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 

Abstract—This paper discusses the place of radar for assisted 

living in the context of IoT for Health and beyond. First, the 

context of assisted living and the urgency to address the problem 

is described. The second part gives a literature review of existing 

sensing modalities for assisted living and explains why radar is an 

upcoming preferred modality to address this issue. The third 

section presents developments in machine learning that helps 

improve performances in classification especially with deep 

learning with a reflection on lessons learned from it. The fourth 

section introduces recent published work from our research group 

in the area that shows promise with multimodal sensor fusion for 

classification and long short-term memory applied to early stages 

in the radar signal processing chain. Finally, we conclude with 

open challenges still to be addressed in the area and open to future 

research directions in animal welfare. 

 
Index Terms—Human activity classification, fall detection, 

ambient assisted living, inertial sensors, magnetic sensors, radar 

sensors, multisensory data fusion, feature selection, machine 

learning, micro-Doppler signatures, feature extraction. 

I. INTRODUCTION 

Internet of Things (IoT) in healthcare was evaluated at $60 

billion and will reach $136 billion by 2021 [1]. IoT comprises 

intermediary components, such as devices, network 

connectivity, electronic systems, and software. It is networked 

smart electronic devices sharing information autonomously 

leveraging machine learning. In healthcare, this technology will 

facilitate managing and mining patient data and resources. 

Life expectancy is increasing and poses challenges for health 

services as it comes with medical issues (chronic illnesses, 

multi-morbidity) and an alarming rise in the population over 60 

predicted to reach 30% by 2050 worldwide [1-2]. This trend is 

not new but accelerating especially in developed countries. 

In 2016, signal processing magazine had a special issue on 

assisted living [3–8]. It covered a range of technologies such as 

inertial measurement units, wearables, ambient sensors 

(pyroelectric infrared (PIR), vibration sensors, accelerometers, 

cameras, depth sensors and microphones) and radio waves with 

existing infrastructure (Wifi) present on site or active devices 

such as radar. For all sensing modalities, enhancing accuracy, 

 
 

lowering computational complexity, reducing power 

consumption, exploiting multiple domains and modalities for 

complementarity and robustness, are crucial in developing 

technology enabled self-dependent living in-home care. 

II. EXISTING SENSING MODALITIES 

 Many systems have been proposed to tackle this problem 

[5,8-9] including radar sensors or a combination of these 

systems, whereby their information is used concurrently and 

fused at different levels to optimize the overall performance. 

 Monitoring people in their daily life poses a privacy issue; 

there is a correlation between the perceived privacy and 

richness of information collected by sensors [9]. Video provides 

very rich information but is perceived as intrusive; PIR sensors 

are not perceived as invasive but provide little information. 

A review of healthcare using mobile wireless technologies 

shows major challenges (data acquisition, processing data 

locally, wireless data, quality of service over cellular network, 

cloud storage, security, user interface and platforms) before 

being feasible [11]. It also suffers from integration problems 

where a lot has to come together before it is practical to use and 

requires the lifting of technological barriers as well.  

Wearable sensors despite giving good classification results 

[12] greater than 98%, suffer from several major problems [13]: 

• require user compliance as they need to be worn or to think 

about it if you wake during the night to go to the washroom. 

• easily broken if dropped, crushed while sitting or falling. 

In [14], [15], entire apartments have been fitted with sensors 

PIR motion sensors, stove sensors, floor sensors,… and provide 

good density maps for activities of daily living at the macro 

level. However, they cannot provide a finer granularity for gait 

analysis change detection as well as requiring transformations 

in a persons living environment. 

An extensive review [16] of RGB cameras, depth sensors and 

radar technologies for assisted living highlighting open 

challenges for deployment in residences or specialized homes:  

 For cameras, the main challenges are occlusions, 

working at night, dead zones in 3D, accuracy, precision, 

resolution and respecting privacy.  
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 For radar systems, the presence of strong scatterers and 

clutter in indoor environments may generate multipath 

and ghost targets which is comparable to occlusion in 

cameras. The compliance of radar system with emission 

regulations limits. 

The technological challenges are greater for radar 

technology, but the fact there are no judicial issues regarding 

rights to image and plain images are not recorded, thus 

respecting privacy, facilitating acceptance of end users and 

investors. For these reasons, the radar sensing modality is an 

interesting research trend however still underutilized in 

specialized homes. 

Radar is attractive due to reliability, low power emissions for 

indoor use (similar to WiFi), safety, which brings it at the 

frontier of indoor monitoring modalities rivaling video cameras 

and wearable devices for health. Radar can be used for fall 

detection, gait analysis and activities of daily living (ADL) to 

provide supplemental information to detect early signs of 

deteriorating physical/cognitive health. It would allow greater 

healthcare coverage, better quality of provision through 24/7 

monitoring of the elderly well-being while respecting privacy. 

Furthermore, the elderly may suffer from reduced cognitive 

capabilities and memory loss. To enable assistive technologies 

to help them to deal with ADL and monitoring their condition, 

a system requiring no intervention from their part is more 

suited. 

