic threshold Pt is as hard as #KNAPSACK, which is #P-complete.

2.4 Solution Overview
To handle the exponential hardness of answering PMaxRS queries,
we develop an efficient PMaxRS_Framework based on pruning and
refinement strategy as shown in Algorithm 1. In line 1, a subroutine
CandidateGen, introduced in Section 3, traverses all possible can-
didate regions and filters out the ones whose PMaxRS probabilities
are less than threshold Pt (i.e., impossible to be PMaxRS solution).
To support that, we analyze the upper bound of Prmaxrs (Qx) de-
noted as ub_P(Qx). For an arbitrary region Qx , if ub_P(Qx) < Pt ,
it is impossible for Qx to satisfy the probabilistic constraint, and
thus Qx can be safely pruned. To efficiently generate candidates,
we can maintain a sweep-line to traverse the whole space. With
the candidate set returned by CandidateGen, denoted by C, in the
refinement step shown in line 2, for each candidate regionQ ∈ C, a
subroutine Verify, shown in Section 4, checks whether it is indeed
in PMaxRS solution set.
Algorithm 1: PMaxRS_Framework

Input: an uncertain database U, query size a × b and probability threshold Pt
Output: PMaxRS solution set γ ∗

1 C ← CandidateGen(U, (a, b), Pt) ; // The Pruning Step

2 γ ∗ ← Verify(C, U, Pt); // The Refinement Step

3 return γ ∗ ;

3 THE PRUNING STEP
In this section, we introduce the pruning heuristics and design an
efficient traversing algorithm for finding all candidate regions in
the whole space. We first reduce Prmaxrs (Qx) shown in Definition
5 over possible worlds to another formula w.r.t. uncertain objects in
probabilistic spatial database. Then, we develop the upper bound of

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL Qiyu and Xiang, et al.

the PMaxRS probability of a given region Qx , and derive pruning
conditions for candidate regions.

3.1 Problem Reduction
The intuition we do the problem reduction is that, instead of directly
computing Prmaxrs (Qx) as Eq. (2), we aim to represent the PMaxRS
probability via statistics likemean and variance, and based onwhich
we derive the probabilistic bound. We first define the range-sum
over probabilistic spatial database.

Definition 6. (Range-Sum on Probabilistic Spatial Database).

Given a regionQx , its range-sum over a probabilistic spatial database

U, denoted byQx .sum, is defined as a random variablewhich takes
values as all possible sums of weights of instances falling into Qx .

To illustrate Qx .sum, we consider the region Q4 in Figure 1 as
an example, where Q4 covers two uncertain objects U2 and U3.
Specifically, Q4 covers instances u22 and u31. We enumerate all
possibilities of Q4.sum in Table 4. There are 4 possible values of
Q4.sum. For example, if uncertain objectU2 takes instance u22 and
U3 takes u31, then Q4.sum takes value w22 + w31 = 1.3 and its
corresponding probability is p22 × p31 = 0.4. Similarly, if U2 takes
u22 and U3 takes u32 (note that, u32 is outside of Q4 which means
it contributes 0 to Q4.sum), then Q4.sum takes valuew22 + 0 = 0.4
and its corresponding probability is p22 × p32 = 0.1.

Table 4: Possible range-sums of Q4 in Figure 1.
Q4 .sum Probability

w22 +w31 = 1.3 p22 × p31 = 0.4
w22 + 0 = 0.4 p22 × p32 = 0.1
0 +w31 = 0.9 p21 × p31 = 0.4
0 + 0 = 0 p21 × p32 = 0.1

We then have the PMaxRS probability reduction lemma:

Lemma 1. (PMaxRS Reduction). Given a region Qx , it always

holds that Prmaxrs (Qx) = Pr{
∧

∀x ′ Qx .sum ≥ Qx ′ .sum} where
x ′ ∈ R2, and Qx ′ is an a × b rectangular region centered at x ′, and
∀x ′ means traversing the entire R2 space.

Lemma 1 transforms the PMaxRS probability, Prmaxrs (Qx), de-
fined over possible worlds to Pr{

∧
∀x ′ Qx .sum ≥ Qx ′ .sum}, which

is described by uncertain objects and instances. By Lemma 1, we
transform the calculation of Prmaxrs (Qx) to an equivalent way
which is analysis-friendly, and based on which, we derive the upper
bound of Prmaxrs (Qx) and corresponding pruning conditions in
the following subsections.

3.2 Pruning Bound
To derive the upper bound of Prmaxrs (Qx), we select a relatively
“good” region QA as a reference region. The intuition is that, we
can use QA to prune other candidate regions Qx which are much
worse than QA . Based on this idea, we derive an upper bound of
Prmaxrs (Qx):

Lemma 2. (Probability Upper Bound). Given an arbitrary region
Qx and a reference region QA , it holds that:

Prmaxrs (Qx) ≤

{
σ 2

σ 2+µ2 , if E[Qx .sum] < E[QA .sum]

1 , otherwise .
(5)

where µ = E[Qx .sum−QA .sum] and σ
2 = Var[Qx .sum−QA .sum].

Lemma 2 provides an upper bound of Prmaxrs (Qx). Recall that,
the PMaxRS query retrieves Qx with Prmaxrs (Qx) greater than
probabilistic threshold Pt (as given in Definition 5). The basic idea
of our pruning method is to safely filter out those regions Qx with
probability upper bound no less than the probability threshold Pt .

Theoretically, the reference regionQA can be set as an arbitrary

region, and the upper bound derived in Lemma 2 always holds. How-
ever, the selection of QA influences the pruning power. Intuitively,
a “good” reference region should have high expectation and low
variance, and thus can decrease the upper bound of Prmaxrs (Qx),
which improves the pruning power. However, finding an optimal
reference region for all possible Qx is quite difficult. The following
heuristic strategies can be adopted for the selection:

(i) MaxPossible: let QA be the MaxRS solution over the possi-
ble world with the highest probability;

(ii) k − sampling: sample k possible worlds and select QA as
the region with the highest frequency to be MaxRS solution
over k possible worlds;

(iii) EMaxRS: let QA be the expected MaxRS solution over all
possible worlds.

In Section 5, we report the pruning power of different selection
strategies and discuss how to chooseQA in practice to make a good
trade-off between pruning time and pruning power.

3.3 Candidate Region Selection Rules
In this subsection, we introduce how to derive candidate selection
criterion based on the reverse of the pruning bound discussed in
Section 3.2. The basic idea is that, for a given region Qx , according
to Eq. (13), we calculate the upper bound of Prmaxrs (Qx), denoted
asub_P(Qx). Ifub_P(Qx) is larger than the user-specified threshold
Pt , Qx is selected as a candidate and waits for further verification.
Otherwise, Qx can be safely filtered. Since specific candidate selec-
tion rules depend on whether Qx .sum and QA .sum are correlated,
we discuss Independent Case and Correlated Case, respectively.

3.3.1 Independent Case. Assume that Qx .sum and QA .sum are in-
dependent (i.e.,Qx andQA do not contain instances from the same
uncertain objects and Figure 2 illustrates such case). For brevity,
we use µQx , µQA , σ

2
Qx

and σ 2
QA

to denote E[Qx .sum], E[QA .sum],
Var[Qx .sum] and Var[QA .sum], respectively. Then, we have the
following candidate selection lemma for the independent case.

Lemma 3. (Independent Candidate Selection). Given a refer-

ence region QA and an arbitrary region Qx that is independent with

QA , if one of the following conditions is satisfied, Qx is selected as a

candidate region.

(i) µQx ≥ µQA , or
(ii) MS > Pt · µ2QA − σ

2
QA

and

µQx ∈
[
max

(
0,

2Pt ·µQA −(1−Pt)
√
∆

2

)
, min

(
µQA ,

2Pt ·µQA +(1−Pt)
√
∆

2

)]
,

where MS is the mean square of Qx .sum, that is, σ 2
Qx
+ µ2Qx

, and

∆ = 4
1−Pt

(
MS + σ 2

QA
− Pt · µ

2
QA

)
.

Probabilistic Maximum Range-SumQueries on Spatial Database (Technical Report) SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL

𝒖𝟏𝟏

𝒖𝟏𝟐

𝒖𝟏𝟑
𝒖𝟐𝟏

𝒖𝟐𝟐𝒖𝟑𝟏

𝒖𝟑𝟐

𝒖𝟒𝟐

𝒖𝟒𝟏
𝒖𝟓𝟏

𝒖𝟓𝟐
𝒖𝟔𝟏

𝒖𝟔𝟐

𝑸𝑨

𝑸𝒙

𝑼𝟏

𝑼𝟐
𝑼𝟑

𝑼𝟒

𝑼𝟔

𝑼𝟓

Figure 2: Example of case that Qx
and QA are independent.

