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Abstract. Recently, blockchain-based Federated learning(BCFL) has
emerged as a promising technology for promoting data sharing in the
Internet of Things(IoT) without relying on a central authority, while
ensuring data privacy, security, and traceability. However, it remains
challenging to design an decentralized and appropriate incentive scheme
that should promise a fair and efficient contribution evaluation for par-
ticipants while defending against low-quality data attacks. Although
Shapley-Value(SV) methods have been widely adopted in FL due to their
ability to quantify individuals’ contributions, they rely on a central server
for calculation and incur high computational costs, making it impractical
for decentralized and large-scale BCFL scenarios. In this paper, we de-
signed and evaluated PoShapley-BCFL, a new blockchain-based FL ap-
proach to accommodate both contribution evaluation and defense against
inferior data attacks. Specifically, we proposed PoShapley, a Shapley-
value-enabled blockchain consensus protocol tailored to support a fair
and efficient contribution assessment in PoShapley-BCFL. It mimics the
Proof-of-Work mechanism that allows all participants to compute contri-
butions in parallel based on an improved lightweight SV approach. Fol-
lowing using the PoShapley protocol, we further designed a fair-robust
aggregation rule to improve the robustness of PoShapley-BCFL when
facing inferior data attacks. Extensive experimental results validate the
accuracy and efficiency of PoShapley in terms of distance and time cost,
and also demonstrate the robustness of our designed PoShapley-BCFL.
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1 Introduction

Nowadays, the proliferation of the Internet of Things(IoT) has led to massive
data being generated from various sources. As an emerging distributed learning
paradigm, federated learning(FL)[30] has been regarded as a promising solu-
tion to promote these data sharing and collaboratively training. However, the
conflicts between its centralized framework and the increasing scalability of IoT
seriously impede its applications in data sharing. Under this situation, the advent
of blockchain-based federated learning(BCFL)[4] has ameliorated the shortcom-
ings. Blockchain emerges as a decentralized ledger technology with the poten-
tial to revolutionize the distributed learning paradigm from a centralized de-
sign to a decentralized point-to-point collaboration paradigm[29, 8]. Specifically,
BCFL works on a P2P communication network, removing the need for central-
ized servers[10]. In such settings, FL participants are customarily treated as
equal blockchain nodes with extensive functions, such as performing local train-
ing, recording related transactions, and then making the leader who wins the
consensus competition complete the aggregation steps[17]. In this way, BCFL
mitigates the concerns about a single point of failure and scalability[9] while
also enhancing the protection for data privacy, ownership, and security[14]. To
maintain these advantages of BCFL in the long term and better serve IoT data
sharing, an efficient, fair and robust incentive mechanism which could always
attract participants with high-quality data is critical. Since BCFL-enabled IoT
data-sharing tasks are performed on specific tasks in complex networks without
inspecting the original data, one of the most direct and effective incentive ap-
proaches is to evaluate participants’ performance in the global model without
third parties’ assistance and reward them accordingly. Unfortunately, it is still
absent.

The Shapley Value(SV) method[1, 28] has received much attention due to
abilities to quantify the contribution of individuals within a group under the
Cooperative Game Theory. It calculates the marginal contributions of each par-
ticipant in all possible subset consortiums to which it belongs and assigns a
weighted sum of marginal contributions as total contribution value to each par-
ticipant[21], thus, ensuring fairness. This method is also commonly used in FL
to evaluate model utility[16, 18]. However, the original calculation procedures
of SV often incur exponential time concerning the number of participants n,
which is not always suited to practical scenarios involving tremendous FL par-
ticipants, let alone performing a contribution evaluation for participants under
the decentralized settings of BCFL. Fairness cannot be guaranteed if the par-
ticipants upload their self-contribution evaluation results because of self-interest
assumptions.

