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Abstract—The recent advances in quantum computers im-
pose the adoption of post-quantum cryptosystems into secure
communication protocols. This work proposes two FPGA-based,
client- and server-side hardware architectures to support the
integration of the BIKE post-quantum KEM within TLS. Thanks
to the parametric hardware design, the paper explores the
best option between hardware and software implementations,
given a set of available hardware resources and a realistic
use-case scenario. The experimental evaluation comparing our
client and server designs against the reference AVX2 and
hardware implementations of BIKE highlighted two aspects.
First, the proposed client and server architectures outperform
the reference hardware implementation of BIKE by eight and
four times, respectively. Second, the performance comparison
between our client and server designs against the reference AVX2
implementation strongly depends on the available resource. Our
solution is almost twice as fast as the AVX2 implementation while
implemented on the Artix-7 200 FPGA, while it is up to six times
slower when targeting smaller FPGAs, thus motivating a careful
analysis of the available hardware resources and the optimization
of the design’s parallelism before opting for hardware support.

Index Terms—Post-quantum cryptography, code-based cryp-
tography, QC-MDPC codes, hardware accelerators, BIKE, FPGA

I. INTRODUCTION

Public-key cryptography (PKC) [1]–[3] allows exchanging
keys over an insecure channel without sharing a secret key. Its
technology is at the core of current secure communication pro-
tocols such as Transport Layer Security (TLS) [4] and Secure
Shell (SSH) [5]. TLS is the most widely used cryptographic
protocol, providing encryption to the HTTPS communication
protocol, secure communication in mobile apps, and encrypted
access to email servers.

Notably, the security of current public-key cryptography
relies on the hardness of factoring large integers and of
computing discrete logarithms in a cyclic group. However,
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algorithms such as Shor’s [6] can solve these problems in
polynomial time on quantum computers, whose recent techno-
logical advances threaten to break traditional PKC and, conse-
quently, the secure communication protocols that make use of
it [7]. To mitigate such risk, post-quantum cryptography (PQC)
aims to develop cryptosystems that are secure against attacks
from quantum and classical computers and can interoperate
with existing communications protocols and networks [8].
In this scenario, the US National Institute of Standards and
Technology (NIST) is currently leading a standardization
process to identify a set of post-quantum algorithms to replace
current public-key cryptosystems. Submitted proposals span
over a wide portion of state of the art in computational theory,
including algebraic geometry [9], coding theory [10], and
lattice theory [11]. Despite the theoretical differences, each
proposal must satisfy two requirements. First, post-quantum
cryptosystems must leverage computationally hard problems
that even quantum computers cannot solve in polynomial time.
Second, their computational complexity and the importance of
their adoption in scenarios ranging from HPC to resource-
constrained platforms force NIST to also require efficient
hardware implementations in addition to traditional software
ones. Specifically, the NIST PQC standardization process
selected the Intel Haswell CPUs and Xilinx Artix-7 FPGAs
as the software and hardware targets.

From the theoretical point of view, code-based cryptography
has a remarkably good security track, dating back to the
McEliece cryptosystem [10] proposed in 1978, thus motivating
its adoption by several candidates of the NIST PQC standard-
ization process. However, the strong security and performance
of the original McEliece cryptosystem, which employs binary
Goppa codes [12], come at the cost of large memory require-
ments, in the order of megabits, to store the key pairs. To this
end, quasi-cyclic moderate-density parity-check (QC-MDPC)
codes [13] emerged as an effective alternative to binary Goppa
codes, reducing the key size of code-based cryptosystems to



tens of kilobits while maintaining security against quantum
attacks. BIKE [14] is a key encapsulation mechanism (KEM)
based on QC-MDPC codes, and it is a current candidate
for standardization in the fourth round of the NIST PQC
initiative [15].

Despite the vast literature targeting efficient hardware sup-
port for BIKE, each proposal is meant to deliver novel comput-
ing platforms aiming either to maximize the performance or
to minimize the resource utilization of the hardware, without
i) considering the integration of the hardware support in
current secure communication protocols, such as TLS, and
ii) addressing the critical question of the actual advantage
of employing hardware support in place of an optimized
software implementation. Indeed, state-of-the-art lacks a com-
plete comparison to identify the best implementation strategy
between hardware and software, considering the available
computational resources.