𝒖𝟏𝟏

𝒖𝟏𝟐

𝒖𝟏𝟑

𝒖𝟐𝟏

𝒖𝟐𝟐

𝒖𝟑𝟏
𝒖𝟑𝟐

𝒖𝟒𝟐

𝒖𝟒𝟏 𝒖𝟓𝟏
𝒖𝟓𝟐

𝒖𝟔𝟏
𝒖𝟔𝟐

𝑸𝑨

𝑸𝒙

𝑼𝟏

𝑼𝟐

𝑼𝟑

𝑼𝟒

𝑼𝟔

𝑼𝟓

𝑼𝟐 𝒊𝒔 𝒔𝒉𝒂𝒓𝒆𝒅 𝒃𝒚 𝑸𝒙 𝒂𝒏𝒅 𝑸𝑨!

Figure 3: Example of case that Qx
and QA are correlated.

𝒖𝟏𝟏

𝒖𝟏𝟐
𝒖𝟏𝟑

𝒖𝟐𝟏

𝒖𝟐𝟐

𝒖𝟑𝟏

𝒖𝟑𝟐

𝒖𝟒𝟐

𝒖𝟒𝟏
𝒖𝟓𝟏
𝒖𝟓𝟐

𝒖𝟔𝟏
𝒖𝟔𝟐

𝑸𝑨†

𝑸𝒙

𝑼𝟏
𝑼𝟐

𝑼𝟑

𝑼𝟒

𝑼𝟔

𝑼𝟓

Figure 4: Transformation from cor-
related case to independent case.

3.3.2 Correlated Case. Now we discuss the correlated case where
Qx .sum is correlated with QA .sum. The reason leading to corre-
lation is that Qx and QA have mutually exclusive instances from
the same uncertain objects. Figure 3 illustrates this case, where
uncertain objectU2 intersects bothQx andQA . IfU2 takes instance
u21, it is impossible that u22 appears in QA , and vice versa.

The correlation leads to significant increase of computation of
σ 2, since we cannot decompose Var[Qx .sum −QA .sum] and need
to enumerate all possible combinations of shared instances. When
the correlation happens, i.e., Qx and QA share common uncertain
objects, one straightforward way to reduce the computation is to
skip this region and directly set Qx as a candidate region. How-
ever, such an approach apparently decreases the pruning power. To
make a trade-off between the pruning power and computational
complexity, we perform an intuitive transformation which turns
the correlated case into the independent case and then apply the
candidate selection rule discussed in Section 3.3.1.

The idea is that, if an uncertain object is shared by Qx and QA ,
we ignore the instances of this object inQA , and compute an upper
bound of probability Prmaxrs (Qx) using rules for the independent
case, which leads to a slightly loose upper bound. Figure 4 gives
such an example. Q†

A
is the transformed region which removes all

shared uncertain objects. After the transformation, Qx and Q†
A

are
independent. To guarantee the correctness of such approach, we
have Corollary 1 showing that the upper bound of Prmaxrs (Qx)

still holds by ignoring the correlated objects, which means the
candidate selection rule under independent case shown in Lemma
3 can be still used on the transformed region.

Corollary 1. (Correlated Candidate Selection). Suppose a

correlated case where Qx and QA share common uncertain objects

and denote Q†
A

as the transformed region of QA , it holds that:

Prmaxrs (Qx) ≤

{
1 , if µ† ≥ 0;
σ †2

σ †2+µ†2 , otherwise .
(6)

where µ† = E[Qx .sum−Q
†
A
.sum] andσ†2 = Var[Qx .sum−Q

†
A
.sum].

Corollary 1 shows that the upper bound of the PMaxRS proba-
bility in the correlated case has the same formation as that in the
independent case, which means we can use the candidate selection
rule proposed in Section 3.3.1 by simply replacing QA with Q†

A
.

3.4 Candidate Generation Algorithm
In this subsection, we focus on how to traverse the data space and
apply the candidate selection rules discussed above to find out all

PMaxRS candidate regions. Note that, possible candidate region
Qx may locate at everywhere in R2 space. Thus, the question is,
given an probabilistic spatial databaseU, is the set of all possible
candidate regions finite? We show that the answer is positive in
Lemma 4.

Lemma 4. (Number of All Candidates). Given an uncertain

databaseU, the lower and upper bounds of the total number of all

possible candidate regions are Ω(NK) and O(N 2K2), respectively,
where N is the total number of uncertain objects and K is the average

number of instances per uncertain object.

Proof. We prove the lemma by transforming the original prob-
abilistic spatial database to a set of rectangles. For each instance
ui j , we draw a rectangle of size a × b centered at li j . The corre-
sponding rectangle of instance ui j is denoted by ri j . Figure 5(a)
shows an example database with three uncertain objects U1, U2
and U3. Figure 5(b) presents the transformation result. After the
transformation, each overlapping area represents one possible can-
didate. For example, for any location x falling into the shaded area
(i.e., the overlapping area of r11, r12, and r13) in Figure 5(b), Qx
covers three instances: u11, u12, and u13. Thus, the total number
of all possible candidate regions is equal to the total number of
different overlapping areas. Then, it is not difficult to find that, the
total number of overlapping areas is between NK = Ω(NK) and
NK (NK−1)

2 = O(N 2K2) regardless of the distribution of data points.
Hence, the lemma holds. □

Lemma 4 shows that there are at most O(N 2K2) possible can-
didate regions, which are represented as the overlapping areas
in the transformed rectangle intersection problem. Thus, to find
all candidate regions, we first transform the input probabilistic
spatial database to a set of rectangles as discussed above. Then, a
sweep-line from left to right is maintained to find out all the pos-
sible overlapping areas in the transformed rectangle intersection
problem.

𝒂

𝒃

𝑼𝟏
𝒖𝟏𝟐

𝒖𝟏𝟏

𝒖𝟏𝟑

𝑼𝟐

𝑼𝟑

𝒖𝟐𝟏
𝒖𝟐𝟐

𝒖𝟑𝟏

𝒖𝟑𝟐

𝒃

𝒂

𝒖𝟏𝟐
𝒖𝟏𝟏 𝒖𝟏𝟑

𝒖𝟐𝟏

𝒖𝟐𝟐

𝒖𝟑𝟏
𝒖𝟑𝟐

(a) An example of original

uncertain database.

(b) Transformation to rectangle

intersection problem.

𝑸𝒙

𝒙

Figure 5: Transformation to rectangle intersection problem.

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL Qiyu and Xiang, et al.

With all the details discussed above, we give the implementation
of the candidate generation technique called CandidateGen in Al-
gorithm 2. Line 1 transforms the input probabilistic spatial database
into a set of rectangles denoted by R. In lines 3-6, a sweep-line ℓ
scans from left to right. At each state of ℓ, we invoke IsCandidate
on the possible candidate regions generated by overlapping areas
swept by ℓ and append the region which satisfies the candidate
selection rules into C. The details of subroutine IsCandidate are
shown in lines 8-12. Line 9 checks whether Qx .sum and QA .sum
are correlated. If yes, we transform QA to Q†

A
which shares no

common uncertain objects with Qx . Then, we invoke subroutine
IndependentPruning, shown in lines 5-9, to determine whether re-
gionQx is in PMaxRS candidate set by using the candidate selection
rules discussed in Lemma 3.

Algorithm 2: CandidateGen
Input: an uncertain database U, a query size a × b , a reference regionQA , and

a probability threshold Pt
Output: a set of candidate regions C

1 R ←Transform(U, a, b);
2 C ← ϕ ;
3 while sweeping the vertical line ℓ from left to right on R do
4 for Q generated by overlapping areas swept by ℓ do
5 if IsCandidate(Q , QA , Pt) then
6 C ← C ∪ {Q };

7 return C;
8 Function IsCandidate(Qx , QA , Pt)
9 if Qx and QA share common uncertain objects then

10 Q†
A
←transformed region of QA ;

11 return IndependentPruning(Qx , Q†A , Pt);

12 else return IndependentPruning(Qx , QA , Pt) ;

13 Function IndependentPruning(Qx , QA , Pt)
14 calculateMS, µQx , σ 2

A
and µA ;

15 if µQx > µQA then
16 return True;

17 if MS > Pt · µ2QA − σ
2
QA

and µV ∈[
max(0,

2Pt ·µQA −(1−Pt)
√
∆

2), min(µQA ,
2Pt ·µQA +(1−Pt)

√
∆

2)

]
then

18 return True;

19 return False;

Note that, there are several tricks that can accelerate Candi-
dateGen. First, candidate regions can be generated from existing
candidate set; that is to say, an Apriori-like [4] pruning strategy can
be used to reduce total candidate generation time. Besides, since
subroutine IsCandidate is frequently invoked, for efficient calcula-
tion of MS and µQx , we can borrow the idea of generating function
[20] which is first used for evaluating rank distribution over a prob-
abilistic database. Due to the space limitation, we just give a simple
example to show how generating functionworks in our problem and
for the details of generating function and unified ranking techniques
in uncertain database, the author can refer to work of Li et al. [20].
Take regionQ4 shown in Figure 1 as an example, we can write down
the generating function of Q4.sum as FQ4 = (p22 · x

w22 + (1 − p22) ·
x0)×(p31 ·xw31 +(1−p31) ·x0) = (0.5x0.4+0.5x0)×(0.8x0.9+0.2x0).
Expand FQ4 , we have, 0.4x

1.3+0.4x0.9+0.1x0.4+0.1x0. The mono-
mial 0.4x1.3 can be interpreted as Pr{Q4.sum = 1.3} = 0.4. As the
sweep-line scanning from left to right, we dynamically update and

expand the generating function, which will accelerate the evaluation
of distribution of Qx .sum.

