
EasyChair Preprint

№ 691

Thou shalt not fail - Targeting Lifecycle-Long

Robustness while being vigilant for the Black

Swans

Simo Huopio

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 23, 2018



 1 
	

23rd	ICCRTS	“Multi-Domain	C2”	

Topic	6:	Interoperability,	Integration	and	Security	

	

	

Thou	shalt	not	fail	–	Targeting	Lifecycle-Long	Robustness		
while	being	vigilant	for	the	Black	Swans	

	

	

	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

Researcher,	MSc,	Simo	Huopio	
Finnish	Defence	Research	Agency	

P.O.	Box	10,	FI-11311	Riihimäki,	Finland	
simo.huopio@mil.fi		



 2 

Abstract		
	
Software	products	used	in	the	critical	infrastructure	(CI)	and	command	and	control	(C2)	realms	have	
very	 long	 lifecycles	 and	 have	 many	 interfaces	 that	 are	 crucial	 for	 secure	 interoperability	 and	
networked	 use.	 When	 exposed	 to	 the	 shorter	 lifecycles	 of	 the	 commercial	 off-the-shelf	 (COTS)	
software	used	within,	new	approaches	are	needed	to	keep	these	products	secure.		
	
Many	common	software	components	have	shorter	lifecycles	than	the	CI/C2	products	using	them.	An	
inherent	security	debt	develops	if	vendors	creating	the	systems	do	not	keep	up	updating	underlying	
components.	Newer	security	testing	methods	might	also	find	new	security	issues	on	old	software	that	
are	not	anymore	under	constant	development.		
	
Another	source	for	security	debt	are	changes	in	environment	in	which	the	system	is	operated	in,	and	
the	assumptions	of	the	typical	usage	of	the	product:	Adding	new	network	links,	bringing	in	new	data	
streams	and	new	ways	of	using	the	system	may	seem	simple	and	straightforward	changes	but	may	
bring	the	security	of	the	whole	system	under	serious	threat.		
	
Exploitation	of	security	debt	in	the	software	can	become	a	black	swan	event,	highly	unexpected,	and	
with	 severe	consequences,	 if	 the	end	user	 is	not	aware	of	 the	 risk.	To	address	 the	 security	debt	 in	
critical	long-lifecycle	software,	this	paper	suggests	a	sustainable	long-term	approach:	Firstly,	a	highly	
automated	 robustness	 testing	 setup	 is	proposed	 to	 constantly	assess	 the	most	 critical	 interfaces	of	
the	 system.	 Secondly,	 a	 periodical	 threat	 analysis	 is	 applied	 to	 the	 product	 to	 detect	 the	 subtle	
changes	in	the	usage	and	the	environment.	
	
	
Keywords:	black	swans,	critical	infrastructure,	software	robustness,	software	lifecycle,	technical	debt,	
security	debt,	threat	analysis	



 3 

1.	Introduction		
	
Extended	lifecycle	systems		

	
Traditionally	specific	fields	of	industry	plan	for	extended	usage	of	their	products:	e.g.	defense,	aircraft,	
maritime,	 power	 plants	 and	 grids,	 and	 the	 Critical	 Infrastructure	 (CI)	 in	 general.	 The	 emergence	 of	
software	 in	 workstations	 used	 for	 overall	 control	 and	 user	 interfaces,	 or	 multitude	 of	 controllers	
tightly	integrated	to	almost	every	part	of	the	system,	have	brought	whole	new	kind	of	complexity	to	
the	scene.		
	
Quality	or	lack	of	security	requirements	will	continue	to	be	one	of	the	most	significant	challenges	on	
the	 security	 posture	 of	 all	 software	 [1].	 Deficiencies	 in	 security	 requirements	 can	 steer	 the	
development	work	to	take	too	much	technical	debt1	in	the	form	of	suboptimal	security	architecture	
or	by	 the	 lack	of	applying	any	measures	of	 security	development	 life	cycle	 (SDLC)	altogether.	 If	 the	
technical	debt	 related	 to	 security	 is	not	appropriately	addressed	during	 the	development	 time,	 the	
result	 is	 an	 end	 product	 with	 uncontrolled	 amount	 of	 security	 debt2.	 [2]-[4]	 Very	 long	 product	
lifecycles	-	from	ten	to	tens	of	years	-	can	have	a	multiplier	effect	on	the	security	debt	catalyzed	by	
the	non-optimal	requirements.	[2]	
	
In	this	paper	two	of	these	emphasized	challenges	are	identified:	Firstly	the	security	effects	of	having	
limited	lifecycle	components	–	COTS	or	self-built	–	within	complex	long	lifecycle	products	is	discussed.	
Secondly,	the	effects	of	the	changes	in	environment,	usage,	and	functionality	in	the	light	of	security	
posture	of	the	product	are	debated.		
	
According	 to	 Taleb	 in	 [5],	 a	 black	 swan	 event	 is	 “highly	 unexpected	 by	 the	 observer,	 carries	 large	
consequences,	 and	 is	 subjected	 to	 ex-post	 rationalization”.	 A	 large	 security	 incident	 caused	 by	
unmanaged	security	debt	fits	perfectly	to	the	definition:	The	results	can	be	catastrophic	to	the	user	
who	thinks	everything	was	under	control,	and	the	particular	event	could	have	been	avoided	by	fixing	
a	single	bug	or	configuration	error.			
	
In	 addition	 to	 the	 practical	 discussion	 of	 the	 very	 useful	 security	 debt	metaphor,	 this	 papers	main	
contributions	include	threat	analysis	approach	adapted	to	the	end	user	of	CI	system,	and	a	long	term	
robustness	testing	concept	created	to	help	reducing	security	debt	in	extended	lifecycle	products.	
	
	
	
	
	
	
	

                                                             
1 Technical debt metaphor is defined by Ernst et al as “a design or construction approach that is 
expedient in the short term but that creates technical context in which the same work will cost more to 
do later than it would cost to do now, including increased cost over time”  [10]  
2 Geer and Wysopal define the security debt as the measure of security flaws left unfixed or unpatched 
existing in the code that can be exploited maliciously. [2] A whitepaper by Whitehouse et al[4] 
provides a thorough analysis of the impact of security debt to the software development.  



 4 
To	 illustrate	 the	 impacts	 of	 these	 challenges	 and	 the	proposed	 solutions	 to	 them	an	 abstract	 Long	
Lifecycle	Product	1	(LLP1)	in	the	defense	industry	is	defined	as	follows:	
	
- LLP1	 has	 multiple	 physical	 subsystems	 with	 different	 roles.	 Each	 subsystem	 has	 at	 least	 one	

control	target,	which	implements	the	desired	end	functionality	of	the	system.	The	whole	product	
is	operated	using	at	least	one	Control	workstation	(WS).		

- LLP1	 uses	 a	 mainstream	 embedded	 operating	 system	 (OS)	 on	 the	 subsystems,	 with	 custom	
software	(SW)	included	on	top	of	the	OS	

- LLP1	uses	an	mainstream	workstation	(WS)	OS	on	control	stations,	with	custom	software	included	
on	top	of	the	OS	

- LLP1	uses	IP	communications	on	internal	network	
- LLP1	 is	 used	 initially	 in	 a	 stand-alone	 fashion	 and	 is	 not	 supposed	 to	 communicate	 anything	

outside	the	network	
	
LLP1	is	shown	as	a	block	diagram	in	Figure	1.	

 

 

Figure	1:	Long	Lifecycle	Product	1	(LLP1)	
	
Short	lifecycle	components	in	complex	long	lifecycle	products		
 
On	 the	 creation	 of	 buildings,	 mechanics,	 and	 electromechanics	 of	 the	 extended	 lifecycle	
infrastructure,	 the	 longevity	 is	 traditionally	 assumed	 from	 the	 beginning	 of	 the	 project.	 The	 risk	 of	
obsolescence	–	 the	part	becoming	un-procurable	 from	manufacturer	 [6]	 -	 is	 actively	managed	with	
long	support	contracts,	and	proper	documentation.	However,	when	the	system	involves	electronics,	
embedded	 controllers,	 computers	 and	 especially	 software,	 the	 extended	 lifecycle	 has	 to	 be	
specifically	 addressed	 to	 ensure	 the	 component	 compatibility,	 bug	 fixes,	 and	 in	 general	 the	
maintainability	of	the	system.	According	to	Muñoz	[7]	software	obsolescence	can	take	place	in	three	
main	 areas:	 Skills,	 Media,	 and	 Software	 COTS	 effects.	 Skills	 area	 refers	 to	 skills,	 knowledge	 and	
information	required	creating,	supporting,	or	modifying	the	software.	For	very	long	lifecycle	products	
like	 aircraft,	 also	 the	 data	 storage	 formats	 and	 media	 are	 an	 issue	 if	 not	 properly	 managed	 and	
maintained.	The	most	significant	risk	that	could	lead	to	obsolescence	is	the	composition	of	the	system	
software	itself,	including	self-created,	commercial-off-the-self	(COTS)	and	open	source	(OSS)	parts	of	
software.		