Given the aforementioned dilemmas, a feasible solution for individual performance-
based BCFL contribution evaluation is that participants jointly and simultane-
ously run the calculation of a lightweight Shapley value and mutually oversee
without central servers. Fortunately, this idea naturally coincides with the role
of blockchain in enabling trusted collaboration with a trusted central authority
omitting. More importantly, the consensus mechanism, as one of the critical com-
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ponents of blockchain, defines how different participants collaboratively work to
maintain the blockchain networks[2]. With this motivation in mind, we have com-
prehensively considered combining the blockchain consensus mechanism and the
Shapley value, and proposed PoShapley-BCFL, a novel decentralized FL frame-
work with fair and robust contribution evaluation-based incentive designs. Our
contributions can be summarized as follows:

– We first developed PoShapley-BCFL, a new combination of federated learn-
ing and blockchain technology that guarantees a fair and robust learning pro-
cess. Our approach achieves this goal by extending a blockchain-consensus-
enabled SV calculation procedure and an SV-enabled aggregation procedure
into the typical FL framework.

– We proposed a Shapley-value-enabled blockchain protocol, PoShapley, tai-
lored to support the assessment of contributions in decentralized federated
learning processes. Our proposed protocol mimics the Proof-of-Work mech-
anism and allows all participants to compute a monte-carlo-sampling en-
abled lightweight Shapley value algorithm in parallel until an agreement is
achieved, resulting in a more efficient, trustworthy and fair evaluation pro-
cess.

– Following using the PoShapley protocol, we also developed the fair-robust
aggregation method. This method includes a smart-contract-driven client se-
lection process and a Shapley-value-based aggregation process. Specifically,
we assigned weights to selected clients based on the ratio of their shapley val-
ues, which automatically differentiate low-quality participants and improve
model performance when facing inferior data attacks.

The remainder of this paper is organized as follows. Section 2 provided re-
lated work and preliminaries. We proposed our PoShapley-BCFL in Section 3
with the detailed descriptions of the PoShapley consensus protocol and the SV-
based aggregation method. After that, we move to experiments in Section 4 to
demonstrate the performance of our work. Finally, conclusions are summarized
in Section 5.

2 Related Work and Preliminaries

2.1 Related work

Incentive mechanism in BCFL. Existing incentive approaches in BCFL
can be broadly categorized into three types: game-based method[20, 14, 26, 27],
auction-based method[13, 11, 5], and reputation-based method[12, 3]. Game-based
incentives focus on maximizing FL participants’ utilities based on Stackelberg
games[14], contract-based games[26] or Bayesian game[27, 20]. Auction-based in-
centives usually reward FL participants with aims of keeping individual rational-
ity and incentive compatibility[13, 11], which are usually adopted in FL-enabled
data trading systems[5]. Reputation mechanism was introduced in [12] and [3]
to promote honest participation in BCFL to earn higher reputation value in
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blockchain networks. Generally speaking, these value-driven schemes rely on so-
phisticated utility functions, pricing strategies, or reputation models, which are
important in motivating honest participants, ensuring fair compensation, and
preventing malicious attacks. However, they often overlook the evaluation of the
model itself and typically have high complexity, making them difficult to apply
to large-scale and dynamic IoT environments.

Shapley-value-based incentive mechanism in FL. Recently, Shapley-
value-based contribution evaluation stems from cooperative game theory and has
been the focus of research due to its remarkable features of fairness[16]. However,
the original SV calculation incurs high computational costs, making it challeng-
ing to implement in practice. Various approaches were proposed to reduce the
time complexity in FL, including methods that aim to decrease the number of
permutations sampling for SV calculation, such as Monte-Carlo(MC) sampling-
enabled SV methods[6, 24]. Other techniques involve using coalition models to
minimize individual redundant re-executions, as demonstrated by the Group-SV
protocol[18], or training FL sub-models instead of starting from scratch, as in
Truncation Gradient Shapley[16, 25]. In some works investigating SV methods
in BCFL, the paper [15] designs a PoSap protocol to properly reward coins to
data owners. The work [22] introduced three Shapley-value-based revenue dis-
tribution models for blockchain-enabled data sharing. However, these works did
not provide implementations, and thus the feasibility of the proposed scheme is
not clear. To this end, our research expanded on the findings of existing works
and proposed a consensus mechanism that uses proof of Shapley value to opti-
mize fair and robust decentralized FL. Besides, we provide implementations and
experiments to illustrate the feasibility and performances of our work.