Complexity Analysis. We analyze the worst case time com-
plexity of Algorithm 2. First, transforming the probabilistic spatial
database U to a set of rectangles takes O(NK) time, and sorting
them by x-coordinate takes O(NK log(NK)). Then, according to
Lemma 4, there are at most O(N 2K2) possible candidate regions.
By adopting the generating function technique to calculate MS and
µQx , the total time of updating and expanding generating functions
can be bounded within O(N 2K2) according to [20]. Thus, the total
time complexity of Algorithm 2 in the worst case is O(N 2K2).

4 THE REFINEMENT STEP
In this section, given a set of candidate regions generated by Algo-
rithm 2, we consider how to verify whether these regions are truly
in the solution set (i.e., determining whether Prmaxrs (Qx) ≥ Pt),
which is called “refinement”. Unfortunately, in Theorem 1, we have
shown that such verification procedure is #P-hard. To tackle the
hardness, we propose a sampling based algorithm. We first intro-
duce the basic idea of this sampling-based algorithm called Verify
in Section 4.1. Then, in Section 4.2, we analyze the error bound of
our proposed sampling based approach. Specifically, by setting the
sample size appropriately, the error of our sampling approach can
be bounded with high success probability. Note that, the reasons
that our sampling-based algorithm significantly accelerates the re-
finement step are threefold: 1) it avoids enumerating all possible
worlds to verify whether Prmaxrs (Qx) ≥ Pt ; 2) the sample size
could be controlled with the precision guarantee and 3) instead of
considering all possible candidate regions, we only focus on the
regions selected by Algorithm 2.

Algorithm 3: Verify
Input: a candidate region set C, an uncertain database U, and a probability

threshold Pt
Output: a PMaxRS solution set γ ∗
/* initialization */

1 s ← O
(
max

(
4
ϵ2

log 2
δ1
,

log(1−δ2)
log(1−N 2K2Pt)

))
;

2 f r eq[Qx] ← 0 for ∀Qx ∈ C;
3 γ ∗ ← ϕ ;
/* begin sampling */

4 for i = 1 to s do
5 sample a possible world pw according to U;

/* get approximated max range-sum */

6 sum∗ ← maxQx ∈C Qx .sum(pw);
7 for Qx ∈ C do
8 if Qx .sum(pw) = sum∗ then
9 f r eq[Qx] ← f r eq[Qx] + 1;

10 if f r eq[Qx] > s · Pt then
11 γ ∗ ← γ ∗ ∪ {Qx };

12 return γ ∗ ;

4.1 Sampling Based Refinement
The basic idea is that we sample s representative possible worlds,
denoted as pw1,pw2, · · · , and pws , according to their occurrence
probabilities. Then, to verify whether a given candidate region Qx
is in PMaxRS solution, instead of summarizing all possible-world
probabilities as shown in Definition 5, we count the frequency that
Qx becomes the region whose range-sum is maximal on the given

Probabilistic Maximum Range-SumQueries on Spatial Database (Technical Report) SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL

possible world pw . For each region, if its frequency, denoted by
f req[Qx], is larger than s ·Pt , then the regionQx is selected into the
final PMaxRS solution set. That is to say, we use value 1

s f req[Qx]

as an approximation of the true PMaxRS probability Prmaxrs (Qx).
Our sampling based refinement algorithm, called Verify, is

shown in Algorithm 3. The input parameters of Verify are: 1)
the set of candidate regions C returned by CandidateGen shown
in Algorithm 2; 2) a probabilistic spatial databaseU, and 3) a proba-
bilistic threshold Pt . Lines 1-3 initialize the sample size s , a PMaxRS
solution setγ ∗ and a frequency list f req[Qx]which keeps the count
thatQx holds the maximum range-sum through s samplings. Specif-
ically, the sample size s is set toO

(
max

(
4
ϵ 2 log

2
δ1
,

log(1−δ2)
log(1−N 2K 2Pt)

))
,

where ϵ , δ1, δ2 are three accuracy parameters and K is the aver-
age number of instances per uncertain object. We will show later
that such a setting of s guarantees the sample accuracy of Algo-
rithm 3. From line 4, we begin the sampling procedure. In each
iteration, we sample a possible world and update the frequency list
f req[1 · · · |C|]. Once f req[Qx] exceeds s · Pt , we add Qx into the
solution set γ ∗. The iteration above will be repeated s times and
after it terminates, we return γ ∗ as the PMaxRS solution. Note that,
theoretically, sum∗ in line 6 should be themaximum range-sum over
sampled possible world pw . However, considering algorithm effi-
ciency, we usemaxQx ∈C Qx .sum(pw) instead of the actual value of
sum∗ as an approximation. That is to say, we ignore all the regions
filtered out by Algorithm 2.

Complexity Analysis. To efficiently sample s possible worlds,
for each uncertain objectUi ∈ U, we sample its s instancesu(1)i · · ·u

(s)
i

based on their probabilities with replacement. Then,pw j = {u
(j)
i |i =

1 · · ·N } where j = 1 · · · s , and the probability that pw j is sampled
is

∏N
i=1 p

(j)
i . Such a sampling procedure can be done inO(sN log s)

by using appropriate sorting-based sampling technique. The calcu-
lation of range-sum and the update of f req[Qx] for all Qx ∈ C can
be done within timeO(s |C|), where |C| is the cardinality of the can-
didate set C. Thus, the total time complexity is O(sN log s + s |C|),
where s is the sample size. Note that, in the worst case, |C| can be
O(N 2K2). However, the experimental results show that by using
our pruning technique, most of (more that 95%) possible regions
can be safely filtered out. Thus, the quadratic cardinality of |C| is
not a big issue to the performance of Algorithm 3.
4.2 Sampling Error Analysis
In this subsection, we analyze the error introduced by random
sample. The major theoretical result is: by setting the sample size
s = O

(
max

(
4
ϵ 2 log

2
δ1
,

log(1−δ2)
log(1−N 2K 2Pt)

))
as shown in Algorithm 3,

the probability that the verification of Qx fails can be bounded
within min(δ1,δ2), where δ1 and δ2 are two accuracy parameters
specified by user. To prove that, we observe two facts in Algorithm
2 that introduce errors:

(i) line 10 uses 1
s f req[Qx] to estimate Prmaxrs (Qx);

(ii) line 6 uses maxQx ∈C Qx .sum(pw) as an approximation of
the maximum range-sum over sampled possible worlds.

We first analyze the error caused by Case (i). By selecting an
appropriate sample size s1, the absolute error between Prmaxrs (Qx)

and its estimation 1
s1 f req[Qx] can be bounded. The error bound is

shown in Theorem 2.

Theorem 2. Given a region Qx , by choosing the sample size s1 =

O
(
4
ϵ 2 loд

2
δ1

)
, for ∀ϵ,δ1 > 0, it always holds that,

Pr
{���� 1s1 f req[Qx] − Prmaxrs (Qx)

���� ≤ ϵ

}
≥ 1 − δ1, (7)

where f req[Qx] is the frequency that regionQx has the highest range-

sum over s1 sampled possible worlds (i.e., the frequency thatQx is the

exact MaxRS solution over s1 possible worlds).

Then, for Case (ii), we prove that, by selecting an appropriate
sample size s2, the ignorance of all the non-candidate regions when
we calculate the maximum range-sum sum∗ introduces low errors
that can be bounded. The details are shown in Theorem 3.

Theorem 3. Given a set of candidate regions C, a set of non-

candidate regions C, and a set of sampled possible worlds PW s =

{pw1,pw2, · · · ,pws2 }, by setting the sample size s2 = O
(

log(1−δ2)
log(1−N 2K 2Pt)

)
,

for ∀δ2 > 0, it always holds that,

Pr


∧
pw ∈PW s

∧
Qx ∈C

Qx .sum(pw) , s
∗
pw

 ≥ 1 − δ2, (8)

where s∗pw is the maximum range-sum value over possible world pw .