Existing radar systems can be used to monitor activities 

[12,16–20], but it could create a paradigm shift in health 

monitoring moving from reactive technologies to preventive. If 

they are made smart enough to learn the daily activity pattern 

of an end user, and identify deviations/anomalies linked to 

declining health, they could foresee the occurrence of possible 

critical events (e.g. falls, strokes).  

Radar will enable prompt emergency responses following 

critical events (reactive), continuous in-home health monitoring 

for medical professionals to improve diagnostics and develop 

precision medicine for individuals (predictive). It would also 

enable persuasive feedback to individuals to advise/influence 

behaviours for safer and better practice, when variations in their 

routine are identified (prevention & assistance). 

III. MACHINE LEARNING PERSPECTIVE 

Machine learning is becoming an integral part of technology 

development given the advantages it provides, radar system 

applications are also leveraging machine learning for enhanced 

performances and accuracy in activity classification.  

 Generally, to classify activities, radar micro-Doppler (mD) 

signatures are used as a base. The relative motion of limbs and 

head with respect to the torso generates unique signatures in the 

time-frequency domain of the radar returns. Different activities 

create uniquely identifiable features in mD signatures used for 

classification. A comprehensive coverage of the subject can be 

found in [21-22]. Spectrograms are then processed to extract 

features [23] followed by different classifiers [24-25].  

 Here is a non-exhaustive list of machine learning techniques 

for classification: Fisher Discriminant Analysis [26-27], K-

nearest neighbors [28-29], Naïve Bayes [30], Ensembles (e.g. 

Bagging [31]) and Support Vector Machine (SVM) [32]. 

 A review classifiers for activity classification [16] advise to 

use multiple sensors to enhance classification accuracy by 

covering multiple aspect angles and combat occlusions. 

Another way to improve accuracy is to fuse data and select the 

most salient features [12,18,33-34]. Many classifiers are used 

in activity classification of which SVM is the most common 

[35]. The choice of classifier is important, but choosing the 

most salient features has a greater impact on accuracy than the 

classifier [36]. There is a wealth of contributions trying to 

extract features and classify activities from mD signatures [16]. 

 Beyond machine learning lies deep learning thanks to 

advances in computational power (GPUs). Feature extraction is 

an expert-knowledge based task. Deep learning techniques 

however can figure out relevant features for classification, 

sparse representations and time-dependencies through several 

layers of neurons with activation functions e.g. recognize faces 

with convolutional neural networks [37]. Another class of deep 

learning algorithms used for speech recognition are Recurrent 

Neural Networks (RNN) with Gated Recurrent Units [38], [39] 

and Long Short-Term Memory (LSTM) [40]. 

 A general belief is that deep learning requires “Big Data” to 

be effective; but small datasets also produce good results [41-

42] via data augmentation and transfer learning. 

Figure 1 summarizes the research on activity classification 

using deep learning for enhanced accuracy [43–57] yielding 

precisions from 80 to almost 100%. 

 
Figure 1: typical radar signal processing chain and associated machine/deep 

learning method from the state of the art (SAE: stacked Autoencoders, CAE: 

convolutional autoencoders, LSTM: Long Short-Term Memory, CNN: 
Convolutional Neural Network) 

 

It is hard to assess the different performances since all the deep 

learning algorithms are ad hoc and the size and the nature of 

datasets vary. Because the intra class variance for similar 

activities is smaller than for different ones, therefore advertised 

accuracy varies in meaning. Deep learning is already showing 

better performance than expertly pre-trained models [58]. 

The problematic of multiple people in the field of view [47, 

54, 56, 59] is rarely studied as they mostly consider only one 

person. In [16, 19, 24, 25, 60–63], the multi-static radar 

approach is utilized for classification from spectrograms using 

feature extraction. The difficulty in research with multi-static 

radar is the synchronization requirement between radar units 

and they are not commercially available. Aspect angle 

dependence in classification is rarely discussed although it has 

a large effect on accuracy [36, 53, 60]; most studies adopt 

actions happening in the radial direction of the radar.  

Generally, the activities are looked at different activity 

snapshots and not in a continuum like in [51] for wearables. 



The lessons from the literature are that CNN can recognize 

elaborate features from signals/images for particular snapshots 

at a given time where RNN of which LSTM is the leading 

technique takes into consideration time dependencies between 

snapshots. [51] shows a combination of CNN and LSTM for 

wearables and [49] presents a multimodal CNN multi-stream in 

parallel with LSTM with fusion; showing new ways to think 

about classifying data as a continuum.  

Great efforts should go on preparing datasets, neural network 

architectures, training/optimizing to avoid overfitting, bias and 

ensure the model generalizes the activities to recognize unseen 

data or people accurately even with small datasets. 

IV. RECENT RESULTS FROM THE COMMUNICATIONS, SENSING 

AND IMAGING GROUP AT UNIVERSITY OF GLASGOW 

Now we have gone around the state of the art and the context, 

it is time to present some results from our recent studies. 