2.2 Preliminaries

This paper considers the common Horizontal Federated Learning framework, in
which FL members with different samples share the same feature space. For the
convenience of presentation, we consider a collaborative learning task with N
data owners(i.e., FL participants), each with a private local dataset Di. During
each round t, each participant i downloads the global model wt and trains on
local dataset Di for multiple local epochs to get a local model wt+1

i . Then, the
local updates and global aggregation can be performed as follows:

∆t+1
i = wt − wt+1

i .

wt+1 = wt +

N∑
i=1

|Di|∑N
i=1 |Di|

∆t+1
i .

(1)

The original Shapley value is a solution concept from cooperative game the-
ory, which can be defined as:

ϕi =
1

N

∑
S⊆I⧹{i}

1(
N − 1
|S|

) [U (S ∪ {i})− U (S)] .
(2)
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where S denotes the subset of participants from N , U (·) is the utility function,
which can be assumed as any form in FL settings, such as accuracy, loss and F1
scores.

3 The Algorithm design for PoShapley-BCFL

In this section, we proposed a novel blockchain-based serverless federated learn-
ing named PoShapley-BCFL. It is expected to effectively complete the contribu-
tion evaluation of all participants during the iteration of decentralized collabora-
tive training while also being able to prevent attacks from inferior data sources.
We reorganized the entire process of a typical FL and divided PoShapley-BCFL
into six procedures. Fig. 1 explains the interactions among these procedures,
and Algorithm 1 demonstrates the pseudo-codes of each procedure to reveal
the details. Initially, the data requester releases some parameters as inputs for
PoShapley-BCFL, including an initialized global w0, evaluation function U(w),
number of FL participants N , total training round T and Mining-success criteria
ρ(i.e., the error threshold for consensus judgement). After successfully recruiting
N participants, PoShapley-BCFL begins to operate.

Procedure 1

Local Model Training

Procedure 2

Uploading Local Updates 

Procedure 4

SV-based Selection and 

Aggregation 

Blockchain
Federated Learning

Procedure 3

SV-based Consensus and 

Block Mining

Procedure 5

Model Updates

Fig. 1: The modules redesign of proposed PoShapley-BCFL

In Algorithm 1, Lines 2-8 show the local model training process in Proce-
dure 1 and uploading process of local model updates in Procedure 2. Specif-
ically, in each round t, every FL participant i independently obtains a global
model wt and trains it based on local dataset Di. After some local training itera-
tions, the local model updates ∆t+1

i are generated and transmitted to blockchain
as transactions Txt+1,i, in which the pair of ∆t+1

i and hash
(
∆t+1

i

)
(Line 6) can
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Algorithm 1: PoShalpey-BCFL Algorithm
input : initial FL model w0, evaluation function U(w) , N FL participants,

Total training round T , Mining-success criteria ρ
output: final FL model wT , SVs for all rounds for N participants

1 for each round t = 0, 1, 2, · · · , T − 1 do
2 for each participant i in parallel do
3 Procedure Local model training(Di)
4 ∆t+1

i ← Local Training
(
Di;w

t
)

5 Procedure Upload local updates(i,∆t+1
i )

6 Txt+1,i =
{
∆t+1

i , hash
(
∆t+1

i

)
, ID, timestamp

}
Sigi

7 Txt+1,i→ upload to BC
8 end
9 SV t = {0, 0, · · · , 0}← initialize SV value list at t

10 while Mining-success criteria ρ not met do
11 Procedure SV-based consensus and Block mining(wt, SV t)
12 for each participant k in parallel do
13

{
Bt, SV

t,Mt

}
=PoShapley(wt, U(w),

{
∆t+1

i

}
, SV t)

14 end
15 end
16 Procedure SV-based Selection and Aggregation(SV t)
17 for Mt do
18 St

a← SV-based-selection-SC(SV t, keyMt)
19 ∆t+1= SV-based Aggregation(

{
∆t+1

i

}
, SV t)

20 broadcast to BC and to all participants
21 end
22 for each participant i in parallel do
23 Procedure Models Updates(SV t)
24 wt+1 = wt − η∆t+1