Thus, by combining Theorem 2 with Theorem 3, in Algorithm
3, we set the sample size to the maximum value between s1 and s2,
i.e., s = O

(
max

(
4
ϵ 2 log

2
δ1
,

log(1−δ2)
log(1−N 2K 2Pt)

))
, which guarantees that

the success probability of Algorithm 3 is at least 1 − min{δ1,δ2}.
Notice that, the first term of s , i.e., 4

ϵ 2 log
2
δ1
, is independent of

the parameters of a PMaxRS query and only depends on ϵ and
δ1, which controls the estimation error of the PMaxRS probability.
As for the second term, log(1−δ2)

log(1−N 2K 2Pt)
dominates the sample size

s only when NK or Pt takes very small value. This is reasonable
since there are two cases leading to high error by neglecting of all
non-candidate regions: (1) the size of the given database is very
small (corresponding to small NK) and (2) the tolerance of sample
errors is extremely low (corresponding to small Pt).

Discussions of the extensibility. So far, we have discussed
the details of our PMaxRS_Framework. By slight modification, the
PMaxRS_Framework can also be used to answer variants of the
PMaxRS query, such as PMaxCRS (a circular version of PMaxRS)
and top-k PMaxRS queries. For more details about the Extensibility
of our framework, please refer to Appendix H.

5 EXPERIMENTAL STUDY
In this section, we conduct extensive experiments to demonstrate
the effectiveness and efficiency of PMaxRS_Framework on several
generated datasets with various practical parameter settings. All
the experiments were conducted on a Linux server with Intel(R)
Xeon(R) CPU X5675 @ 3.07GHz and 32GB memory, and all the
algorithms were implemented in Java.

5.1 Competitors
To demonstrate that our PMaxRS_Framework is both effective and
efficient, we select two baseline algorithms for comparisons. The
first baseline is Expected MaxRS, which is denoted as “EMaxRS”.

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL Qiyu and Xiang, et al.

EMaxRS returns the region Qx ∗ such that its expected range-sum,
E[Qx .sum], is maximized. To implement EMaxRS algorithm, we can
apply the precise MaxRS algorithm to a modified certain database
consisting of all instances associated with weights p ×w , that is:

Qx ∗ = argmax
∀x ∈R2

∑
ui j ∈∪Ni=1Ui
li j ∈Qx

pi j ×wi j . (9)

By selecting appropriate precise MaxRS algorithms like [13, 15, 24],
EMaxRS has the time complexityO(NK · log(NK)), where N is the
total number of uncertain objects and K is the average number
of instances per uncertain object. Our implementation of precise
MaxRS algorithm is based on aSB-tree [15], which is a sweep-line
algorithm and has been proved to be optimal in main memory.

The second competitor is called Approx, which is a sampling
based approximation algorithm of the PMaxRS problem. Approx is
shown in Algorithm 4. In line 1, the sample size s is set to 4

ϵ 2 log
2
δ1
.

Line 2 initializes an empty hashmap which stores the key-value
pair as (reдion, count), where reдion denotes the possible region in
PMaxRS solution set and count denotes howmany times this region
has maximum range-sum among all s sampling results. Lines 3-7
repeat the sampling procedure s times. In each iteration, we sample
a possible world pw in the same way used in Algorithm 3. Then,
we invoke the precise MaxRS algorithm to get the regions with
the highest range-sum and update the count dictionary. Finally,
we return all the regions in the dictionary with count value larger
than s · Pt . Note that, the sample error of Approx is guaranteed by
Theorem 2 and due to the limitation of space, we do not analyze it
again. The total running time of Algorithm 4 contains two parts:
(1) time for generating s possible worlds and (2) time for running
the precise MaxRS algorithm s times over a database with size N .

Algorithm 4: Approx
Input: an uncertain database U, a region size a × b and a probability threshold

Pt
Output: the PMaxRS solution set

1 s ← O (4
ϵ2

log 2
δ1
);

2 cnt_dict ← empty dictionary;
/* begin sampling */

3 for i = 1 to s do
4 sample a possible world pw according to U;
5 run precise MaxRS on pw with size parameter a × b and record the result

as Q∗ ;
6 if Q∗ is key of cnt_dict then
7 cnt_dict [Q∗] ← cnt_dict [Q∗] + 1;
8 else add (Q∗, 1) to cnt_dict ;
9 return {Q |cnt_dict [Q] ≥ s · Pt };

5.2 Dataset Description
Real Spatial datasets. We use two real spatial datasets3: Long
Beach’s country roads data (denoted by LB) and LA rivers and rail-
ways from Tiger/Line (denoted by RR), which contain 53,145 mini-
mum bounding rectangles (MBRs) and 128,971 MBRs, respectively.
Since each spatial object is represented as an MBR, to simulate
the uncertainty, for each MBR, we uniformly generate 5 samples
within the MBR as its instances. Then, each sample is assigned
3The real datasets are from http://chorochronos.datastories.org.

with a value from (0, 1) as its appearance probability, which will
be normalized such that the probabilities of all samples of each
uncertain object sum to 1. Note that, all the locations are rescaled
to range [0, 10000] × [0, 10000].

Synthetic datasets. For synthetic datasets, we generate un-
certain objects with various parameter values by following the
convention in previous literature about probabilistic spatial data-
base such as [21]. Uniform andGaussian distributions are adopted to
generateN spatial points onR2 space (also within range [0, 10000]×
[0, 10000]), which are regarded as “center” points of uncertainty
regions. After obtaining N spatial center points, we draw K pos-
sible instances for each object. Different distributions are used to
make the experimental results more convincing. We use a length-
range parameter r to control the shape of data distribution. For
uniform distribution, we generate K samples within rectangular
region [x − r/2,x + r/2] × [y − r/2,y + r/2], where (x ,y) is the
coordinate of center point. Similarly, for Gaussian distributions,
we draw K instances by sampling from a 2-dimensional Gaussian
distribution with mean (x ,y) and variance r2/2

√
3. We use UU (or

UG) to denote the dataset with Uniform distributed centers and
Uniform (or Gaussian) distributed instances. Similarly, GU (or GG)
means the database with Gaussian distributed centers and Uniform
(or Gaussian) distributed instances.

Parameter Settings. The parameter settings are shown in Table
5. Each time, we vary one parameter, while other parameters are
set to the underlined default values.

Table 5: Parameter settings.
Parameter Description Value

N #uncertain objects 10K, 20K, 50K, 100K, 500K
K #instances per object 2, 3, 5, 8, 10
r length-range of object 5, 10, 20, 30, 60
s sample size 500
Pt probabilistic threshold 0.01

a × b size of query region 100 × 100

5.3 Pruning Power
We first report the pruning power of our candidate generation
algorithm shown in Algorithm 2. As we discussed in Section 3.2,
different selection strategy of the reference regionQA yields differ-
ent pruning power. The reason is that, our pruning bound derived in
Lemma 2 filters out the regions “worse” thanQA . Thus, an initially
good QA with high PMaxRS probability will enhance the pruning
power. Three heuristic strategies have been discussed at the end of
Section 3.2: (1) MaxPossible: selectQA as the MaxRS answer over
the possible worlds with the highest probability; (2) k − Sampling:
generate k (here, we set k to 10) possible worlds and select QA as
the region with the highest frequency to be MaxRS solution over k
possible worlds; and (3) EMaxRS: let QA be the answer of expected
MaxRS.