	



 5 
The	COTS	or	OSS	parts,	subsystems,	and	software	 libraries	are	of	primary	concern,	as	 they	typically	
have	their	own	shorter	lifecycles	that	the	CI	system	they	are	used	in.	When	such	component	reaches	
the	 end	 of	 its	 lifecycle	 and	 it	 is	 not	 maintained	 anymore,	 its	 replacement	 might	 require	 different	
toolchain,	 and	 have	 different	 –	 even	 conflicting	 –	 dependencies,	 or	might	 lack	 the	 support	 of	 the	
needed	hardware,	making	it	very	hard,	and	costly	to	integrate[7],	[8].	In	practice,	the	developers	may	
make	a	conscious	decision	to	 leave	the	component	as	 it	 is,	and	counting	on	that	new	security	bugs	
would	not	emerge	to	the	old	software.	This	act	of	taking	the	conscious	risk	decision	 is	called	taking	
technical	debt	[9],	[10],	or	in	case	of	security	posture	of	the	system,	security	debt	[2].	In	practice	it	is	a	
widespread	 practice	 to	 leave	 some	 software	 modules	 behind	 without	 any	 direct	 maintenance.	
Sometimes	there	are	already	many	old	libraries	present	in	the	software	on	the	moment	it	is	released,	
as	Eronen	has	found	in	his	paper	"Patched	but	still	vulnerable	-	code	rot	in	popular	applications"	[11].		
	
In-house	built	 software	without	significant	COTS	subsystems	can	also	accumulate	security	debt	 in	a	
similar	fashion.	The	reason	to	this	is	usually	architectural	as	development	of	new	features	might	lead	
to	substantial	unwanted	refactoring	of	existing	codebase.	In	this	case	the	manufacturer	might	decide	
to	take	 in	technical	debt	to	catch	the	planned	time	to	release	or	 in	general	to	save	 in	development	
costs.	 These	 kinds	 of	 risk	 decisions	 accumulate	 and	 if	 not	mitigated	 can	 add	 up	 to	 significant	 risk	
during	the	extended	lifecycle	of	CI	system.		

	
For	many	CI	 systems	unmanaged	 software	obsolescence	 and	 resulting	 security	 debt	 is	 an	unsolved	
challenge;	 The	 CI	 projects	 are	 much	 better	 equipped	 to	 manage	 and	minimize	 the	 possibilities	 of	
obsolescence	in	hardware	and	electronics	than	in	software[7].	

	
Figure	 2	 illustrates	 the	 situation	 of	 LLP1	 after	 some	 time	 has	 passed	 from	 the	 deployment.	 There	
might	be	already	outdated	software	within	the	subsystems,	or	there	might	be	a	 long	time	since	the	
custom	software	parts	of	the	system	have	been	tested	with	the	newest	robustness3	testing	tools.	

 

Figure 2: Situation on LLP1 after some degradation has happened 
                                                             
3 IEEE has defined software robustness as the degree to which a system or component can function 
correctly in the presence of invalid inputs or stressful environmental conditions. [12]  



 6 
	
To	find	ways	to	manage	the	effects	of	having	software	components	with	short	 lifecycles	 in	complex	
long	lifecycle	products	the	following	research	question	has	to	be	answered:	
	
RQ1:	In	which	ways	the	end	user	of	long	lifecycle	critical	infrastructure	(CI)	system	can	address	the	
security	debt	caused	by	software	components	with	shorter	lifecycles?	
	
Changes	in	usage	and	environment	
	
The	 changes	 in	 the	 operating	 environment	 and	 the	 usage	 are	 the	 central	 challenges	 of	 extended	
lifecycle	systems.	Examples	of	these	could	be	added	network	connectivity	and	functionality,	changes	
in	 physical	 operating	 area,	 changes	 in	 operator	 training	 and	 background,	 or	 changes	 in	 security	
landscape	via	emergence	of	new	attack	tools	and	malware,	and	crypto	algorithm	weaknesses.	
	
Individually	these	changes	can	be	small,	but	when	accumulated	over	the	time	they	can	broaden	the	
vulnerable	attack	surface	of	the	system,	undermine	the	security	principles	of	the	original	systems,	or	
even	lay	groundwork	for	a	black	swan	-like	event,	which	has	not	been	anticipated	at	all	by	any	of	the	
involved.			
To	 illustrate	the	types	of	changes	that	can	occur,	we	can	use	our	LLP1	-system	as	an	example.	Let's	
consider	following	changes	to	the	system	in	a	Middle	Life	Update	1	(MLU1):		
	

- A	 network	 link	 has	 been	 introduced	which	 connects	 the	 system	with	 an	 external	 computer	
server	for	providing	metrics	and	status	information	to	the	Network	Operations	Centre	(NOC).		

- A	new	wireless	link	technology	has	been	introduced	which	allows	more	flexible	configuration	
of	the	system	in	the	field		

- The	 physical	 housing	 of	 the	 product	 changes	 so	 that	 the	 control	 workstations	 can	 be	 co-
located	 with	 other	 control	 equipment	 used	 in	 the	 field,	 which	 means	 that	 the	 control	
workstations	are	not	physically	as	protected	as	before.	

	
Figure	3:	is	an	illustration	of	the	LLP1	with	the	MLU1	changes	
	

	
Figure	3:	New	configuration	of	the	LLP1	system	



 7 
	
To	find	concrete	concepts	for	the	CI	system	maintainer	to	address	the	effects	of	changes	in	the	usage	
patterns	and	the	systems	working	environment	the	following	research	question	has	to	be	answered:		
	
RQ2:	What	 are	 the	 best	 ways	 to	manage	 the	 effects	 of	 significant	 changes	 in	 the	 CI	 system,	 its	
working	environment	or	its	usage?	

2.	Related	work	and	research	methods		
	

2.1	Research	questions	and	hypothesis	
	
The	first	chapter	introduced	the	challenges	and	the	related	research	questions:	
	
RQ1:	In	which	ways	the	end	user	of	long	lifecycle	critical	infrastructure	(CI)	system	can	address	the	
security	debt	caused	by	software	components	with	shorter	lifecycles?	
	
RQ2:	What	 are	 the	 best	 ways	 to	manage	 the	 effects	 of	 significant	 changes	 in	 the	 CI	 system,	 its	
working	environment	or	its	usage?	
	
With	the	present	knowledge	of	the	field,	a	following	hypotheses	was	drafted:	
	
The	 maintenance	 of	 a	 complex	 Critical	 Infrastructure	 (CI)	 system	 has	 to	 take	 tools	 and	
methodologies	from	the	software	research	and	development	in	to	use	to	address	security	debt	and	
manage	the	changes	of	system	environment	during	long	lifecycle	of	the	product.		
	
The	 chosen	methodology	 in	 this	 paper	was	 to	 do	 an	 iterative	 literature	 review	 to	 find	 the	 existing	
work	done	within	the	area	and	to	find	whether	the	given	hypothesis	can	be	argued.		
	

2.2	Methodology	
	
Based	 on	 the	 research	 questions	 and	 hypothesis	 the	 literature	 search	 was	 concentrated	 on	 the	
following	 areas:	 Technical	 debt,	 Security	 debt,	 Software	 obsolescence	 and	 COTS	 in	 long	 lifecycle	
products,	Threat	analysis	and	emulation,	Software	robustness	testing,	Robustness	testing	automation,	
antifragility	and	Black	Swan	events	in	context	of	software	products.		The	source	databases	used	were	
IEEE	 Xplorer,	 ScienceDirect	 and	 Google	 scholar.	 The	 terms	 were	 cross-referenced	 with	 the	 IEEE	
Standard	Glossary	of	Software	Engineering	Terminology	when	possible.[12]	
	
As	 a	 result	 total	 of	 74	 articles	 were	 chosen	 by	 relevance.	 These	 include	 12	 Journal	 articles,	 four	
surveys,	 36	 conference	 articles,	 five	 magazine	 articles,	 eight	 books,	 four	 thesis	 and	 five	 web	
documents.	
	 	