25 end
26 end

ensure no tampering during transmission. Then, after all participants finish pro-
cedure 2, a smart contract deployed on the blockchain triggers the release of an
SV list with an initial value of zeros(Line 9), which drives the running of Pro-
cedure 3. In Lines 10-15, the SV-based consensus procedure begins execution.
In this procedure, every FL participant continues to perform the PoShapley al-
gorithm(see details in 3.1) to compute each participant’s contributions in this
training round as long as mining-success criteria ρ is satisfied. After that, the
SV list, one of the outputs of PoShapley algorithm, is further used in Proce-
dure 4(Line 16-20). A winner of the PoShapley competition at round t adapts a
fair and robust SV-based aggregation approach(see details in 3.2) to obtain new
global model updates, which are then broadcasted to all participants for next
training round. Lines 22-25 indicate that every participant performs Procedure
5 to update a new global model and then restart Procedure 1.
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3.1 The designs of PoShapley Algorithm

Given the significance of efficiency and attack resistance in contribution evalu-
ation for BCFL systems, we proposed a novel blockchain consensus mechanism
named PoShapley. This tailored mechanism facilitates an efficient, fair and ro-
bust SV calculation in BCFL, where no central trusted authority exists to evalu-
ate SV utility. The basic concept underlying PoShapley mimics that of PoW[19],
which replaces meaningless mathematical puzzles with an improved lightweight
SV calculation problem. We present the pseudo-code in Algorithm 2. The initial
model wt represents the initialized global model at training round t + 1, which
also serves as a benchmark for evaluating the training performance. The utility
function U(w) can have multiple forms, including accuracy, loss, recall rate, and
F1. An illustration of a completed PoShapley loop is presented below.

Before entering the iterative calculation, a participant k should first perform
the preparations according to Line 2-4, such as initializes the SV calculation
times as mk = 1, computes the utility value of the global model wt as vmk

0 (i.e.,
vmk
0 = U(wt)), constructs an initialized permutation of received model as Lt,

and initializes an SV list as ϕ with all values of 0. Next, at each iterative times
mk , the participant k performs a Monte Carlo sampling[16] on permutation Lt

to build a list πk
mk

. By scanning through the πk
mk

from the first entity to the
last, the jth FL participant’s marginal model contribution can be estimated by
participant k following the principle of (3), and then be accumulated into the
average Shapley value V t,k

mk
. We show the calculation steps after disassembling

equation (3) in Lines 6-12.

∆vj = E
[
U
(
s ∪
{
mk

k [j]
})

− U (s)
]

= E

U
wt +

∑
p∈s∪{mk

k[j]}

|Dp|∑
p∈s∪{mk

k[j]} |Dp|
∆t+1

p


−U

(
wt +

∑
p∈s

|Dp|∑
p∈s |Dp|

∆t+1
p

)]
.

(3)

Here, s = mk
k [1 : (j − 1)]. And according to index order within SV t, V t,k

mk
is

then reordered and denoted as svt,kmk
(Line 13-14). The svt,kmk

is then used as in-
put for invoking a Judgement-Smart-Contract(Line 15), which provides a global
signal Jk that indicates whether the loop should be terminated. The automatic
judgment operations of this contract are illustrated in Algorithm 3, where the
maximum distance between svt,kmk

and SV t is calculated. Notably, SV t refers
to the latest average value of all participants’ estimated SV, which is updated
through smart contracts deployed in blockchain systems in advance(referred in
Line 26). When Judgement-Smart-Contract returns a True value, that is the
maximal distance between the average estimated SV and the estimated SV from
participant k is no greater than threshold ρ, the participant k becomes a candi-
date responsible for generating a new block Bk,t and broadcasting it(Line 16-18).
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Algorithm 2: PoShapley Algorithm
input : initial FL model wt, evaluation function U(w) , participants’ model

updates
{
∆t+1

i , · · · ,∆t+1
n

}
, initial SV t for all participants,

Mining-success criteria ρ
output: SV t =

{
ϕt+1
i , · · · , ϕt+1

n

}
for all participants, new block Bt, the

winner Mt

1 for each participant k in parallel do
2 initialize
3 mk = 1; vmk

0 = U
(
wt

)
4 Lt =

{
∆t+1

i , · · · ,∆t+1
n

}
; ϕ = {0, 0, · · · , 0} (|ϕ| = |Lt|)