Contributions - This paper presents a complete hardware
implementation of BIKE that targets the Xilinx Artix-7 family
of FPGAs and supports client and server KEM operations in a
quantum-resistant TLS [16]. The proposed architecture lever-
ages a set of state-of-the-art configurable accelerators [17]–
[19] that implement the key operations of the KEM primitives
to provide the best hardware support. Our architecture is eval-
uated against the reference AVX2 software [20] and FPGA-
based hardware [21] implementations of BIKE.

Apart from the complete hardware implementation of BIKE,
the novelty of this work concerns the analysis between differ-
ent hardware and software state-of-the-art implementations of
BIKE. The goal is to highlight the best option between hard-
ware and software implementations, given a set of available
hardware resources and a realistic use-case scenario. This is in
contrast to previous state-of-the-art, which usually targets the
design of efficient hardware support without considering i) the
application of a complete KEM scheme and ii) a comparison
between optimized hardware and software implementations.
More in detail, the two main contributions of our work are
listed below.

• Efficient hardware support for BIKE in TLS - The pro-
posed solution delivers two architectures tailored to the
client and server operations of a quantum-resistant TLS
integrating the BIKE KEM. The parametric components,
taken from the state of the art, are integrated into a com-
plete design of the KEM primitives. The experimental
results show that the proposed client and server designs
outperform the reference hardware implementation of
BIKE [21] by 9 and 6 times, respectively.

• Design space exploration and guidelines - A design
space exploration based on our complexity-based heuris-
tic allows selecting the parameters of the components
integrated into the proposed client and server architec-
tures to provide the best hardware support given the
available resources. The extensive comparison between
the reference AVX2 implementation and our designs
demonstrates the performance advantage of the hardware
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Fig. 1: KEM operations in post-quantum TLS handshake [16].

implementation, with a speedup up to 1.91×, if the
available hardware resources are, at least, those of Artix-
7 35 and 200 FPGAs for the TLS server and client use
cases, respectively. Otherwise, the software implementa-
tion overcomes the hardware one by up to 6 times.

The rest of the paper is organized into four parts. Section II
discusses the background of BIKE and TLS and the state-of-
the-art targeting hardware realizations for QC-MDPC code-
based cryptosystems. Section III presents the client- and
server-side architectures to support BIKE operations in TLS,
as well as the complexity-based heuristic used in our design
space exploration. Section IV discusses the experimental re-
sults, while some design guidelines and conclusions are drawn
in Section V.

II. BACKGROUND AND RELATED WORKS

This section discusses the background of BIKE and TLS
as well as the state of the art for QC-MDPC code-based
cryptosystems. The background discussion emphasizes iden-
tifying the computational complexity within the BIKE KEM
when employed within TLS. In contrast, the state-of-the-art
analysis focuses on the hardware implementations for QC-
MPDC codes that can be applied to BIKE.

A. Background

Quantum-resistant TLS - In TLS 1.3, the handshake phase
between the client and server nodes is required to establish
a shared secret key, useful to generate session keys which
are then employed within a symmetric cryptosystem to effi-
ciently exchange encrypted data [4]. The establishment of such
shared secret requires making use of public-key cryptography.
Diffie-Hellman [2] currently represents the most commonly
employed public-key cryptosystem in TLS 1.3. However, the
goal of designing a quantum-resistant TLS imposes instead
the use of a post-quantum KEM such as the ones currently
part of the NIST PQC standardization process [16].



Figure 1 shows the three main steps of the handshake phase
between clients and servers when employing a post-quantum
KEM in a post-quantum version of TLS [16].

First, the client performs the key generation primitive,
producing a private-public key pair and sending the public key
to the server. The server node then generates a shared secret
and encrypts it with the public key of the client. Finally, the
client retrieves the shared secret by decapsulating with its own
private key the ciphertext received by the server node. As a
result, the client and server endpoints obtained the same shared
secret.

TLS 1.3 mandates using ephemeral keys to enforce the
perfect forward secrecy (PFS) property. The design of a
computationally efficient key generation primitive is thus as
crucial as the encapsulation and decapsulation ones.