 8 
2.3	Results	of	Literature	Review	
	
The	technical	debt	was	a	lot	researched	issue	in	extended	lifecycle	systems,	as	were	different	types	of	
obsolescence.	 Software	 obsolescence,	 as	 opposed	 with	 mechanical	 part-	 and	 electronics	
obsolescence,	 has	 been	widely	 ignored	 in	 practice.	 Software	 obsolescence	was	 connected	 in	many	
cases	to	the	use	of	COTS	software.	The	relationship	between	technology	debt,	security	vulnerabilities	
and	defect	is	analyzed	thoroughly	by	Nord	et	al.	in	[13].	Security	debt	is	brought	as	a	new	term	as	a	
subset	 of	 technical	 debt	 by	 Geer	 et	 al.	 [2],	 [3].	 A	 whitepaper	 by	Whitehouse	 et	 al.	 [4]	 provides	 a	
thorough	 analysis	 of	 the	 impact	 of	 security	 debt	 to	 the	 software	 development.	 As	 the	 security	
breaches	and	incidents	have	caused	substantial	impacts	during	the	last	decade,	the	security	debt	has	
much	more	quantifiable	value	than	the	technical	debt,	or	product	quality	as	an	abstract	term.		[2],	[3],	
[6]-[10],	[13]-[22]		
	
Most	 current	 threat	 modeling	 publications	 adopt	 at	 least	 partially	 the	 approach	 introduced	 in	
Microsoft	Secure	Development	Lifecycle	(SDL).	In	the	SDL,	STRIDE	threat	model	is	used	to	discover	the	
threats	using	the	following	categories:	
	

• Spoofing	
• Tampering	
• Repudiation	
• Information	Disclosure	
• Denial	of	service	
• Elevation	of	privilege	

	
Further	in	the	process,	a	DREAD	model	is	used	to	further	score	the	identified	threats	rating	them	in	
the	following	areas:	
	

• Damage	potential	
• Reproducibility	
• Exploitability	
• Affected	users	
• Discoverability		

	
Later	on,	Microsoft	 has	 tried	 to	make	 the	process	more	approachable	 for	wider	 audience	with	 the	
help	of	online,	and	even	physical	facilitation	tools	[23],	[24].	Excellent	walkthroughs	of	these	methods	
are	available	from	Microsoft	and	Open	Web	Application	Security	Project	(OWASP)	[23],	[25],	and	they	
are	 discussed	 in	 approachable	 manner	 by	 Steven	 in	 [26].	 A	 summary	 of	 further	 threat	 analysis	
methods	is	done	by	Hussain	et	al.	in	[27].	While	threat	modeling	is	considered	to	be	an	essential	tool	
in	product	creation,	it	is	rarely	applied	in	customer	perspective.	It	is	to	be	noted	that	a	large	number	
of	 publications	 about	 threat	 analysis	 and	 modeling	 are	 case	 studies	 of	 applying	 the	 technique	 to	
individual	product	or	a	product	class,	and	were	excluded	from	the	references.	[21],	[23],	[25]-[33]	
	
Software	 robustness	 testing	 publications	 are	 saturated	 with	 descriptions	 and	 further	 evolutionary	
modifications	 of	 distinct	 fuzzing4	 tools.	 The	 recent	 years	 have	 shown	 the	 effects	 of	 significant	
investment	to	the	field:	Now	the	approach	is	more	scientific,	concentrating	to	maximizing	the	ability	
to	 find	 execution	 paths	 through	 the	 application,	 as	well	 as	 to	maximize	 the	 code	 coverage	 for	 the	

                                                             
4 Fuzz testing or fuzzing is a software testing technique, which basically consists in finding 
implementation bugs using malformed/semi-malformed data injection in an automated fashion 



 9 
actual	 fuzz	 testing	 activity.	 There	 is	 also	push	 for	 common	methods	 for	 evaluating	 the	 fuzzers.	 [1],	
[34]-[54]	
	
As	 the	 quality	 of	 the	 software	 still	 varies	 a	 lot,	 there	 are	 two	 distinct	 classes	 of	 applying	 the	
robustness	testing	tools:	Low	hanging	fruits,	like	applying	fuzz	testing	or	other	new	methodology	for	
the	first	time	–	this	often	yields	swift	and	concrete	results.	The	other	distinct	end	of	the	spectrum	is	
the	push	 to	maximize	 the	 tool	 performance	 in	 finding	 the	 rare	 but	 significant	 bugs	 in	 already	 very	
robust	software	with	large	fleets	of	fuzzing	instances,	innovative	ways	to	instrument	the	target	code	
and	millions	of	executions.	This	end	also	drives	 for	higher	automation	over	 interactive	 investigative	
approach,	and	has	resulted	also	deeper	 integration	of	the	tools	to	the	development	workflow,	be	 it	
Continuous	Integration	(CI),	DevOps5	[55],	or	agile	–	or	combination	of	all	of	these.	[1],	[11],	[32],	[43],	
[48],	[55]-[65]	
	
The	 Taleb's	 black	 swan	 theory	 applies	 well	 to	 the	 realm	 of	 complex	 critical	 software	 products:	
Software	bugs	are	always	present,	they	are	hard	to	predict,	and	they	can	lead	to	high	profile	events	
beyond	the	realm	of	reasonable	expectations	of	the	product	authors	or	the	end	users.	These	kind	of	
black	swans	manifest	in	failures	of	large	software	projects,	and	also	in	the	high	profile	security	bugs,	
and	massive	data	leaks.	There	are	many	approaches	to	tackle	the	black	swan	–like	events:	Increasing	
the	robustness	and	ruggedness	by	changing	the	architecture,	product	creation	methods	and	testing	
strategies.	Taleb's	own	concept	of	antifragility	takes	the	concept	even	further:	Antifragile	systems	are	
designed	to	assume	failures	and	external	shocks,	and	to	get	stronger	by	them.	[15],	[66]-[73]	
	 	

                                                             
5 DevOps as defined in [55] by Dyck et al “is an organizational approach that stresses empathy and 
cross-functional collaboration within and between teams in software development organizations, in 
order to operate resilient systems and accelerate delivery of changes.” 



 10 
3.	Results		
	

3.1	Overview		
	
The	literature	review	results	support	the	research	hypothesis:	Tools	typically	used	in	R&D	phase	-	like	
threat	 analysis	 and	 software	 robustness	 testing	 -	 can	 also	 be	 applied	 in	 the	 product	 end-user	
perspective.		
	
The	technical	debt	is	typically	known,	and	at	least	partially	managed	within	a	R&D	process.	Usually	it	
does	not	manifest	itself	to	the	end	user	if	managed	properly.	However,	the	effects	of	security	debt	are	
shared	more	evenly	between	the	vendor	and	the	end	user.	In	fact,	when	unmanaged	and	unknown,	
large	amounts	of	security	debt	can	easily	result	 in	catastrophic,	black	swan	–type	events	to	the	end	
user.			
	
Especially	 in	 the	 realm	 of	 critical	 infrastructure,	 where	 there	 is	 a	 tradition	 to	 take	 good	 care	 of	
hardware	obsolescence,	these	tools	can	help	to	create	similar	processes	for	the	increasing	number	of	
software	components	 that	are	 in	 risk	of	obsolescence	be	 it	 the	 lack	of	updates,	 compatibility,	poor	
quality	of	code,	or	other	sources	of	technical	or	security	debt.		
	
In	this	chapter,	threat	analysis	is	described	based	on	the	literature	review	in	subsection	3.2.	As	a	new	
contribution,	 threat	 analysis	 framework	 is	 introduced,	modified	 to	 suit	 the	 end	user	 perspective	 in	
(subsection)	 3.3.	 Further	 on,	 software	 robustness	 testing	 in	 R&D	 is	 described	 in	 (subsection	 3.4).	
Building	on	that	knowledge,	a	lifelong	robustness	testing	concept	is	laid	out,	which	is	meant	as	a	tool	
for	the	end	user	to	take	active	role	in	managing	the	hidden,	yet	known	vulnerabilities	of	the	critical	
software.	
	
The	identified	challenges	are	addressed	with	the	combination	of	integrating	periodical	threat	analysis	
process	 to	 the	 CI	 system	 ownership,	 and	 by	 creating	 the	 ability	 to	 conduct	 sustained,	 highly	
automated	 robustness	 testing	 to	 the	most	 critical	 interfaces	of	 the	 system	 thereby	 fortifying	 these	
interfaces	even	 further.	The	end	user	 seldom	has	complete	visibility	 to	 the	 internal	 complexities	of	
the	system,	but	with	these	tools	it	can	have	much	more	level	and	active	relationship	with	the	system	
manufacturer.	