5 while Mining-success criteria not met do
6 πk

mk
← Monte Carlo sampling permutation of Lt

7 for q = 1, 2, · · · ,
∣∣πk

mk

∣∣ do
8 S =

{
πk
mk

[1] , πk
mk

[2] , · · · , πk
mk

[q]
}

9 wt+1
S = wt +

∑
p∈S

|Dp|∑
p∈S |Dp|∆

t+1
p

10 v
mk
q = U

(
wt+1

S

)
11 ϕπk

mk
[q] =

1
mk

(
(mk − 1)ϕπk

mk
[q] + v

mk
q − v

mk
q−1

)
12 end

13 V t,k
mk

=

{
ϕπk

mk
[1], ϕπk

mk
[2], · · · , ϕπk

mk

[∣∣∣πk
mk

∣∣∣]
}

14 svt,kmk
= sort

{
V t,k
mk

}
by index in SV t

15 Jk← Judgement-SC(k, svt,kmk
, ρ)

16 if Jk == True then
17 Bk,t←generate block(Txs,svt,kmk

)
18 broadcast Bk,t to all participants
19 if verify(Bk,t)== True then
20 for all participants :
21 stop PoShapley at this round t
22 blockchain add Bk,t

23 return SV t and break
24 end
25 else
26 SV t← SV-Update-SC(k, svt,kmk

)
27 mk = mk + 1

28 end
29 end
30 end
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Algorithm 3: Judgement Smart-Contract
input : svt,imk

, ρ
output: Ji

1 if invoke successful then
2 for i automatically do
3 ρk = max

∣∣svt,imi
− SV t

∣∣
4 if ρi ≤ ρ then
5 Ji = True
6 else
7 Ji = False
8 end
9 end

10 Return Ji

11 end

Algorithm 4: SV-Update Smart-Contract
input : svt,imk

output: SV t

1 if invoke successful then
2 for k automatically do
3 for j = 1, 2, · · · , n do
4 SV t [j] = 1

2

(
SV t [j] + svtmk

[j]
)

5 end
6 end
7 Return SV t

8 end

Bk,t contains all transactions of this training round, and its calculation result
svt,kmk

. Line 19-24 show if the verification of Bk,t passes, all participants would
stop the PoShapley procedure at this round and append the newest block to the
blockchain. Meanwhile, the consensus winner and the final approximated SV
results can be acknowledged by all participants. Whereas, if Judgement-Smart-
Contract returns a False value, the participant k should invoke SV-Update-
Smart-Contract to update the SV t(Line 26). The automatic updating opera-
tions of computing the average value between svt,kmk

and SV t are introduced in
Algorithm 4. After that, the iteration time mk is incremented by one, driving
participant k to continue the loop at round t.

3.2 Fair and robust Aggregation

Through leveraging results of the PoShapley protocol, we designed the SV-based
aggregation(i.e., Line 19 in Algorithm 1) to perform global updates with fairness
and inferior data attack tolerance. Specifically, in each round t, after the election
of a consensus winner Mt, a SV-based-selection-Smart-Contract is triggered by
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the Mt to generate clients set Sa whose corresponding model updates are to
be selected for global model aggregation. The workflows of this contract are
illustrated in Algorithm 5.

Algorithm 5: SV-based-selection-Smart-Contract
input : SV t, PrivateMt

key

output: St
a

1 if invoke successful then
2 verify identity
3 if PublicMt

key = f(PrivateMt
key) then

4 for Mt automatically do
5 for i = 1, 2, · · · ,m do
6 v = max(SV t), add the indies of corresponding participant

into combination (v, k)
7 St

a = append(St
a, (v, k))

8 SV t=remove v from SV t

9 end
10 end
11 Return St

a

12 else
13 Return Error
14 end
15 end

To ensure security and fairness during the smart contract invocation, we first
use the RSA encryption algorithm to verify the identities of Mt(Lines 2-3). Each
participant’s corresponding public key is submitted and held in the PoShapley-
BCFL system when forming the collaborative group. The public key of a winner
at each round t can be encapsulated into SV-based-selection-Smart-Contract as
soon as the consensus process is finished. Only the private key from Mt can pass
the verification and triggers the running of automatic selection for Sa, shown
in Line 4-11. That is, top m values from the list of SVt are selected, and their
corresponding local updates are accepted for aggregation to get rid of some
modifying updates or malicious inferior updates in each global iteration. Here
m ≤ N .

After that, the winner Mt performs the fair and robust aggregation using the
formula (4). Unlike the simple average aggregation in (1), we assign aggregation
weights based on the shapley value of selected participants and represent the
aggregation formula in (4). Finally, the Mt delivers the newest global model
updates to blockchain for the next round of training.