BIKE key encapsulation mechanism - BIKE [14] is a QC-
MDPC code-based KEM, based on the Niederreiter cryp-
tosystem, that leverages quasi-cyclic matrices with coefficients
over Z2. The employed quasi-cyclic matrices are composed
of n0 circulant blocks with size p × p, that can be equiv-
alently represented by n0 binary polynomials in GF (2p),
with coefficients equal to the first row of the corresponding
circulant blocks. The arithmetic of p × p circulant matrices
over Z2 is equivalent to the arithmetic of binary polynomials
in Z2[x]/(x

p + 1). The addition of two binary polynomials
in Z2[x]/(x

p + 1) corresponds to their bit-wise XOR, while
their multiplication consists in their carry-less multiplication
followed by a modular reduction with respect to the xp + 1
irreducible polynomial. Moderate-density parity-check codes
feature sparse parity-check H matrices, i.e., only a small
percentage of values are set to 1, allowing for a sparse
representation by enumerating the positions of bits set to 1.
QC-MDPC codes possess both the quasi-cyclic and moderate-
density properties.

In the rest of this section, we describe the key generation,
encapsulation, and decapsulation primitives of the BIKE key
encapsulation mechanism by making use of the following
notation.

e = [e0|e1] is a random n-bit error vector with t ≈
√
n

bits set to 1, where n = 2p and each ei is a p-bit vector.
H = [h0|h1] is the private key, composed of two circulant
blocks hi of size p × p, with v ≈

√
n bits set to 1 for each

row of each block hi. h is the public key, which is a circulant
block of size p × p. s is the syndrome. m is a message. c is
the ciphertext. K is the shared secret.

Algorithm 1 Key generation primitive of BIKE [14].

1: function [H,σ, h] KEYGEN ( )
2: seed = TRNG ();
3: H = PRNG(SHAKE256(seed));
4: h0inv

= INVERT(h0);
5: h = h1 ⊙ h0inv

;
6: σ = TRNG ();
7: return {H,σ, h};

Key generation - Algorithm 1 details the key generation
primitive, that requires the pseudorandom generation of the
public key H = [h0|h1] (line 3), the binary polynomial
inversion (line 4) of h0, and the binary polynomial multipli-
cation (line 5) between the sparse h1, with Hamming weight
equal to v, and the dense h0inv

. The key generation primitive
outputs the private key H , the corresponding public key h,
and a 256-bit message σ.

Algorithm 2 Encapsulation primitive of BIKE [14].

1: function [K, c] ENCAPS (h)
2: m = TRNG ();
3: e = PRNG(SHAKE256(m));
4: s = e0 ⊕ (e1 ⊙ h);
5: m′ = m⊕ TRUNC256(SHA3-384(e));
6: c = {s,m′};
7: K = TRUNC256(SHA3-384({m, c}));
8: return {K, c};

Encapsulation - Algorithm 2 details the encapsulation prim-
itive, which takes as its only input the public key h. Such
primitive consists in the execution of the pseudorandom bits
generation function, which employs SHAKE256 (see line 3)
to generate the n-bit error vector e with Hamming weight
equal to t, of a binary polynomial multiplication (see line 5)
between the sparse e1, with Hamming weight up to t, and the
dense h, and two hashing operations making use of the SHA3-
384 cryptographic hash function, respectively of n-bit (line 5)
and (p+512)-bit (line 7) messages. The concatenation of the
syndrome s and the message m′ obtained at lines 4 and 6,
respectively, corresponds to the ciphertext c, that can then be
sent from the server node to the client endpoint within the
handshake phase, while the 256-bit digest K obtained at line
7 is the shared secret.

Algorithm 3 Decapsulation primitive of BIKE [14].

1: function [K] DECAPS (H , σ, c)
2: s′ = h0 ⊙ s;
3: e′ = DECODE (s′, H);
4: m′′ = m′⊕ TRUNC256(SHA3-384(e′));
5: a = (e′ = PRNG(SHAKE256(m′′))) ? m′′ : σ;
6: K = TRUNC256(SHA3-384({a, c}));
7: return K;

Decapsulation - Algorithm 3 lists the key operations that
compose the decapsulation KEM primitive, which takes as its
inputs the H public key, the ciphertext c, and the σ message.
They are one binary polynomial multiplication (line 2 of
Algorithm 3), where the h0 operand is sparse with Hamming
weight equal to v, one instance of QC-MDPC bit-flipping
decoding (line 3), the computations of two 384-bit hash digests
through SHA3-384, respectively of n-bit (line 4) and (p+512)-
bit (line 6) messages, and the pseudorandom generation (line
5) of a polynomial with Hamming weight equal to t. The
decapsulation primitive outputs the shared secret K.
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Fig. 2: Top-view architecture of the key generation module. Dashed blocks are shared with the Decaps module (see Figure 3).
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Fig. 3: Top-view architecture of the decapsulation module. Dashed blocks are shared with the KeyGen module (see Figure 2).