To compare the pruning power, we list the number of all pos-
sible candidates and the number of candidates after pruning w.r.t.
three different reference region selection strategies MaxPossible,
k − Sampling and EMaxRS. We test the pruning power over four
synthetic datasets GG, GU ,UG andUU where N is 10K and other
parameters are set to their default values. Table 6 shows the experi-
mental results of pruning power. The results are shown in Table 6.

http://chorochronos.datastories.org

Probabilistic Maximum Range-SumQueries on Spatial Database (Technical Report) SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL

0 100 200 300 400 500
Number of objects N (×103)

100

101

102

103

104

Ru
nn

in
g

tim
e

(s
)

EMaxRS
Approx
Prune

Refinement
Total

(a) time vs. N (GG)

0 100 200 300 400 500
Number of objects N (×103)

100

101

102

103

104

Ru
nn

in
g

tim
e

(s
)

EMaxRS
Approx
Prune

Refinement
Total

(b) time vs. N (GU)

0 100 200 300 400 500
Number of objects N (×103)

100

101

102

103

104

Ru
nn

in
g

tim
e

(s
)

EMaxRS
Approx
Prune

Refinement
Total

(c) time vs. N (UG)

0 100 200 300 400 500
Number of objects N (×103)

100

101

102

103

104

Ru
nn

in
g

tim
e

(s
)

EMaxRS
Approx
Prune

Refinement
Total

(d) time vs. N (UU)

2 3 4 5 6 7 8 9 10
Number of instances per object K

100

101

102

103

Ru
nn
in
g
tim

e
(s
)

EMaxRS
Approx
Prune

Refinement
Total

(e) time vs. K (GG)

2 3 4 5 6 7 8 9 10
Number of instances per object K

100

101

102

103

Ru
nn
in
g
tim

e
(s
) EMaxRS

Approx
Prune

Refinement
Total

(f) time vs. K (GU)

2 3 4 5 6 7 8 9 10
Number of instances per object K

100

101

102

103

Ru
nn
in
g
tim

e
(s
) EMaxRS

Approx
Prune

Refinement
Total

(g) time vs. K (UG)

2 3 4 5 6 7 8 9 10
Number of instances per object K

100

101

102

103

Ru
nn
in
g
tim

e
(s
) EMaxRS

Approx
Prune

Refinement
Total

(h) time vs. K (UU)

10 20 30 40 50 60
Length-range r

100

101

102

103

Ru
nn

in
g

tim
e

(s
) EMaxRS

Approx
Prune

Refinement
Total

(i) time vs. r (GG)

10 20 30 40 50 60
Length-range r

100

101

102

103

Ru
nn

in
g

tim
e

(s
) EMaxRS

Approx
Prune

Refinement
Total

(j) time vs. r (GU)

10 20 30 40 50 60
Length-range r

100

101

102

103
Ru

nn
in

g
tim

e
(s

) EMaxRS
Approx
Prune

Refinement
Total

(k) time vs. r (UG)

10 20 30 40 50 60
Length-range r

100

101

102

103

Ru
nn

in
g

tim
e

(s
) EMaxRS

Approx
Prune

Refinement
Total

(l) time vs. r (UU)

Figure 6: Experimental results of PMaxRS performance w.r.t. N , K and r .

We can see that the pruning ratios on four datasets are all high.
For k − Sampling and EMaxRS strategies, more than 99% candidates
are pruned; and for MaxPossible, more than 93% candidates are
filtered out on all test datasets. Moreover, the pruning performance
is robust for different data distributions, including both center point
distribution and instance distribution. Note that, due to the locality
of the data distribution, which is very common in real spatial data,
the pruning power of our candidate generation algorithm can be
much better than that reported in Table 6.

From the results, using EMaxRS to initialize QA always obtains
the best pruning power among all the threeQA selection strategies
(best on datasetsGG ,UG , andUU). The drawback of EMaxRS is that
it costs more time than the other two approaches (can be shown
in Section 5.6). As an alternative, the k − Sampling strategy runs
much faster, but can still achieve high pruning power. Therefore, in
the subsequent experiments, we will use the k − Sampling strategy
to select the reference region QA .

Table 6: The pruning results.
GG GU UG UU

#total candidates 4,150,928 4,150,531 640,670 640,278

MaxPossible
110,452
97.51%

146,092
96.48%

40,875
93.62%

26700
95.83%

10-sampling 9132
99.78%

27,808
99.33%

3,972
99.38%

4,481
99.30%

EMaxRS
4566

99.89%
39,843
99.04%

448
99.93%

1,729
99.73%

5.4 Sampling Accuracy
Our PMaxRS_Framework is based on sampling and its accuracy
is bounded in Theorems 2 and 3. We conduct experiments to test
the sampling error. The absolute error between the actual PMaxRS
probability and our sampling-based estimator is used as measure-
ment. Since computing actual PMaxRS probability is intractable
(#P-hard), we run sampling with a large size s = 5, 000 and re-
gard the result as optimal. Then, we uniformly sample 50 points
x1,x2, · · · , and x50 from [0, 10000] × [0, 10000]. The absolute error
of xi is defined as abs_erri = | f reqi/s − Prmaxrs (Qxi)|, where
f reqi/s is the estimated PMaxRS probability Prmaxrs (Qxi). Then,
the total error, abs_err =

∑50
i=1 abs_erri , is used to measure the

sampling accuracy. Figure 7 reports the convergence of abs_err
w.r.t. sample size s over four datasets GG, GU, UG, and UU with
default parameter settings. From Figure 7, we can see that abs_err
converges swiftly and stays stable after the sample size s increases
to 50 regardless of the data distribution, which can demonstrate
that our sampling based framework is correct and efficient.

Note that, the experimental results on several datasets show that
the convergence rate is even much faster than that suggested by
Theorem 2 and Theorem 3. For example, if we select the sampling ac-
curacy parameters ϵ = 0.1 and δ1 = δ2 = 0.1, the sample size is esti-
mated as 500 by using formula s = O

(
max

(
4
ϵ 2 log

2
δ1
,

log(1−δ2)
log(1−N 2K 2Pt)

))
,

which guarantees abs_err < 5 with probability 0.9. However, from

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL Qiyu and Xiang, et al.

Table 7: PMaxRS_Framework results on different datasets.
top-1 top-2 top-3 top-4 top-5 EMaxRS

LB (5269.5, 1418.7)
RS=55, Prob=0.29

(5273.1, 1398.9)
RS=53, Prob=0.16

(982.0, 7944.6)
RS=53, Prob=0.14

(5268.0, 1401.5)
RS=53, Prob=0.10

(1009.3, 7977.0)
RS=53, Prob=0.09

(5270.1, 1418.8)
RS=55

RR (198.1, 9410.8)
RS=1846, Prob=0.94

(200.8, 9402.3)
RS=1844, Prob=0.06 −− −− −−

(201.1, 9412.7)
RS=1859

GG (5293.7, 5392.2)
RS=104, Prob=0.11

(5300.7, 5390.4)
RS=110, Prob=0.11

(5295.5, 5397.5)
RS=100, Prob=0.10

(5533.4, 5838.3)
RS=101, Prob=0.06

(5527.8, 5838.4)
RS=104, Prob=0.06

(5298.5, 5380.0)
RS=106

GU (5303.3, 5382.8)
RS=108, Prob=0.09

(5311.0, 5378.2)
RS=98, Prob=0.08

(5303.3, 5376.2)
RS=101, Prob=0.06

(5309.8, 5387.5)
RS=104, Prob=0.05

(5303.3, 5400.0)
RS=105, Prob=0.04

(5310.9, 5387.3)
RS=104

UG (2490.0, 7859.5)
RS=12, Prob=0.03

(3490.6, 5317.9)
RS=13, Prob=0.03

(2515.0, 7879.1)
RS=16, Prob=0.03

(2502.1, 7848.1)
RS=16, Prob=0.03

(4094.7, 4264.1)
RS=15, Prob=0.02

(2502.7, 7848.1)
RS=16

UU (4083.5, 4294.6)
RS=16, Prob=0.04

(4250.1, 5908.7)
RS=20, Prob=0.04

(6199.5, 4969.4)
RS=15, Prob=0.04

(4247.9, 5919.1)
RS=15, Prob=0.03

(9362.9, 8960.2)
RS=16, Prob=0.03

(4255.2, 5894.4)
RS=17

the experimental results, abs_err is less than 1 for sample size
s ≥ 50, which is much smaller than 500.

0 100200300400500
sample size: s (GG)

0
2
4
6
8

10

ab
s_
er
r GG

0 100200300400500
sample size: s (GU)

0
2
4
6
8

10

ab
s_
er
r GU

0 100200300400500
sample size: s (UG)

0
2
4
6
8

10

ab
s_
er
r UG

0 100200300400500
sample size: s (UU)

0
2
4
6
8

10

ab
s_
er
r UU

Figure 7: Illustration of the sample error convergence.

5.5 PMaxRS_Framework Results
In this subsection, to show that our PMaxRS_Framework is effec-
tive, we report results with top-5 highest PMaxRS probabilities and
compare them with the EMaxRS result. Table 7 presents the re-
sults returned by PMaxRS_Framework and EMaxRS over 5 datasets
RR,LB,UU ,UG,GU ,GG with default parameter settings. We use
the coordinates of the center point of a rectangle to represent the
corresponding region and use RS to denote the range-sum of the
result region over certain dataset.