∆t+1 =
∑
k∈St

a

SV t
k∑

k∈St
a
SV t

k

∆t+1
k . (4)
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4 Experimental Results And Evaluations

4.1 Experimental Settings

This section introduces the experiment settings, including PoShapley-BCFL
components in our experimental setup, dataset settings, evaluation metrics and
other learning parameters.

PoShapley-BCFL components in the experimental setup Fig. 2 shows
the arrangement components in the experimental setup of our PoShapley-BCFL.
We used the Go language(version 1.15.7) and Hyperledger-Fabric-enabled chan-
nels, gossip and gRPC protocols to simulate the p2p communications and public
ledgers among FL participants. For ease of implementation of PoShapley, the
block structure and its chain-based generation process were reprogrammed by
Go. Go language was also used to implement the PoShapley-BCFL smart con-
tract, which was deployed to the PoShapley-BCFL blockchain networks using
docker. As for the FL participant side, we used Go as the primary programming
language, and multithreading settings and goroutine channels were utilized for
networking, connections, and coordination among simulated participants. In this
process, Pytorch 1.10 from Python(version 3.6) was used as the local training
architecture to develop the learning behaviors in FL, which then communicated
with some public and trust storage systems(such as IPFS) for model parame-
ter exchange and storage.For the local experiments on the blockchain, the par-
ticipant invoked the smart contracts through the Go SDK interface and then
interacted with the PoShapley-BCFL blockchain network. PoShapley consensus
protocol was implemented by the joint of Go and Python and embedded into
the PoShapley-BCFL system.

Datasets and Evaluation metrics (1) Datasets. The dataset used in the
experiments is based on the MNIST dataset. To evaluate the proposed algorithms
under different FL settings, we designed IID and NIID FL scenarios with 10
participants as follows:

– IID datasets−−Same Size and Same Distribution: The MNIST dataset,
which contains 60000 training samples of ten digits and 10000 testing sam-
ples, was evenly divided into ten parts as every participant’s local training
dataset(i.e., each participant has 6000 training samples and 10000 testing
samples).

– NIID datasets:
• NIID-1−−Same Size and Different Distributions: We allocate the same

number of MNIST samples for every participant. However, different dis-
tributions are set as follows: participant 1 & 2’s datasets contain 40% of
digits ’0’ and ’1’, respectively. The other 8 participants evenly divide the
remaining 20% of of digits ’0’ and ’1’. Participant 3 & 4’s datasets contain
40% of digits ’2’ and ’3’, respectively. The other 8 participants evenly
divide the remaining 20% of of digits ’2’ and ’3’. Similar procedures are
applied to the rest of the samples.
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FL client

Python
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 Main Program

Python
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PoShapley-BCFL Smart Contract

Go  

PoShapley-BCFL Smart Contract

Fabric-based communications  &   channel

PoShapley-BCFL Blockchain

Fabric-based communications  &   channel

PoShapley-BCFL Blockchain

Go

Blockchain

SDK

Go

Blockchain

SDK

PoShapley

 protocol

IPFS

Deploy using Docker

Local 
Dataset
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Client 

……

gRPC/gossip

Go

PoShapley-BCFL Main Program

Go

PoShapley-BCFL Main Program Go
+

Python

Deploy using Docker

Fig. 2: PoShapley-BCFL components in the experimental setup.

• NIID-2−−Different Sizes and Same Distribution: We randomly sample
from the entire MNIST dataset following pre-defined ratios to achieve
NIID-2 settings: The proportions are 5% for participants 1 and 2, respec-
tively; 7.5% for participants 3 and 4, respectively; 10% for participants
5 and 6, respectively; 12.5% for participants 7 and 8, respectively; and
15% for participants 9 and 10, respectively.