A. Multisensor approach for remote health monitoring of 

older people [12], [18] 

 
Figure 2: Experimental setup with radar and inertial motion unit (accelerometer, 

gyroscope, magnetometer, inertial) [12] 
 

The experimental setup (Figure 2) shows the placement of the 

radar and the wearable sensor. The activities (walk, walk while 

carrying an object, sit down, stand up, pick up an object, crouch 

to tie shoe laces, drink, answer the phone, frontal fall, check 

under a piece of furniture) were measured with 9 volunteers 

giving 270 samples in total. 177 features were extracted using 

the inertial sensor in time and frequency domains and 28 

features from spectrograms using radar. 

The classifiers were quadratic kernel SVM and 10-NN 

trained using 10-folds randomly (9 for training and 1 for 

testing). The results in Table I are the result of the average of 

10 folds. Notice, radar underperforms compared to wearables.  

Feature selection (Fscore [64], ReliefF [65], SFS [64]) on 

single modality significantly increases classification accuracy. 
 

Table I: Classification accuracy using a single sensor [12] 

Classification Accuracy (%) SVM KNN 

Accelerometer 85.2 79.6 

Gyroscope 84.1 79.6 

Magnetometer 80.4 69.6 

Inertial 89.3 85.2 

Radar 77.9 70.7 

 

Table II: Improvements wit feature selection methods for IMU and radar in 

terms of accuracy and number of features 
 IMU Radar 

Method Accuracy(%) Features # Accuracy(%) Features # 

Fscore SVM 90.7 73 78.8 17 

Fscore KNN 88.2 76 74.1 17 

ReliefF SVM 91.1 164 74 20 

ReliefF KNN 89.3 58 67 18 

SFS SVM 95.6 35 85.6 20 

SFS KNN 88.25 69 79.8 19 

 

Table II shows 5-9% improvement for both sensors. So “less 

is more”: having more features does not improve accuracy but 

using/identifying the salient features does. 

To increase accuracy, it is interesting to explore the benefit 

of using multimodal fusion at various levels (signal, feature and 

decision) [66–68] (Table III). 
 

Table III: classification accuracy improvement with fusion 

Fusion method Accuracy (%) 

Feature level 97.4 

Decision level logP [69] 96.7 

Decision level fuzzy logic [66] 94.8 

Decision level voting [12] 97.8 

 
Figure 3: sensitivity and specificity for the fall action using various 

classifications methods [12] 

 

Figure 3 shows an improvement overall without affecting fall 

specificity (reaching 100% with voting) by applying suitable 

feature selection and fusion. 

B. Activity Classification Using Raw Range and I & Q Radar 

Data With Long Short Term Memory Layers [70] 

LSTM are used to classify directly from raw data and range 

maps for binary classification every 0.5 s of action recorded. 5 

subjects contributed, actions were recorded continuously for 

60s giving 19 recordings (10 ‘walk’ and 9 ‘sitting & standing’). 

For both, 2,280 samples were obtained by dividing the 

recording in 0.5s snapshots and the data is presented to the 

LSTM as described in Table IV and Figure 4.  

 
Figure IV: left) Range profiles for walking (60s) and sitting&standing 

movements (60s). right) illustrate I & Q data for walking movement. The time 

patterns that exist in the signals are exploited through the LSTM layers. [70] 

 

 

 

Table IV: LSTM data parameters for classification 

LSTM data Number of time samples Number of features 

I&Q 64000 2 

Range profiles 500 35 

 

 

 



Table V: results of preliminary binary classification and metrics 

Metrics I&Q data Range Profiles 

LSTM units 4 35 

Mean test Accuracy 97.67% 94.16% 

Standard deviation 1.14% 2.02% 

optimizer RMSprop RMSprop 

Learning rate 0.001 0.001 

Batch size 1 1 

epochs 10 50 

Layers 2 2 

Prediction time 2s 2ms 

 

The samples were shuffled in a stratified manner (80% for 

training and 20% for testing) under the 5-fold scheme. Table V  

shows that I&Q data yields better accuracy than range profiles 

and LSTM are able to process backscattered data as time series. 

The drawback is the time for an estimation is 2s for raw data 

and 2ms for range profiles for 0.5s of a data continuum. 

V. CONCLUSION 

From the literature and our recent work, the radar 

community is very active in the development of robust 

classification algorithms for elderly care using a range of 

algorithms and modalities. The advent of deep learning will 

certainly help improve algorithms gradually. Still some very 

important open challenges remain in this area such as how 

much data is enough data? how to teach a network to learn 

fast? what about community data sharing regulations? how 

to get relevant data and moving from detection to 

prediction?. The linchpin challenge is the real-time 

implementation of those algorithms on hardware while 

maintaining the accuracy obtained with offline processing. 

Furthermore, IoT can be extended to animal welfare 

applications where the dairy industry, farm animals (sheep, 

cattle, pigs) and horses (Thoroughbreds and leisure) can 

benefit for lameness assessment [33], [34] and connected 

farms with IoT will improve significantly productivity and 

animal monitoring for better yield for our growing needs. 
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