In Table 7, each row denotes results on one dataset. The first
five columns present the results from our PMaxRS_Framework. We
select to report results with top-5 PMaxRS probabilities since ac-
cording to our observation, by setting the probability threshold Pt
as 0.01, top-5 regions usually have significantly high confidences
(PMaxRS probabilities). Then, the 6th column in Table 7 show the
results returned by EMaxRS. Note that, for dataset RR, only two
results are returned by our PMaxRS_Framework, since there is high
locality residing in dataset RR, which leads to only two regions
having PMaxRS probability exceeding the threshold Pt . Compared
with EMaxRS results, our PMaxRS_Framework is much better, since
PMaxRS_Framework returns several results with both high range-
sum values and high confidences. In other words, different from
EMaxRS which retrieves only one region with the highest expected
range-sum, the outputs of PMaxRS_Framework are much more di-
verse and contain many “sub-optimal” but insightful results. In

real-world applications, these sub-optimal PMaxRS answers are
very important for decision making. For example, for urban trans-
portation managers, they care about not only the most likely jam
region, but also other regions with relatively high confidences that
traffic jam happens; that is, PMaxRS_Framework provides multiple
reasonable choices for decision makers.

5.6 The Efficiency of PMaxRS_Framework
In this subsection, we report the efficiency and scalability of our
PMaxRS_Framework w.r.t. three parameters N , K and r . We report
the total time (denoted by Total), which consists of filtering time

(denoted by Prune) and refinement time (denoted by Refinement), of
PMaxRS, and the running time of competitors Approx and EMaxRS.
All the experiments are conducted over four synthetic datasetsGG ,
GU ,UG , andUU by varying different parameters as shown in Table
5.

Effect of N . In Figures 6(a)–6(d), we first test the scalability
of PMaxRS_Framework over 4 synthetic uncertain datasets with
respect to data size N = 10K , 20K , 50K , 100K , and 500K . On all
datasets, the algorithm Approx is always the most costly one, and
the performance of EMaxRS and our PMaxRS_Framework is similar.
Note that, the refinement time (Refinement) is much lower than
the filtering time (Prune), which means the candidate generation
process dominates the total time of PMaxRS_Framework.

Effect of K . Figures 6(e)–6(h) illustrate the query performance
of PMaxRS and baselines by varying the number of instances per
uncertain object K = 2, 3, 5, 8, and 10. The running time of Approx
is stable when K increases. This is because the time complexity of
Approx only depends on the sample size s and the total number of
uncertain objects N . When K increases, both filtering time (Prune)
and refinement time (Refinement) increase. That is because the
total number of possible candidate regions increases as K increases.
Besides, the calculation of statistics used in our pruning algorithm,
µ andMS, will be more costly when K increases.

Effect of r . In Figures 6(i)–6(l), we study the effect of the
length-range parameter r by setting r = 5, 10, 20, 30, and 60. On
four datasets, when r increases, the running times of Approx and
EMaxRS are stable, since only N and K influence them. However,
the filtering time (Prune) increases when r increases, which leads
to the increase of the total running time of PMaxRS_Framework.
The reason is that, when r increases, the variance of possible in-
stances’ distribution increases, which leads to instances spreading
much wider and increases the possible appearance of the correlated
case discussed in Section 3.3.2. According to our solution to the

Probabilistic Maximum Range-SumQueries on Spatial Database (Technical Report) SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL

correlated case, we need to transform the reference region QA ,
and the statistical information of the transformed region should
be re-evaluated, which leads to the increase of the filtering time

(Prune).
In summary, our PMaxRS_Framework is effective and efficient in

answering PMaxRS queries over uncertain database. Note that, due
to the space limitation, other parameter settings like more types
of data distributions have experimental results similar to Figure 6,
and thus are omitted here.

6 RELATEDWORKS
In this section, we will review related works on the MaxRS problem
and uncertain data management, and compare them with our work.

The MaxRS Problem. As an important tool to find Regions of
Interest (ROIs), the MaxRS query aims to retrieve regions with the
highest range-sum. Due to its usefulness in location-based services,
the MaxRS problem has been well investigated in [13, 29]. How-
ever, MaxRS was first discussed by the computational geometry
community [18, 24] and they proved that MaxRS is equivalent to
the Rectangle Stabbing problem which transforms spatial objects to
rectangles centering at corresponding positions and then retrieves
the region where the most rectangles intersect. With such transfor-
mation, the basic idea to solve MaxRS is to maintain a sweep-line
and record the maximum overlapping area the line has swept. By
using appropriate index structure like aSB-tree [15], the sweep-line
algorithm terminates in O(nloдn), which is optimal among all of
the comparison-based algorithms. To reduce the I/O consumption,
[13] proposed a scalable MaxRS algorithm and to accelerate MaxRS
query processing with a little loss of precision, Tao et al. proposed
a grid sampling based approximation algorithm which reduces the
time complexity to O(nloд 1

ϵ + nloдloдn) [29]. Note that, our candi-
date generation algorithm also follows the idea of transformation
to the rectangle intersection problem. However, the intrinsic dif-
ference is that, we do the transformation for traversing the whole
data space to find any possible candidate region, which means
the previous index structure like aSB-tree cannot be used in our
PMaxRS_Framework since it only records the region with highest
range-sum but ignore all the other regions. Besides the original
MaxRS problem, recently, researchers also focus on variants of the
MaxRS problem such as the rotating MaxRS [10] where the query
regions can rotate with an angle and the dynamic MaxRS [5, 6]
where the spatial objects might move and a monitoring algorithm
is put forward to update the current MaxRS result.

Uncertain Data Model. In the literature [3, 7, 8, 11, 12, 25,
27, 28, 32], uncertain data management and query processing are
important due to the universal existence of uncertainty in real world.
Many techniques have been designed for extending traditional
database techniques to uncertain case. Specifically, the related topics
include uncertaintymodeling [3], uncertain data indexing [7, 12, 28],
uncertain data mining [8, 32], and query processing over uncertain
database such as uncertain top-k [27] and probabilistic kNN queries
[11].

Note that, there is a paper also dealing with the probabilistic
MaxRS query [23]. However, there are two main problems in [23].
First, it can only deal with the weight uncertainty and fail to con-
sider the location uncertainty, whereas our PMaxRS_Framework

provides a much more generic uncertain data model. Second, this

work returns all the regions with PMaxRS probability larger than
0, which may return numerous results that are not useful due to
low confidences. Therefore, with different data models and problem
settings, we cannot directly apply previous techniques to tackle our
PMaxRS problem.

7 CONCLUSION
In this paper, we propose a novel query, called the Probabilistic
MaxRS query, which retrieves a × b rectangular regions Qx such
that the probability that Qx has the maximum range-sum exceeds
a probability threshold Pt . We illustrate that the PMaxRS query is
useful for retrieving regions of interest and location-based services.
Since answering such a query is challenging and direct evaluation
is intractable, we develop an efficient PMaxRS_Framework which
is based on pruning and refinement strategies. Finally, by using
real and synthetic datasets, we demonstrated the effectiveness and
efficiency of our proposed algorithms.

REFERENCES
[1] [n. d.]. Google Map. https://maps.google.com/. Accessed Jan 15, 2018.
[2] [n. d.]. Waze. https://www.waze.com/. Accessed Jan 15, 2018.
[3] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. 1987. On the Represen-

tation and Querying of Sets of Possible Worlds. In SIGMOD Conference. ACM
Press, 34–48.

[4] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining
Association Rules in Large Databases. In VLDB. Morgan Kaufmann, 487–499.

[5] Daichi Amagata and Takahiro Hara. 2016. Monitoring MaxRS in Spatial Data
Streams. In EDBT. OpenProceedings.org, 317–328.

[6] Daichi Amagata and Takahiro Hara. 2017. A General Framework for MaxRS and
MaxCRS Monitoring in Spatial Data Streams. ACM Trans. Spatial Algorithms and

Systems 3, 1 (2017), 1:1–1:34.
[7] Carlos D. Barranco, Jesús R. Campaña, and Juan Miguel Medina. 2009. Indexing

Fuzzy numerical Data with a B+ Tree for Fast Retrieval Using Necessity-Measured
Flexible conditions. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 17, Supplement-1 (2009), 1–23.

[8] Douglas Burdick, Prasad Deshpande, T. S. Jayram, Raghu Ramakrishnan, and
Shivakumar Vaithyanathan. 2005. OLAP Over Uncertain and Imprecise Data. In
VLDB. ACM, 970–981.

[9] Zhao Chen, Rui Fu, Ziyuan Zhao, Zheng Liu, Leihao Xia, Lei Chen, Peng Cheng,
Caleb Chen Cao, Yongxin Tong, and Chen Jason Zhang. 2014. gMission: A
General Spatial Crowdsourcing Platform. PVLDB 7, 13 (2014), 1629–1632.

[10] Zitong Chen, Yubao Liu, Raymond Chi-Wing Wong, Jiamin Xiong, Xiuyuan
Cheng, and Peihuan Chen. 2015. Rotating MaxRS queries. Inf. Sci. 305 (2015),
110–129.