3.2	Threat	analysis		
	
Threat	analysis	in	R&D		
	
OWASP	guide	to	Application	Thread	Modeling	[25]	introduces	the	subject	as	follows		
	

“Threat	modeling	is	an	approach	for	analyzing	the	security	of	an	software	application.	It	is	a	
structured	 approach	 that	 enables	 one	 to	 identify,	 quantify,	 and	 address	 the	 security	 risks	
associated	with	an	application.	Threat	modeling	 is	not	an	approach	to	reviewing	code,	but	 it	
does	complement	the	security	code	review	process”	

	
The	process	of	threat	modeling	is	described	as	follows	in	[25]:	
	

1. Decompose	 the	 system:	 Gain	 an	 understanding	 of	 the	 system	 and	 how	 it	 interacts	 with	
external	 entities.	 It	 is	 considered	 a	 good	 practice	 to	 create	 data	 flow	 diagrams	 (DFDs)	 that	
show	different	paths	through	the	system,	highlighting	the	privilege	boundaries.	



 11 
2. Determine	 and	 rank	 threats:	 Using	 the	DFD	 graphs	 as	 a	 starting	 point,	 identify	 the	 threats	

using	 a	 threat	 categorization	 methodology	 such	 as	 STRIDE,	 or	 Application	 Security	 Frame	
(ASF).	The	threats	are	ranked	using	a	value-based	risk	model	such	as	DREAD,	or	less	subjective	
qualitative	risk	model	based	on	general	risk	factors.		

3. Determine	countermeasures	and	mitigation:		In	this	phase	countermeasures	and	mitigations	
are	identified	to	each	of	the	risks.	In	this	phase	the	threats	and	risks	can	be	prioritized	in	a	way	
that	is	most	relevant	to	the	case	(e.g.	business	risk).		

	
When	 implemented	during	 the	R&D	phase	 in	 the	way	 suggested	 by	 [25],	 [27]	 the	 threat	modeling	
produces	 information	 that	 help	 the	 overall	 management	 and	 the	 communication	 of	 the	 security	
posture	of	 the	product.	The	arguments	 raised	against	applying	 the	process	are	often	related	to	 the	
expenses,	especially	the	human	resource	usage.	The	early	versions	of	Microsoft	proposal	have	been	
reported	to	require	security	professionals	with	specific	expertise	to	succeed	[26],	[31].	In	addition	to	
find	 the	 right	 combination	of	people	doing	 the	analysis,	 the	 failure	 to	 scope	 the	work	properly	 can	
have	ambiguous	and	inconclusive	results.	
	
There	are	many	adaptations	of	the	process,	such	as	integrating	it	to	agile	product	creation	[32],	using	
different	tools	like	card	games	[24],	abuser	stories,	as	well	as	graphical	and	quantitative	tools.[27]	
	

3.3	Threat	analysis	framework	for	CI	end	product	
	
The	premise	for	threat	analysis	from	the	customer	perspective		
	
When	applying	the	threat	emulation	process	from	the	software	product	customer	perspective	there	
are	apparent	limitations	when	compared	to	what	the	product	creator	can	do	in	the	R&D	phase:		
	

• The	 lack	of	 knowledge	 from	 the	 internal	 architecture	of	a	product:	 Typically	 the	end	user	 is	
aware	 of	 the	 external	 interfaces	 of	 the	 system,	 the	ways	 to	 configure	 the	 system,	 and	 the	
external	dependencies	and	main	modules	of	which	the	product	is	constructed	(at	least	as	far	
as	the	configuration	is	concerned).	The	detailed	architectural	choices	may	be	hidden	from	the	
view.		

• The	 end	 users	 deal	 with	 the	 finished	 product:	 The	 chosen	 security	 architecture	 with	 the	
controls,	countermeasures	and	mitigations	cannot	usually	be	changed.		

• The	end	user	has	 limited	set	of	mitigations	and	countermeasures.	 In	practice	the	end	user	 is	
limited	to	tools	external	to	the	target	system,	the	system	configuration	and	how	the	operators	
of	the	product	are	trained.		

	
It	 would	 seem	 that	 the	 actions	 the	 end	 user	 can	 take	 would	 be	 insufficient.	 However,	 the	 threat	
emulation	can	make	a	big	difference	to	the	security	posture	of	the	overall	system,	and	it	can	help	the	
maintainer	to	make	much	more	informed	choices	during	the	lifecycle	of	the	product:	
	

• Even	when	treating	the	system	as	a	black	box,	the	threat	emulation	work	can	give	essential	
information	 about	 the	 product:	 The	 focus	 of	 the	 process	 can	 be	 on	 the	 unique	 usage	
environment	where	the	system	is	used	 in,	and	on	evaluating	the	assumptions	of	 the	known	
security	controls.		

• Threat	 analysis	 process	 can	 help	 clarifying	 the	 assumptions	 of	 the	 privilege	 and	 trust	
boundaries	of	different	parts	of	the	system,	and	of	the	different	user	roles	that	interact	with	
the	 system.	 	 This	 knowledge	 helps	 identifying	 the	 most	 critical	 interfaces	 of	 the	 system,	
robustness	of	which	can	be	challenged	by	own	robustness	testing	processes.		



 12 
• The	analysis	made	from	the	customer	perspective	gives	the	owner	and	maintainer	excellent	

material	 for	 the	 dialog	 with	 the	 product	 creator	 and	 vendor.	 It	 also	 helps	maintaining	 the	
security	posture	in	the	requirements	for	middle	life	updates	planned	for	the	product	

• The	information	helps	considerably	handling	the	potential	security	incidents	as	in	many	cases	
the	impact	of	breach	in	different	parts	of	system	is	already	known.		

	
Suggestion:	The	periodical	threat	analysis		
	
The	 suggestion	 of	 threat	 analysis	work	 for	 the	 extended	 lifecycle	 CI	 system	 can	 be	 laid	 out	 in	 two	
phases:	More	extensive	 Initial	threat	analysis	 (phase	1)	which	is	executed	during	and	right	after	the	
procurement,	 and	 iterative	 threat	 analysis	 update	 (phase	 2)	 which	 is	 performed	 preferably	
periodically,	or	at	least	when	system	is	updated	with	new	functionality	or	with	new	usage	patterns.	
	
The	 initial	 threat	 analysis	 (phase	 1)	 is	 conducted	 in	 the	 process	 of	 the	 system	 procurement	 and	
integration,	 preferably	 before	 the	 system	 is	 taken	 into	 use	 as	 the	 results	 of	 it	 can	 be	 used	 to	 add	
threat	mitigations	to	the	usage	training,	and	the	production	configuration	of	the	system.		
	
To	conduct	the	 initial	threat	analysis	 it	 is	needed	to	gather	together	knowledgeable	personnel	from	
the	 following	 categories:	 End-user/instructor,	 Product	 owner,	 product	maintenance	 representative,	
manufacturer	 representative,	 and	 possibly	 a	 facilitator	 who	 will	 help	 to	 ensure	 the	
comprehensiveness	of	the	process.		It	is	advisable	to	cycle	new	people	to	get	new	ideas.	Enough	time	
and	 peaceful	 setting	 should	 be	 given	 for	 the	 team	 to	 help	 the	 process.	 During	 the	workshop,	 the	
following	steps	should	be	followed:	
	

Step	1:	The	primary	system	requirements	are	captured	in	the	form	of	use	cases	for	the	system.	
The	use	cases	should	cover	all	the	primary	functionality	and	the	operators.		

	
Step	2:	The	threat	modeling	process	is	executed	as	described	in	[25]	but	by	treating	the	target	
system	as	a	black	box	with	external	 interfaces	with	 the	environment,	neighbor	 systems	and	
the	operators	 interacting	with	 the	 system.	 The	use	 cases	of	 the	 system	are	used	as	help	 to	
determine	the	impacts	of	the	threats.	If	known	at	the	time	of	the	analysis,	the	top-level	threat	
models	 of	 the	 other	 systems	 communicating	 with	 the	 current	 target	 can	 be	 used	 as	 a	
reference.		

	
a. For	 the	 mitigations,	 concentrate	 on	 the	 operator	 instructions,	 the	 end	 user	

configuration,	and	robustness	testing.		
b. The	risk	list	is	compiled	so	that	it	can	be	shared	and	further	discussed	with	the	system	

manufacturer.	Even	though	some	risks	would	be	escalated	to	the	manufacturer,	 they	
should	always	be	mitigated	or	accepted	by	the	product	owner.	

	
Step	 3:	 A	 specific	 list	 of	 the	most	 critical	 interfaces	 is	 compiled	 for	 guiding	 the	 robustness	
testing	efforts.		