(2) Evaluation metrics. To comprehensively test the performance of PoShap-
ley, we chose the original shapley algorithm, following the principle of Equation
(2), as a benchmark. We also used Adjust-SV from [23] and TMC-SV from [7] as
comparison approaches. In addition, inspired by [16], we introduced the following
evaluation metrics:

– Distance metrics: We used the results of the Original-SV algorithm as a
baseline, with distance metric referring to the deviation from the results
produced by the Original-SV algorithm. For any participant i, We denote
its model contributions calculated by Original-SV in all training rounds as
a vector ϕ∗

i =
〈
ϕ∗
i,1, · · · , ϕ∗

i,T

〉
, and the estimated results calculated by any

other approach are denoted as ϕi = ⟨ϕi,1, · · · , ϕi,T ⟩. Three distances are
introduced as follows.
• Euclidean Distance: The Euclidean Distance for any participant i is de-

fined as:

EDi =

√√√√ T∑
t=1

(
ϕ∗
i,t − ϕi,t

)2
. (5)
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• Cosine Distance: The Cosine Distance for any participant i is defined
as:

CDi = 1− cos (ϕ∗
i , ϕi) . (6)

• Maximum Distance: The Maximum Distance for any participant i is
defined as:

MDi = max T
t=1 |ϕ∗

i − ϕi| . (7)

– Time analysis: The total time cost of calculating SVs and time complexity
is used to evaluate the efficiency of each approach.

– Accuracy analysis: The accuracy metrics are used to evaluate the effective-
ness of our PoShapley-BCFL with an SV-based aggregation rule, particularly
in scenarios where adversarial nodes upload inferior model updates.

Other learning parameters We implemented a MLP neural network archi-
tecture as the training model and set learning rate η = 0.01, total training round
T = 10, and mining-success criteria ρ = 0.01. As for evaluation function U(w),
since the F1 Score can better measure the performance of the models in most
scenarios[22], we use it as the measure of contribution, i.e., U(w) = F1(w).

4.2 Experimental Results Analysis

Firstly, we analyzed the accuracy and time performance of the PoShapley pro-
tocol and compared it to state-of-the-art baselines under various FL settings,
including both IID and Non-IID (NIID) data silos. Next, we investigated the
performance of the PoShapley-BCFL algorithm against inferior data attacks
when using the SV-based aggregation. 1) Accuracy analysis of PoShapley :

Table 1: The Average SV Distance.

Dataset Distance Standard deviation of Distance
AdjustSV TMC_SV Poshapley

IID
ED 0.0709 0.0921 0.0558
CD 0.4584 0.4169 0.3229
MD 0.0464 0.0546 0.333

NIID-1
ED 0.0595 0.0842 0.0520
CD 0.2877 0.3077 0.2054
MD 0.0477 0.0639 0.0401

NIID-2
ED 0.0707 0.0617 0.0456
CD 0.1296 0.1588 0.1020
MD 0.0560 0.0521 0.0368

We analyzed the experimental results under the three aforementioned dataset
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settings. In each case, 10 participants were involved in BCFL with 10 training
rounds. And the average distances of all participants’ evaluation under differ-
ent dataset settings were calculated to represent the accuracy performance of
PoShapley, shown in Table 1. Under IID data settings, PoShapley achieves the
lowest average distance under all three distance metrics, demonstrating that
PoShapley achieves the best contribution accuracy. And under Niid-1 settings,
the results show that PoShapley still performs with the best accuracy according
to the average distances. Notably, the average accuracy gap among the three
algorithms is less than that under the IID settings. The results under NIID-2
situations show a similar pattern as in NIID-1, where PoShapley continues out-
performing Adjust-SV and TMC-SV approaches regarding average distance. We
attribute this advantage to the fact that PoShapley generates more permutations
and calculation times of SV due to all participants working in parallel. Moreover,
Table 2 compares the standard deviation of SV distance to indicate the stability
of different algorithms. PoShapley achieves the slightest standard deviation of
SV distances under all metrics and all datasets, making SV approximation more
stable and fair for all participants. This advantage is more pronounced under
the NIID-1 settings, illustrating that PoShapley is well-suited for these NIID
settings.

Table 2: Standard deviation of SV Distance.