[11] Reynold Cheng, Lei Chen, Jinchuan Chen, and Xike Xie. 2009. Evaluating proba-
bility threshold k -nearest-neighbor queries over uncertain data. In EDBT (ACM

International Conference Proceeding Series), Vol. 360. ACM, 672–683.
[12] Reynold Cheng, Yuni Xia, Sunil Prabhakar, Rahul Shah, and Jeffrey Scott Vit-

ter. 2004. Efficient Indexing Methods for Probabilistic Threshold Queries over
Uncertain Data. In VLDB. Morgan Kaufmann, 876–887.

[13] Dong-Wan Choi, Chin-Wan Chung, and Yufei Tao. 2012. A Scalable Algorithm
for Maximizing Range Sum in Spatial Databases. PVLDB 5, 11 (2012), 1088–1099.

[14] Yuan Shih Chow and Henry Teicher. 2012. Probability Theory: Independence,

Interchangeability, Martingales. Springer Science & Business Media.
[15] Yang Du, Donghui Zhang, and Tian Xia. 2005. The Optimal-Location Query. In

SSTD (Lecture Notes in Computer Science), Vol. 3633. Springer, 163–180.
[16] Parikshit Gopalan, Adam R. Klivans, Raghu Meka, Daniel Stefankovic, Santosh

Vempala, and Eric Vigoda. 2011. An FPTAS for #Knapsack and Related Counting
Problems. In FOCS. IEEE Computer Society, 817–826.

[17] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random
Variables. Journal of the American statistical association 58, 301 (1963), 13–30.

[18] Hiroshi Imai and Takao Asano. 1983. Finding the Connected Components and
a Maximum Clique of an Intersection Graph of Rectangles in the Plane. J.

Algorithms 4, 4 (1983), 310–323.
[19] Jon M. Kleinberg, Yuval Rabani, and Éva Tardos. 1997. Allocating Bandwidth for

Bursty Connections. In STOC. ACM, 664–673.
[20] Jian Li, Barna Saha, and Amol Deshpande. 2009. A Unified Approach to Ranking

in Probabilistic Databases. PVLDB 2, 1 (2009), 502–513.
[21] Xiang Lian and Lei Chen. 2008. Monochromatic and bichromatic reverse skyline

search over uncertain databases. In SIGMOD Conference. ACM, 213–226.

https://maps.google.com/
https://www.waze.com/

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL Qiyu and Xiang, et al.

[22] Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. 2009.
WhereNext: a location predictor on trajectory pattern mining. In KDD. ACM,
637–646.

[23] Yuki Nakayama, Daichi Amagata, and Takahiro Hara. 2017. Probabilistic MaxRS
Queries on Uncertain Data. In DEXA (1) (Lecture Notes in Computer Science),
Vol. 10438. Springer, 111–119.

[24] Subhas C Nandy and Bhargab B Bhattacharya. 1995. A Unified Algorithm for
Finding Maximum and Minimum Object Enclosing Rectangles and Cuboids.
Computers & Mathematics with Applications 29, 8 (1995), 45–61.

[25] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. 2007. Probabilistic Skylines on
Uncertain Data. In VLDB. ACM, 15–26.

[26] Christopher Ré and Dan Suciu. 2009. The trichotomy of HAVING queries on a
probabilistic database. VLDB J. 18, 5 (2009), 1091–1116.

[27] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang. 2007. Top-
k Query Processing in Uncertain Databases. In ICDE. IEEE Computer Society,
896–905.

[28] Yufei Tao, Reynold Cheng, Xiaokui Xiao, Wang Kay Ngai, Ben Kao, and Sunil
Prabhakar. 2005. Indexing Multi-Dimensional Uncertain Data with Arbitrary
Probability Density Functions. In VLDB. ACM, 922–933.

[29] Yufei Tao, Xiaocheng Hu, Dong-Wan Choi, and Chin-Wan Chung. 2013. Approx-
imate MaxRS in Spatial Databases. PVLDB 6, 13 (2013), 1546–1557.

[30] Hien To, Gabriel Ghinita, and Cyrus Shahabi. 2014. A Framework for Protecting
Worker Location Privacy in Spatial Crowdsourcing. PVLDB 7, 10 (2014), 919–930.

[31] Raymond Chi-Wing Wong, M. Tamer Özsu, Philip S. Yu, Ada Wai-Chee Fu, and
Lian Liu. 2009. Efficient Method for Maximizing Bichromatic Reverse Nearest
Neighbor. PVLDB 2, 1 (2009), 1126–1137.

[32] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. 2014. Data Mining
with Big Data. IEEE Trans. Knowl. Data Eng. 26, 1 (2014), 97–107.

[33] Tian Xia, Donghui Zhang, Evangelos Kanoulas, and Yang Du. 2005. On Comput-
ing Top-t Most Influential Spatial Sites. In VLDB. ACM, 946–957.

[34] Xiaokui Xiao, Bin Yao, and Feifei Li. 2011. Optimal location queries in road
network databases. In ICDE. IEEE Computer Society, 804–815.

[35] Man Lung Yiu, Xiangyuan Dai, Nikos Mamoulis, and Michail Vaitis. 2007. Top-k
Spatial Preference Queries. In ICDE. IEEE Computer Society, 1076–1085.

[36] Wenjie Zhang, Xuemin Lin, Jian Pei, and Ying Zhang. 2008. Managing Uncertain
Data: Probabilistic Approaches. In WAIM. IEEE Computer Society, 405–412.

[37] Zenan Zhou, Wei Wu, Xiaohui Li, Mong-Li Lee, and Wynne Hsu. 2011. MaxFirst
for MaxBRkNN. In ICDE. IEEE Computer Society, 828–839.

A PROOF OF LEMMA 1
Proof. According to Eq. (2), we have:
Prmaxrs (x) =

∑
pw∈PW

Pr(pw) · δ (Qx | |pw)

=
∑

pw∈PW

Pr(pw) · 1

(∧
∀x ′

Qx .sum(pw) ≥ Qx ′ .sum(pw)

)
= Pr

{∧
∀x ′

Qx .sum ≥ Qx ′ .sum

}
,

(10)

where 1(z) is a logical indicator function: if z = True, then 1(z) = 1;
otherwise, 1(z) = 0. Thus, we complete the proof. □

B PROOF OF LEMMA 2
Proof. According to Lemma 1, we have:

Prmaxrs (Qx) = Pr

{∧
∀x ′

Qx .sum ≥ Qx ′ .sum

}
≤ Pr{Qx .sum ≥ QA .sum}

= Pr{Qx .sum −QA .sum − µ ≥ −µ}.

(11)

Then, we use Cantelli’s Inequality [14], that is, for a random variable
X and a positive number λ, it holds that:

Pr{X − µX ≥ λ} ≤
σ 2
X

σ 2
X + λ

2 , (12)

where µX and σ 2
X are expectation and variance of X respectively.

Combining Eq. (11) with Eq. (12), set X = Qx .sum −QA .sum and

λ = −µ. Since −µ = −E[Qx .sum − QA .sum] = E[QA .sum] −
E[Qx .sum], if E[Qx .sum] < E[QA .sum], then λ = −µ > 0. Thus,
the condition of Cantelli’s Inequality is satisfied and we have:

Prmaxrs (Qx) ≤ Pr {Qx .sum −QA .sum − µ ≥ −µ}

≤
σ 2

σ 2 + µ2
.

(13)

Note that, the condition of Cantelli’s Inequality cannot be always
satisfied. If E[Qx .sum] ≥ E[QA .sum], λ = −µ ≤ 0, which breaks
the condition of Cantelli’s Inequality, then the upper bound of
Prmaxrs (Qx) is set to 1, which is the maximum possible value of a
probability. This way, we prove the upper bound of Prmaxrs (Qx)

in 2 cases of Eq. (5). □

C PROOF OF LEMMA 3
Proof. Let the upper bound shown in Lemma 2 be larger than

the probabilistic threshold Pt . If µQx ≥ µQA , the upper bound
of Prmaxrs (Qx) equals to 1, which is larger than Pt . Thus, Qx is
selected as a candidate, and we get the Case (i). For the Case (ii),
if µQx < µQA , the upper bound of Prmaxrs (Qx) is σ 2

σ 2+µ2 , where
µ = E[Qx .sum−QA .sum] and σ 2 = Var[Qx .sum−QA .sum]. Since
Qx .sum and QA .sum are independent, σ 2 can be decomposed as
σ 2
Qx
+ σ 2

QA
. Then, we have:

σ 2
Qx
+ σ 2

QA >
Pt · (µQx − µQA)

2

1 − Pt
. (14)

Since σ 2
Qx
= MS−µ2Qx

,MS−µ2Qx
+σ 2

QA
>

Pt ·(µQx −µQA)
2

1−Pt . Simplify
it, we have:

1
1 − Pt

µ2Qx
−
2Pt · µQA
1 − Pt

µQx +
Pt

1 − Pt
µ2QA −MS − σ 2

QA < 0. (15)

The LHS of Eq. (15) is a quadratic function of variable µQx and
the discriminant ∆ of its corresponding quadratic equation is:

∆ =

(2Pt · µQA
1 − Pt

)2
−

4
1 − Pt

(
Pt

1 − Pt
µ2QA −MS − σ 2

QA

)
=

4
1 − Pt

(MS + σ 2
QA − Pt · µ

2
QA).

To satisfy the inequality shown in Eq. (15) with the constraint
µQx ∈ [0, µQA], there should be∆ > 0 and µQx ∈ [max(0, µ−0),min(µQA , µ

+
0)],

where µ+0 and µ−0 are the two zero points of the above quadratic
function. After solving it, we get the Case (ii). □

D PROOF OF COROLLARY 1
Proof. Since QA covers more uncertain objects than Q†

A
, by

following the similar procedures of proving Lemma 2, it holds that:

Prmaxrs (Qx) ≤ Pr{Qx .sum ≥ QA .sum}

≤ Pr{Qx .sum ≥ Q†
A
.sum}

≤
σ†2

σ†2 + µ†2
.