	
Step	 4:	 The	 results	 of	 the	 initial	 threat	modeling	 are	 augmented	 with	 the	 Bill	 of	Materials	
(BOM)	analysis	of	all	the	system	software.	The	result	of	this	work	should	be	the	list	of	internal	
library	 components	and	 their	 versions	with	 the	current	vulnerability	 status.	This	data	 is	also	
composed	to	be	shared	with	the	manufacturer	and	the	robustness	testing	actors	

	
	



 13 
The	 threat	 analysis	 update	 (phase	 2)	 is	 more	 about	 the	 review	 of	 the	 security	 posture,	 and	 to	
comprehend	the	impact	of	the	changes	that	apply	to	the	overall	system	since	the	last	iteration.	The	
composition	of	the	team	doing	the	analysis	should	be	similar	as	in	the	initial	phase.		
	

Step	 1:	 If	 any	 parts	 of	 software	 have	 changed,	 redo	 the	 BOM	 analysis	 (phase	 1	 step	 4).	
Augment	the	results	with	the	latest	vulnerability	feeds.	

	
Step	 2:	 Go	 through	 and	 acknowledge	 the	 evident	 changes	 in	 the	 system,	 system	
dependencies,	usage	and	its	usage	environment.	Specifically	look	for	

	
a. Software	obsolescence	and	code	rot	
b. Added	architectural	complexity	

	
Step	3:	Go	through	the	old	 identified	threats	and	state	the	validity	 in	the	perspective	of	 the	
changes	in	first	two	steps.	

	
Step	4:	Brainstorm	the	possibility	and	content	of	new	threats.		

	
Step	5:	Go	through	the	identified	threats	and	quantify	them	in	an	agreed	fashion	

	
Step	6:	Go	through	the	results	of	the	 long-term	robustness	testing	work	that	has	been	done	
since	the	last	iteration	of	threat	analysis.	

	
a. Augment	the	list	of	threats	with	the	results	
b. Scope	the	long-term	robustness	testing	work	for	the	next	period.		

	
Step	7:	Make	decisions	in	the	light	of	the	resulting	list	of	threats.		

	
In	addition	to	the	quantified	and	accepted	list	of	threats	to	the	system,	and	the	risks	or	security	debt	
they	pose,	the	end	result	of	the	threat	analysis	work	can	be	
	

• Changes	in	documentation,	training	and	the	constraints	set	for	the	use	of	the	system	
• Changes	in	requirements	toward	next	version	or	more	substantial	middle	life	update	(MLU)	
• Shortlist	of	interfaces	which	should	be	under	constant	robustness	testing	
• Decisions	 about	 end	 of	 operational	 life	 of	 the	 system	 with	 suggestions	 of	 procedures	 of	

replacing	it		
	
In	our	LLP1	example	system	one	result	of	the	threat	analysis	work	performed	after	the	MLU1	changes	
identified	 some	 interfaces	 to	 be	 critical	 in	 the	 sense	 that	 security	 vulnerability	 on	 their	
implementation	could	directly	expose	the	internal	functionality	of	the	system	to	possible	attacks	from	
external	 sources.	 Therefore	 they	 are	 good	 candidates	 for	 long-term	 robustness	 testing	 effort.	 The	
chosen	interfaces	are	illustrated	in	Figure	4:	
	



 14 

	
Figure	4:	Critical	interfaces	identified	in	threat	analysis	work	after	MLU1	

	
	

3.3	Lifecycle-long	robustness	testing		
	
Software	Robustness	testing	
	
Software	robustness	is	defined	in	[50]	as	follows:	
	

“Robustness	testing.	Informally,	robustness	can	be	defined	as	the	ability	of	a	software	to	keep	
an	 “acceptable”	 behavior,	 expressed	 in	 terms	 of	 robustness	 requirements,	 in	 spite	 of	
exceptional	or	unforeseen	execution	conditions	(such	as	the	unavailability	of	system	resources,	
communication	failures	and	invalid	or	stressful	inputs.	Such	a	feature	is	particularly	important	
for	 software	 critical	 applications	 those	 execution	 environment	 cannot	 be	 fully	 foreseen	 at	
development	time.“	

	
The	term	"robustness	testing"	was	first	used	by	the	Ballista	project	at	Carnegie	Mellon	University	[57]	
Most	of	the	modern	fuzzers	(robustness	testing	tools)	use	the	same	basic	principle	than	in	Ballista	for	
finding	actual	errors:	supplying	the	target	software	 interface	with	 input	that	 is	 intentionally	broken.	
This	 approach	 was	 developed	 further	 by	 PROTOS	 project	 and	 its	 successors	 experimenting	 with	
different	ways	to	infer,	model,	and	break	the	inputs	and	with	significant	results.	[33],	[45],	[46],	[49],	
[63],	 [74].	 Later	 on,	 the	 effectiveness	 of	 the	 fuzzing	 tools	 has	 been	 significantly	 improved	with	 the	
emphasis	on	the	execution	speed	in	test	automation	and	the	target	of	maximizing	the	code	coverage	
reached	with	the	fuzzing	tool.	
	
An	example	of	“bleeding	edge”	of	the	fuzzing	tools	can	be	considered	to	be	American	Fuzzy	Lop	(AFL)	
tool,	and	libfuzzer	and	their	variants	[42],	[54],	[59].	The	critical	success	factors	of	the	tools	have	been	



 15 
the	 ease	 of	 use	 and	 integrated	 automation	 of	 code	 coverage	 maximization	 through	 target	 code	
instrumentation	 or	 emulation.	 These	 tools	 have	 been	 used	 to	 find	 new	 high	 profile	 security	
vulnerabilities,	 like	Heartbleed	[62],	even	in	the	software	that	has	been	considered	very	robust,	and	
been	exposed	to	very	hostile	treatment	for	decades.	
	
The	modern	way	to	use	fuzzing	tools	is	to	integrate	them	into	the	product	creation	environment.	In	
this	 way	 all	 the	 external	 interfaces	 in	 the	 software	 have	 undergone	 at	 least	 some	 elementary	
robustness	testing.	It	is	speculated	that	in	the	future	the	testing	work	can	be	automated	to	the	degree	
that	the	computer	systems	could	test	and	fix	their	own	code.	For	practical	applications	this	is	still	out	
of	reach,	or	applied	only	in	simplified	laboratory	environment.	Nevertheless,	the	events	like	Defense	
Advanced	Research	Projects	Agency	(DARPA)	Cyber	Grand	Challenge	[75]	have	been	showcasing	this	
technology	and	its	progress.	
		

3.4	Automating	the	robustness	testing	for	the	CI	systems		
	
The	suggested	approach	in	this	paper	is	to	concentrate	the	customer	robustness	testing	efforts	to	the	
most	critical	 interfaces	 that	should	be	 in	 the	very	robust	state	 in	 the	 first	phase.	The	new	software	
faults	 found	 in	 the	 implementation	of	 those	 interfaces	could	be	considered	as	very	 improbable	but	
with	the	very	high	impact	–	typical	black	swan	events.		
	
Following	the	hypothesis,	one	should	be	able	to	apply	robustness	testing	to	the	critical	interfaces	of	CI	
system	 for	extended	periods	of	 time.	As	noted	before	 the	automation	and	 the	effectiveness	of	 the	
testing	tools	are	increasing.	Nevertheless,	there	are	still	specific	challenges	to	overcome:	
	
The	 test	 automation	optimization	 for	 very	 long	 test	 runs:	To	 achieve	 very	 long	 robustness	 testing	
runs	the	test	setup	has	to	be	very	robust	by	itself,	while	still	being	scalable	and	flexible.	This	means	
keeping	memory	 and	other	 resource	 consumption	 in	 control,	 and	being	 able	 to	 autonomously	 and	
seamlessly	save	the	state	of	the	fuzzing	effort	to	continue	with	fresh	environment	should	the	resource	
anomalies	arise.	The	performance	drawbacks	from	this	approach	could	be	compensated	with	scaling	
the	number	of	parallel	test	runs	and	the	sustainable	extended	execution	of	the	test.	
	
Minimizing	the	false	positives	and	ambiguous	results:	The	traditional	robustness	testing	is	interactive	
work,	 and	 longer	 test	 runs	on	unstable	 interfaces	may	produce	 lots	of	noise:	High	number	of	 false	
positives	and	weird	but	harmless	behavior	 that	 is	hard	 to	 replicate.	Should	 the	system	be	prone	 to	
generate	a	lot	of	false	positives	significant	efforts	has	to	be	made	to	the	testing	automation	and	the	
automated	processing	of	the	raw	results.		
	
Ways	to	minimize	these	kinds	of	findings	include		
	

- Strict	monitoring	of	the	target	system	resource	usage	
- Separate	training	period	monitoring	the	normal	usage	of	the	product	
- More	 in-depth	 instrumentation	 of	 the	 code	 which	 could	 help	 detecting	 preconditions	 for	

complex	errors	
- More	profound	isolation	of	different	test	cases.		