Dataset Distance Standard deviation of Distance
AdjustSV TMC_SV Poshapley

IID
Euclidean 0.0244 0.0375 0.0172
consine 0.2391 0.2198 0.2103
max 0.0156 0.0392 0.011

NIID-1
Euclidean 0.022 0.0332 0.0134
consine 0.1887 0.2029 0.0855
max 0.0165 0.0217 0.0087

NIID-2
Euclidean 0.0314 0.0328 0.0146
consine 0.1569 0.1331 0.11
max 0.0304 0.0229 0.014

2) Time cost and complexity analysis: To investigate the time cost of
our PoShapley algorithm concerning the number of participants n, we varied n
from 2 to 10 when performing PoShapley and other compared algorithms under
all three dataset settings. The time cost values of each method were determined
by calculating their average time under three data settings, and these values
were shown in Fig. 3. The original SV method involves training and evaluating
additional 2n − 1 models, resulting in exponential growth with the number of
participants. In contrast, the other three algorithms significantly reduce com-
putational time. It is notable that the runtime of TMC-SV is not significantly
affected by an increase in the number of participants. This is because TMC-SV
uses the Truncation Monte Carlo policy to drop models with a small marginal
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Fig. 3: Time costs with respect to the number of participant.

utility gain and keeps a low number of models in each round. However, TMC-SV
performs poorly in terms of accuracy in our experiments. Adjust-SV uses an ap-
proximating algorithm during model reconstruction and outperforms PoShapley
in terms of time when n ≤ 7. However, Adjust-SV still relies on the principle
of equation (2) when calculating SV, resulting in exponential time consumption
as n increases(such as n ≥ 8 in Fig. 3). As n increases, PoShapley saves even
more time than Adjust-SV. In each calculation round of PoShapley, every par-
ticipant involves in training and evaluating additional n models at each iteration
mk(Line 27 in Algorithm 2). Assuming the maximum mk among all participants
is m and the total training round is T , the number of evaluations of PoShap-
ley is expressed as O

(∑T
t=1 mn

)
, which indicates that the time complexity of

PoShapley increases linearly with the number of participants..
3) Accuracy Performance of PoShapley-BCFL: In Fig. 4, we investi-

gated the accuracy performance of PoShapley-BCFL with SV-based aggregation
procedure, which is achieved by comparing with a typical weighted aggregation
process based on data size(referred to as size-based aggregation). We also set up
two groups of experimental comparisons: group 1, with 10 regular participants
and no adversarial nodes, and group 2, with 8 regular participants and 2 adver-
sarial participants(return randomized parameters). From Fig. 4, we can observe
that the proposed SV-based aggregation method achieves almost the same per-
formance in terms of model accuracy under all data settings when there are no
adversarial participants. Notably, PoShapley-BCFL exhibits faster convergence
than size-based aggregation under the NIID-1 scenario, which can be attributed
to the reason that the SV-based approach encourages models with more remark-
able contributions to occupy more weight in the aggregated models. Moreover,
under all three data settings, PoShapley-BCFL significantly improves accuracy
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Fig. 4: Accuracy convergence performance under various settings.

compared to baselines(size-based aggregation) when adversarial participants are
attacking the collaborative learning process. Its performance is nearly as close
to the settings without adversarial nodes under the IID scenario, and is slightly
worse than that without adversarial nodes under the NIID settings, but remark-
ably outperforms the size-based method. This advantage is attributed to that
the SV computing process naturally and automatically detect adversarial work-
ers with lower or no contributions, allocating them with lower or no weights
and no longer allowing them to participate in the current aggregation round.
The above results confirm that the SV-based aggregation procedure is more ro-
bust than size-based methods and that PoShapley-BCFL is more effective when
encountering malicious attacks.

5 Conclusion

This paper addresses the challenge of providing fair and robust incentives for
blockchain-based decentralized federated learning services that support edge
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data sharing. We presented insights into designing a new blockchain-based server-
less federated learning named PoShapley-BCFL, which has a modular design
capable of evaluating model contributions while facilitating robust learning. To
meet the lightweight calculation requirements and offer self-assessment in a de-
centralized setting, we proposed PoShapley. This Shapley-value-enabled blockchain
consensus protocol provides fair and efficient contribution evaluation. Based on
the results from PoShapley, we further design a fair-robust model aggregation
algorithm that can tolerate inferior data attacks. Extensive experiments demon-
strated that our proposed methods could promote fair and efficient contribu-
tion evaluation during decentralized collaborative learning and improve the final
model performance through robust aggregation. For future work, since we ob-
serve that the marginal model contribution becomes smaller and smaller during
the late stage of model convergence, we plan to study adaptive PoShapley, which
can adjust the mining-success threshold during the learning process to prevent
degradation of Shapley-value results.
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