(16)

Thus, we complete the proof. □

Probabilistic Maximum Range-SumQueries on Spatial Database (Technical Report) SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL

E PROOF OF THEOREM 1
Proof. We give the sketch of the proof by using a reduction

from the #KNAPSACK problem [16]. According to Lemma 1, we
can show that, for a given region Qx , the calculation of probability
Pr(Qx .sum ≥ Qx ′ .sum), where Qx ′ is any region different from
Qx , is a special case of calculating Prmaxrs (Qx). And similarly,
Pr(Qx .sum ≥ L), where L is an arbitrary positive constant, is also
a special case of the probability Pr(Qx .sum ≥ Qx ′ .sum). Thus,
Pr(Qx .sum ≥ L) is a special case of Prmaxrs (Qx). Then, according
to [19, 26], the evaluation of Pr(Qx .sum ≥ L) is #P-hard by using a
reduction from the #KNAPSACK problem, which has been already
shown to be #P-complete [16]. Thus, the evaluation of Prmaxrs (Qx)

must be #P-hard. □

F PROOF OF THEOREM 2
Proof. For a given regionQx , we construct a random variableX .

If Qx has the maximum range-sum over possible world pwi , where
i = 1, 2, · · · , and |PW |, then ith possible value of X is 1, otherwise,
is 0. Without loss of generality, let 1st ∼ kth values be 1 and the
others are 0. The distribution of X is shown in Table 8. Easily find
that Prmaxrs (Qx) = E[X].

Table 8: Distribution of random variable X .
X 1 · · · 1 0 · · · 0
Pr Pr(pw1) · · · Pr(pwk) Pr(pwk+1) · · · Pr(pw |PW |)

Let X1,X2, · · · , and Xs1 be s1 samples of a random variable X .
According to Chernoff-Hoeffding Theorem [17], we have:

Pr

{
1
s1

s1∑
i=1

Xi ≥ E[X] + ϵ

}
≤ e−D(E[X]+ϵ | |E[X]), (17)

where D(·| |·) is K-L Divergence. Use bound: D((1 + x)p | |p) ≥ 1
4x

2p

for x ∈ [− 1
2 ,

1
2], we have:

Pr

{
1
s1

s1∑
i=1

Xi ≥ E[X] + ϵ

}
≤ e
− ϵ2

4E[X] ·s1 ≤ e−
ϵ2
4 ·s1 . (18)

Similarly, we have,

Pr

{
1
s1

s1∑
i=1

Xi ≤ E[X] − ϵ

}
≤ e−

ϵ2
4 ·s1 . (19)

Combining Eqs. (18) and (19), we have:

Pr

{����� 1s1 s1∑
i=1

Xi − E[X]

����� ≤ ϵ

}
≥ 1 − 2e−

ϵ2
4 ·s1 . (20)

By substituting s1 with 4
ϵ 2 loд

2
δ1
, we finally have Pr{| 1s1

∑s1
i=1 Xi −

E[X]| ≤ ϵ} ≥ 1 − δ1, which is equivalent to Pr{| 1s1 f req[Qx] −

Prmaxrs (Qx)| ≤ ϵ} ≥ 1 − δ1. □

G PROOF OF THEOREM 3
Proof. For any non-candidate region Qx ∈ C, since Qx is fil-

tered out, there must be Prmxars (Qx) < Pt . Combining Eq. (2), for

a sampled possible world pwi ∈ PW
s , we have:

Pr
{
Qx .sum(pwi) = s

∗
pwi

}
= δ (Qx | |pwi) · Pr(pwi)

≤
∑

pw ∈PW
δ (Qx | |pw) · Pr(pw)

≤ Prmaxrs (Qx) < Pt .

(21)

By using the union bound of probability, we have,

Pr


∧
Qx ∈C

Qx .sum(pwi) , s
∗
pwi


=1 − Pr


∨

Qx ∈C

Qx .sum(pwi) = s
∗
pwi

 (22a)

≥1 −
∑

Qx ∈C

Pr
{
Qx .sum(pwi) = s

∗
pwi

}
(22b)

≥1 −
NK(NK − 1)

2
Pt ≥ 1 − (NK)2Pt . (22c)

Note that, from Eq. (22b) to Eq. (22c), we utilize the fact that there
are at most N ·K ·(NK−1)

2 possible candidate regions, where K is the
average number of instances per uncertain object.

Then, since possible worlds pw ∈ PW s are independently sam-
pled, we have,

Pr


∧
pw ∈PW s

∧
Q ∈C

Q .sum(pw) , s∗pw

 ≥ (1 − (NK)2Pt)
s2

Let s2 = O
(

log(1−δ2)
log(1−N 2K 2Pt)

)
, and we have the error bound shown in

Eq. (8). Thus, we complete the proof. □

H EXTENSION OF PMAXRS_FRAMEWORK
We briefly show how to extend our PMaxrs_Framework to answer
the Probabilistic MaximumCircular Range-Sum (PMaxCRS) queries
and top-k PMaxRS queries.

PMaxCRS problem is a variant of the original PMaxRS query
where the query region is a circle. PMaxCRS aims to retrieve a set
of circles Cx with a user-specified radius such that the probability
that Cx has the highest range-sum exceeds a given threshold. Note
that, our pruning bound and sampling-based refinement algorithm
not only hold for rectangular region, but also for circular region,
or even arbitrary polygonal region, which means we can directly
interchange rectangular region and circular region in Algorithms
2 and 3. The only difference is that, the traversing method should
change to find all possible candidates (represented by overlapped
circles). The traversing problem in circular case is related to the cir-
cle intersection problem and we can borrow the idea of overlap table
in [31], which is originally used to support answering Bichromatic
Reverse Nearest Neighbor (BRNN) queries.

A top-k PMaxRS query is also a variant of PMaxRS query which
outputs k regions with top-k PMaxRS probabilities. The top-k
PMaxRS query is useful, since instead of returning all the regions
satisfying the threshold constraint, sometimes we only care about
those with the highest PMaxRS probabilities. To support this op-
erator, we can first set the probability threshold Pt to a relatively

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL Qiyu and Xiang, et al.

small value (according to our tests, 0.01 is appropriate for most
cases) to guarantee there are enough candidates returned by the
candidate generation step. Then, we do the refinement similar to
the original PMaxRS query. The difference is that, we return not

only regions passing the refinement but also their corresponding
PMaxRS probabilities which can be estimated via sampling during
the refinement step. Then, we sort these regions by their PMaxRS
probabilities and return the top-k regions.

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Probabilistic Data Model
	2.3 The PMaxRS Problem
	2.4 Solution Overview

	3 The Pruning Step
	3.1 Problem Reduction
	3.2 Pruning Bound
	3.3 Candidate Region Selection Rules
	3.4 Candidate Generation Algorithm

	4 The Refinement Step
	4.1 Sampling Based Refinement
	4.2 Sampling Error Analysis

	5 Experimental Study
	5.1 Competitors
	5.2 Dataset Description
	5.3 Pruning Power
	5.4 Sampling Accuracy
	5.5 PMaxRS_Framework Results
	5.6 The Efficiency of PMaxRS_Framework

	6 Related Works
	7 Conclusion
	References
	A Proof of Lemma 1
	B Proof of Lemma 2
	C Proof of Lemma 3
	D Proof of Corollary 1
	E Proof of Theorem 1
	F Proof of Theorem 2
	G Proof of Theorem 3
	H Extension of PMaxRS_Framework