	
Should	 the	 amount	 of	 ambiguous	 cases	 stay	 high,	 or	 should	 the	 needed	 isolation	 slow	 down	 the	
testing	 too	much	 to	be	 feasible,	might	 argue	 for	 using	more	 interactive,	 intensive	 and	 shorter	 test	
strategy	instead	of	lifecycle-long	mostly	automated	testing.			
	



 16 
Choosing	the	right	metrics	for	the	extended	test	runs:	The	metrics	gathered	from	the	testing	have	to	
contribute	 to	 the	 long-term	 goals	 in	 addition	 to	 just	 state	 the	 obvious	 findings:	 Depending	 on	 the	
target	 system	 one	 can	 accumulate	 the	 statistics	 based	 on	 code	 coverage,	 input	 space	 coverage,	
secondary	indicators	(resource	usage,	responsiveness,	generic	error	handling).	Eventually,	the	metrics	
collected	 from	 the	 testing	 should	 validate	 that	 the	 continuation	 of	 the	 activity	 has	 theoretical	
possibilities	to	find	new	errors.	
		
The	triage	and	practical	follow-up	of	the	results	for	old	parts	of	the	software:		Many	components	of	
the	extended	lifecycle	CI	system	software	can	be	considered	to	be	in	the	maintenance	mode,	and	the	
manufacturers	support	on	technical	issues	can	be	slow	or	nonexistent.	If	the	response	times	to	triage	
new	findings	from	an	old	COTS	library	grow	considerably,	one	has	to	make	decisions	when	to	call	the	
library	obsolete	and	start	refactoring	even	if	the	issues	found	in	testing	would	not	be	conclusive.		
	
In	the	context	of	our	example	system,	the	Figure	5	illustrates	the	interfaces	that	were	chosen	for	long-
term	 robustness	 testing	 using	 the	 threat	 analysis	 results	 of	 LLP1	 MLU1:	 The	 external	 network	
interface	 of	 the	Gateway,	 the	 external	 network	 interface	 of	 control	workstation,	 and	 the	 interface	
facing	the	internal	network	of	the	Subsystem.	

	
Figure	5:	The	chosen	long-term	Robustness	testing	setups	for	the	critical	interfaces		

	
Each	of	the	chosen	interfaces	would	be	tested	in	isolated	test	setup.	The	control	workstation	would	
be	tested	on	virtual	machine	(VM),	the	target	Subsystem	and	Gateway	might	need	a	particular	setup	
including	the	instrumentation	of	physical	device.	
	
Independent	 on	 the	 actual	 target,	 the	 robustness	 test	 setup	 would	 be	 built	 up	 incrementally	 in	
following	way:		
	
I. First	 the	 robustness	 of	 the	 chosen	 interface	would	 be	 validated	with	 interactive	 robustness	

testing	with	 traditional	 fuzz-testing	 tools,	which	are	able	 to	generate	network	 traffic.	 In	 this	
setup,	the	stability	of	the	test	tooling	itself	and	the	target	would	be	confirmed.	

II. During	 the	 first	 sessions,	 also	 the	 resource	 usage	 is	monitored	 for	 the	more	 extended	 test	
runs.	 	Ability	to	save	the	state/seed	of	the	testing	and	to	be	able	to	continue	from	the	same	
situation	 is	 verified,	 as	 the	 target	 system	might	 have	 to	 be	 periodically	 reset	 if	 the	 fuzzing	
slowly	consumes	resources.	

III. The	 leap	 to	 really	 long	 test	periods	 requires	 choosing	 the	metrics,	which	would	 confirm	 the	
slow	progress	of	 the	 testing	effort	 through	 the	 input	and	 target	 state	 space.	The	metrics	 to	
consider:	Target	code	coverage	and	fuzzing	passes	executed	per	known	path,	amount	of	input	
space	covered.		



 17 
	
The	steps	are	illustrated	in	Figure	6	
	

	
Figure	6:	Incremental	process	of	building	robustness	testing	setup	for	a	chosen	interface	 	



 18 
 

4.	Discussion		
	

4.1	Targeting	lifecycle-long	robustness		
	
To	aim	 for	 realistic	 security	posture	 for	 long-lifecycle	 system	 it	 is	 needed	 that	 the	 security	 is	 taken	
seriously	into	the	account	already	on	the	product	creation	phase	with	the	manufacturer.	 In	practice	
this	means	that	the	manufacturer	uses	some	form	of	secure	development	lifecycle	(SDLC)	in	its	R&D	
efforts.	 Even	 though	 this	 phase	would	 be	 in	 order,	 the	 end	 user	 hast	 to	 take	 active	 role	 to	 target	
lifecycle-long	robustness	of	the	system.		
	
In	 the	 role	 suggested	 in	 this	 paper,	 the	 usage	 and	maintenance	 phases	 of	 the	 lifecycle	 have	 to	 be	
augmented	with	 periodical	 threat	 analysis	work,	 critical	 and	 proactive	 approach	with	 the	 software	
updates	 of	 different	 parts	 of	 the	 system	 and	 extended	 robustness	 testing	 of	 the	 most	 critical	
interfaces.	The	overall	process	is	illustrated	in	figure	7.	
	
	

	
Figure	7:	Lifecycle-Long	Robustness	testing	process	

	
	
Important	factor	is	the	general	attitude	of	being	vigilant,	and	look	at	the	system	with	the	fresh	mind	
after	each	cycle.	This	means	the	manufacturer	and	the	end	user	should	not	be	caught	unaware	of	the	
impact	of	environmental	or	technological	changes	to	the	protected	system.	Therefore	at	 least	some	
of	the	lurking	black	swans	could	be	turned	gray,	with	the	time	to	prepare	for	the	impact.		
	
	 	



 19 
4.2	Contribution	
	
The	main	contributions	of	this	paper	are	as	follows:	
	

1) Threat	analysis	approach	adapted	from	the	industry	best	practices	to	the	end	user	of	Critical	
Infrastructure	 system.	 The	 data	 from	 previous	 cycles	 of	 threat	 analysis	 is	 used	 during	 the	
following	periodical	iterations	to	detect	and	weigh	the	subtle	changes	in	the	system	use.		
	

2) A	 long-term	 robustness	 testing	 concept	 created	 to	 help	 reducing	 security	 debt	 in	 extended	
lifecycle	 products.	 The	most	 essential	 interfaces	 of	 a	 critical	 system	 should	 be	 on	 constant	
scrutiny,	using	the	newest	tools	possible.		

	
3) Practical	 discussion	 of	 little	 known	 but	 very	 useful	 security	 debt	metaphor	 based	 on	 up-to-

date	literature	review.	The	metaphor	is	essential	to	internalize	when	managing	and	supporting	
extended	lifecycle	products.		

	

4.3	Impacts	
	
When	implemented,	the	process	can	have	following	impacts	to	the	CI	system	maintenance:	
	

- The	 security	 posture	 of	 the	 system	 is	 better	 known	 to	 the	 owner	 and	 maintainer	 of	 the	
product.	 Especially	 the	 technical	 and	 security	 debts	 are	 managed	 in	 much	 more	 informed	
fashion.		

- The	dialogue	with	the	manufacturer	regarding	the	security	issues	of	the	product	can	take	place	
at	deeper	level.	Both	manufacturer	and	the	owner	know	that	the	reciprocal	side	is	taking	the	
security	seriously.	

- The	end	of	the	system	lifecycle	 is	managed	 in	much	better	and	 informed	way	as	the	update	
and	end-of-life	decisions	can	be	made	in	controlled	fashion	based	on	facts.		

- More	resources	are	needed	for	the	CI	system	maintenance.	In	addition	to	the	personnel	costs,	
the	approach	adds	technical	resources	necessary	for	the	sustained	testing	activity.		

 

4.4	Conclusions	
	
The	 long	 lifecycle	 critical	 infrastructure	 systems	 have	many	 challenges.	 This	 paper	 has	 suggested	 a	
solution	to	two	of	them:	Incompatible	life	cycles	of	COTS	components	and	the	whole	CI	system,	and	
the	 hidden	 effects	 of	 changes	 of	 usage	 and	 the	 usage	 environment	 of	 the	 system.	 The	 solutions	
proposed	 in	 this	paper	are	 implementing	a	process	of	 threat	analysis	 that	 is	done	 in	 the	end	users	
perspective.	The	analysis	would	be	augmented	with	the	extra	 insight	given	the	BOM	analysis	of	the	
software.	In	addition	to	that,	the	selected	critical	interfaces	would	be	subject	to	sustained	robustness	
testing	effort.		
	
Acknowledgments		

I’d	 like	 to	 thank	my	 employer	 Finnish	 Defence	 Research	 Agency	 (FDRA),	 the	 colleagues	 who	 have	
provided	 comments	 and	 advice,	 and	 professor	 Juha	 Röning	 of	 University	 of	 Oulu	 for	 coaching	my	
research	to	this	point.		
	
 



 20 
References	

[1]	M.	M.	Hassan	et	al,	"Testability	and	software	robustness:	A	systematic	literature	review,"	in	2015,	Available:	
https://ieeexplore.ieee.org/document/7302472.	DOI:	10.1109/SEAA.2015.47.	

[2]	D.	Geer	and	C.	Wysopal,	"For	Good	Measure	-	Security	Debt,"	;Login:,	vol.	38	no.	4,	pp.	62-64,	Mar.	2013.		

[3]	D.	Geer	and	D.	Conway,	"Foor	Good	Measure	-	The	Price	of	Anything	Is	the	Foregone	Alternative,"	;Login:,	
vol.	38	no.	3,	pp.	58-60,	Jun.	2013.		

[4]	Whitehouse	Ollie	and	Vaughan	James,	"Software	Security	Austerity	-	Software	security	debt	in	modern	
software	development,"	Rexc	Whitepaper,	vol.	1,	2012.		

[5]	N.	N.	Taleb,	The	Black	Swan:	The	Impact	of	the	Highly	Improbable.	(2nd	ed.)	NY:	Random	House,	2010.	

[6]	B.	Bartels	et	al,	Strategies	to	the	Prediction,	Mitigation	and	Management	of	Product	Obsolescence.	201287.	

[7]	R.	G.	Muñoz	et	al,	"Key	Challenges	in	Software	Application	Complexity	and	Obsolescence	Management	
within	Aerospace	Industry,"	Procedia	CIRP,	vol.	37,	pp.	24-29,	2015.		

[8]	S.	Rajagopal,	J.	A.	Erkoyuncu	and	R.	Roy,	"Software	obsolescence	in	defence,"	Procedia	CIRP,	vol.	22,	pp.	76-
80,	2014.		

[9]	B.	Curtis,	J.	Sappidi	and	A.	Szynkarski,	"Estimating	the	size,	cost,	and	types	of	technical	debt,"	in	Proceedings	
of	the	Third	International	Workshop	on	Managing	Technical	Debt,	2012,	pp.	49-53.	

[10]	N.	A.	Ernst	et	al,	"Measure	it?	manage	it?	ignore	it?	software	practitioners	and	technical	debt,"	in	
Proceedings	of	the	2015	10th	Joint	Meeting	on	Foundations	of	Software	Engineering,	2015,	pp.	50-60.	

[11]	J.	Eronen	and	M.	Laakso,	"Patched	but	still	vulnerable	-	code	rot	in	popular	applications&nbsp;"	in	
Cybersecurity	Symposium,	Idaho,	USA.&nbsp;&nbsp;	2016,	.	

[12]	J.	Radatz,	A.	Geraci	and	F.	Katki,	"IEEE	standard	glossary	of	software	engineering	terminology,"	IEEE	Std,	
vol.	610121990,	(121990),	pp.	3,	1990.		

[13]	R.	L.	Nord,	"Software	vulnerabilities,	defects,	and	design	flaws:	A	technical	debt	perspective,"	in	
Fourteenth	Annual	Acquisition	Research	Symposium,	2017,	pp.	67-75.	

[14]	F.	J.	Rojo	Romero	et	al,	"Key	challenges	in	managing	software	obsolescence	for	industrial	product-service	
systems	(IPS2),"	in	2nd	CIRP	IPS2	Conference,	2010,	pp.	393-398.	

[15]	E.	Jang	et	al,	"Unplanned	obsolescence,"	in	Jun	22,	2017,	pp.	93-101.	

[16]	P.	A.	Sandborn,	"Editorial	Software	Obsolescence-Complicating	the	Part	and	Technology	Obsolescence	
Management	Problem,"	Tcapt,	vol.	30,	(4),	pp.	886-888,	2007.	Available:	
https://ieeexplore.ieee.org/document/4383342.	DOI:	10.1109/TCAPT.2007.910918.	

[17]	T.	Besker,	A.	Martini	and	J.	Bosch,	"Impact	of	architectural	technical	debt	on	
daily	software	development	work&nbsp;-	A	survey	of	software	practitioners,"	in	43rd	Euromicro	Conference	on	
Software	Engineering	and	Advanced	Applications,	2017,	pp.	278-287.	

[18]	G.	Digkas	et	al,	"How	do	developers	fix	issues	and	pay	back	technical	debt	in	the	apache	ecosystem?"	in	
2018	IEEE	25th	International	Conference	on	Software	Analysis,	Evolution	and	Reengineering	(SANER),	2018,	pp.	
153-163.	



 21 
[19]	H.	Ghanbari	et	al,	"Looking	for	peace	of	mind?	manage	your	(technical)	debt:	An	exploratory	field	study,"	
in	ESEM	2017:	ACM/IEEE	International	Symposium	on	Empirical	Software	Engineering	and	Measurement,	ISBN	
978-1-5090-4039-1,	2017,	.	

[20]	Z.	S.	Hossein	Abad	et	al,	"Understanding	the	impact	of	technical	debt	in	coding	and	testing:	An	exploratory	
case	study,"	in	Proceedings	of	the	3rd	International	Workshop	on	Software	Engineering	Research	and	Industrial	
Practice,	2016,	pp.	25-31.	

[21]	D.	Landoll,	The	Security	Risk	Assessment	Handbook:	A	Complete	Guide	for	Performing	Security	Risk	
Assessments.	(2nd	ed.)	CRC	Press,	Inc.,	2011.	

[22]	Z.	Li,	P.	Avgeriou	and	P.	Liang,	"A	systematic	mapping	study	on	technical	debt	and	its	management,"	J.	Syst.	
Software,	vol.	101,	pp.	193-220,	2015.		

[23]	B.	Potter,	"Microsoft	SDL	threat	modelling	tool,"	Network	Security,	vol.	2009,	(1),	pp.	15-18,	2009.		

[24]	A.	Shostack,	"Elevation	of	privilege:	Drawing	developers	into	threat	modeling."	in	3gse,	2014,	.	

[25]	Anonymous	"Application	Threat	Modeling,"	Https://Www.Owasp.Org,	May	31,	2017.		

[26]	J.	Steven,	"Threat	modeling-perhaps	it's	time,"	IEEE	Security	&	Privacy,	vol.	8,	(3),	pp.	83-86,	2010.		

[27]	S.	Hussain	et	al,	"Threat	modelling	methodologies:	a	survey,"	Sci.Int.(Lahore),	vol.	26,	(4),	pp.	1607-1609,	
2014.		

[28]	D.	Dhillon,	"Developer-driven	threat	modeling:	Lessons	learned	in	the	trenches,"	IEEE	Security	&	Privacy,	
vol.	9,	(4),	pp.	41-47,	2011.		

[29]	J.	A.	Ingalsbe	et	al,	"Threat	modeling:	diving	into	the	deep	end,"	IEEE	Software,	vol.	25,	(1),	2008.		

[30]	R.	Khan	et	al,	"STRIDE-based	threat	modeling	for	cyber-physical	systems,"	in	Innovative	Smart	Grid	
Technologies	Conference	Europe	(ISGT-Europe),	2017	IEEE	PES,	2017,	pp.	1-6.	

[31]	P.	Torr,	"Demystifying	the	threat	modeling	process,"	IEEE	Security	&	Privacy,	vol.	3,	(5),	pp.	66-70,	2005.		

[32]	A.	Vähä-Sipilä,	"Software	security	in	agile	product	management,"	Software	Security	in	Agile	Product	
Management,	2011.		

[33]	R.	Kaksonen,	"A	Functional	Method	for	Assessing	Protocol	Implementation	Security."	,	University	of	Oulu,	
2001.	

[34]	M.	Böhme	et	al,	"Directed	greybox	fuzzing,"	in	Proceedings	of	the	2017	ACM	SIGSAC	Conference	on	
Computer	and	Communications	Security,	2017,	pp.	2329-2344.	

[35]	S.	K.	Cha,	M.	Woo	and	D.	Brumley,	"Program-adaptive	mutational	fuzzing,"	in	Security	and	Privacy	(SP),	
2015	IEEE	Symposium	On,	2015,	.	

[36]	J.	DeMott,	"The	evolving	art	of	fuzzing,"	Def	Con,	vol.	14,	2006.		

[37]	D.	Duran,	D.	Weston	and	M.	Miller,	"Targeted	taint	driven	fuzzing	using	software	metrics,"	2011.		

[38]	P.	Garg,	"Fuzzing	–	Application	and	File	
Fuzzing,"	Application	Security,	Jan	4,	2012.		



 22 
[39]	P.	Garg,	"Fuzzing-mutation	vs.	generation,"	Exploit	Development,	Jan	4,	2012.		

[40]	M.	Gustafsson	and	O.	Holm,	"Fuzz	Testing	for	Design	Assurance	Levels."	,	Linköping	University,	2017.	

[41]	Y.	Li	et	al,	"Steelix:	Program-state	based	binary	fuzzing,"	in	Proceedings	of	the	2017	11th	Joint	Meeting	on	
Foundations	of	Software	Engineering,	2017,	pp.	627-637.	

[42]	P.	Gutmann,	"Fuzzing	Code	with	AFL,"	;Login:,	pp.	11-14,	2016.		

[43]	S.	Ognawala,	A.	Petrovska	and	K.	Beckers,	"An	Exploratory	Survey	of	Hybrid	Testing	Techniques	Involving	
Symbolic	Execution	and	Fuzzing,"	arXiv	Preprint	arXiv:1712.06843,	2017.		

[44]	B.	Shastry	et	al,	"Static	exploration	of	taint-style	vulnerabilities	found	by	fuzzing,"	arXiv	Preprint	
arXiv:1706.00206,	2017.		

[45]	A.	Takanen,	"Fuzzing:	The	past,	the	present	and	the	future,"	in	Actes	Du	7eme	Symposium	Sur	La	Sécurité	
Des	Technologies	De	L'Information	Et	Des	Communications	(SSTIC),	2009,	pp.	202-212.	

[46]	A.	Takanen,	J.	D.	Demott	and	C.	Miller,	Fuzzing	for	Software	Security	Testing	and	Quality	Assurance.	Artech	
House,	2008.	

[47]	P.	Tsankov,	M.	T.	Dashti	and	D.	Basin,	"SECFUZZ:	Fuzz-testing	security	protocols,"	in	Automation	of	
Software	Test	(AST),	2012	7th	International	Workshop	On,	2012,	pp.	1-7.	

[48]	B.	West	and	M.	Wengelin,	"Effectiveness	of	Fuzz	Testing	High-Security	Applications	-&nbsp;A	Case	Study	of	
the	Effectiveness	of	Fuzz-Testing	Applications	with	High	Security	Requirements."	,	KTH	Royal	Institute	of	
Technology,	2017.	

[49]	J.	Viide	et	al,	"Experiences	with	model	inference	assisted	fuzzing."	in	2nd	USENIX	Workshop	on	Offensive	
Technologies	(WOOT),	2008,	.	

[50]	J.	Fernandez,	L.	Mounier	and	C.	Pachon,	"A	model-based	approach	for	robustness	testing,"	in	IFIP	
International	Conference	on	Testing	of	Communicating	Systems,	2005,	pp.	333-348.	

[51]	S.	M.	A.	Shah	et	al,	"Robustness	testing	of	embedded	software	systems:	an	industrial	interview	study,"	
IEEE	Access,	vol.	4,	pp.	1859-1871,	2016.		

[52]	A.	Shahrokni	and	R.	Feldt,	"A	systematic	review	of	software	robustness,"	Information	and	Software	
Technology,	vol.	55,	(1),	pp.	1-17,	2013.		

[53]	M.	Susskraut	and	C.	Fetzer,	"Robustness	and	security	hardening	of	COTS	software	libraries,"	in	2007,	pp.	
61-71.	

[54]	N.	Stephens	et	al,	"Driller:	Augmenting	fuzzing	through	selective	symbolic	execution."	in	Ndss,	2016,	pp.	1-
16.	

[55]	A.	Dyck,	R.	Penners	and	H.	Lichter,	"Towards	definitions	for	release	engineering	and	devops,"	in	Release	
Engineering	(RELENG),	2015	IEEE/ACM	3rd	International	Workshop	On,	2015,	.	

[56]	P.	Godefroid,	M.	Y.	Levin	and	D.	A.	Molnar,	"Automated	whitebox	fuzz	testing."	in	Ndss,	2008,	pp.	151-166.	

[57]	N.	P.	Kropp,	P.	J.	Koopman	and	D.	P.	Siewiorek,	"Automated	robustness	testing	of	off-the-shelf	software	
components,"	in	Fault-Tolerant	Computing,	1998.	Digest	of	Papers.	Twenty-Eighth	Annual	International	
Symposium	On,	1998,	pp.	230-239.	



 23 
[58]	C.	Miller,	"Babysitting	an	army	of	monkeys,"	CanSecWest,	2010.		

[59]	K.	Serebryany,	"Continuous	fuzzing	with	libFuzzer	and	AddressSanitizer,"	in	Cybersecurity	Development	
(SecDev),	IEEE,	2016,	.	

[60]	J.	Wisnowski,	"Advanced	Automated	Software	Testing	Implementation	Guide	-	STAT	COE-Report-01-2017,"	
Stat	T&e	Coe,	2017.		

[61]	S.	Huopio,	"A	rugged	nation,"	in	The	Fog	of	Cyber	Defence,	J.	Rantapelkonen	and	M.	Salminen,	Eds.	
Helsinki:	National	Defence	University,	2013,	pp.	127-135.	

[62]	Z.	Durumeric	et	al,	"The	matter	of	heartbleed,"	in	Proceedings	of	the	2014	Conference	on	Internet	
Measurement	Conference,	2014,	.	

[63]	J.	Eronen	et	al,	"Software	vulnerability	vs.	critical	infrastructure-a	case	study	of	antivirus	software,"	
International	Journal	on	Advances	in	Security,	vol.	2,	(1),	pp.	72-89,	2009.		

[64]	S.	SORSA,	"Protocol	Fuzz	Testing	as	a	Part	of	Secure	Software	Development	Life	Cycle."	,	Tampere	
University	of	Technology,	2017.	

[65]	J.	Stark,	"Product	lifecycle	management,"	in	Product	Lifecycle	Management	(Volume	1)Anonymous	2015,	.	

[66]	B.	Flyvbjerg	and	A.	Budzier,	"Why	your	IT	project	may	be	riskier	than	you	think,"	Harward	Business	Review,	
pp.	23-25,	"Sep	".	2011.		

[67]	D.	Russo	and	P.	Ciancarini,	"Towards	antifragile	software	architectures,"	in	4th	International	Workshop	on	
Computational	Antifragility	and	Antifragile	Engineering,	2017,	pp.	929-934.	

[68]	N.	Taleb,	"The	black	swan:	Why	don't	we	learn	that	we	don't	learn,"	in	Highland	Forum	23,	Las	Vegas,	
2004,	.	

[69]	W.	W.	Wu,	G.	M.	Rose	and	K.	Lyytinen,	"Managing	black	swan	information	technology	projects,"	in	System	
Sciences	(HICSS),	2011	44th	Hawaii	International	Conference	On,	2011,	pp.	1-10.	

[70]	N.	N.	Taleb,	Antifragile:	How	to	Live	in	a	World	we	Don'T	Understand.	20123.	

[71]	D.	Russo	and	P.	Ciancarini,	"A	proposal	for	an	antifragile	software	manifesto,"	in	3rd	International	
Workshop	on	Computational	Antifragility	and	Antifragile	Engineering,	2016,	pp.	982-987.	

[72]	M.	Monperrus,	"Principles	of	antifragile	software,"	in	Companion	to	the	First	International	Conference	on	
the	Art,	Science	and	Engineering	of	Programming,	2017,	pp.	32.	

[73]	J.	S.	Levin,	S.	P.	Brodfuehrer	and	W.	M.	Kroshl,	"Detecting	antifragile	decisions	and	models	lessons	from	a	
conceptual	analysis	model	of	service	life	extension	of	aging	vehicles,"	in	Systems	Conference	(SysCon),	2014	8th	
Annual	IEEE,	2014,	pp.	285-292.	

[74]	P.	Pietikäinen,	A.	Kettunen	and	J.	Röning,	"Steps	Towards	Fuzz	Testing	in	Agile	Test	Automation,"	
International	Journal	of	Secure	Software	Engineering	(IJSSE),	vol.	7,	(1),	pp.	38-52,	2016.	Available:	
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSSE.2016010103.	DOI:	
10.4018/IJSSE.2016010103.	

[75]	J.	Song	and	J.	Alves-Foss,	"The	DARPA	Cyber	Grand	Challenge:	A	Competitor's	Perspective,	Part	2,"	IEEE	
Security	&	Privacy,	vol.	14,	(1),	pp.	76-81,	2016.		