B. State of the art

The literature contains several proposals targeting efficient
hardware implementations for QC-MDPC code-based cryp-
tosystems. [22], [23] proposed the implementation of the
McEliece cryptosystem with QC-MDPC codes on FPGAs. In
particular, [22] targeted a performance-oriented design while
[23] focused on a resource-optimized one. [24] discussed a
fast implementation of QC-MDPC Niederreiter encryption for
FPGAs, outperforming the work in [22] thanks to using a
hardware module to estimate the Hamming weight of large
vectors and proposing a hardware implementation tailored to
low-area devices for encryption and decryption used in QC-
MDPC code-based cryptosystems. [21] presented an FPGA-
based implementation of BIKE, which provided support for the
key generation, encryption, and decryption KEM primitives,
but it is custom-tailored to small FPGA targets.

Several other works focused instead on the optimal design
of single key operations to support QC-MDPC code-based
cryptosystems. [25] considered the FPGA-based design of
two polynomial multipliers for BIKE, one implementing the
multiplication between two dense operands and one imple-
menting the multiplications between a dense and a sparse
operand. [18] proposed a binary polynomial multiplier for
dense-sparse multiplications that can be configured to scale
across a variety of FPGA targets. [26] discusses a Karatsuba
multiplier for dense binary polynomials, whose performance
is, however, insufficient compared to a multiplier tailored to
dense-sparse multiplication, when one of the two operands has
a low Hamming weight. [19] presented a bit-flipping decoder
for generic QC-MDPC codes that is highly configurable in
terms of bandwidth and degree of parallelism, allowing it to
scale across a range of FPGA targets. [27] also proposed a bit-
flipping decoder for QC-MDPC codes, that is, however, only

configurable in the bandwidth of its datapath. [17] described a
configurable architecture for binary polynomial inversion that
scales across the entire Artix-7 FPGA family and makes use of
the Karatsuba binary polynomial multiplier proposed in [26].

III. METHODOLOGY

This section presents the scalable architectures of BIKE
to support client and server KEM operations in TLS and
the complexity-oriented heuristic for design space exploration.
The scalability of the client and server architectures is obtained
by mixing state-of-the-art configurable components for the
most complex operations with hard-coded ones. The client and
server architectures employ configurable components to im-
plement binary polynomial inversion [17], binary polynomial
multiplication [18], and QC-MDPC bit-flipping decoding [19].
The decoding component was adapted to implement the Black-
Gray-Flip (BGF) decoding algorithm employed by BIKE and
introduced in [28]. Fixed, non-parametric components [29]
implement instead the SHA3-384 and SHAKE256 operations.
Considering the pseudorandom generation functionality, we
wrapped up the SHAKE256 component, as described in [21],
to produce random bitvectors with the desired Hamming
weight. The proposed design space exploration heuristic lever-
ages the time- and space-complexity analysis of the employed
configurable components to steer the fast identification of the
combination of parameters that delivers the best hardware
support.

The rest of this section is organized into three parts. Sec-
tion III-A and Section III-B present the client and the server ar-
chitectures, respectively, while the complexity-oriented heuris-
tic is discussed in Section III-C.
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A. Client architecture

The client architecture implements the cryptographic core
to support the client-side execution of BIKE in TLS. The
architecture of the client consists of two main modules, key
generation (KeyGen) and decapsulation (Decaps), which
are depicted in Figure 2 and Figure 3, respectively. To
minimize duplicate hardware resources, the pseudorandom
generator (PRNG) and the multiplier (Mul) are shared between
the modules (see dashed blocks in Figure 2 and Figure 3).

Key generation module - The KeyGen module, depicted
in Figure 2, implements Algorithm 1. It features a BW -
bit input (trng_i) to receive a 256-bit random value from
the external true random number generator (TRNG), and
outputs the public (h) and private (H) keys using the pub_o
and prv_o outputs, respectively. Notably, the random output
value σ that is part of the key generation procedure (see
Algorithm 1), is produced by the external TRNG during the
key generation procedure and output via the sig_o port.

The implementation of the key generation algorithm of
BIKE requires performing three subsequent hardware op-
erations, namely pseudorandom generation (PRNG), binary
polynomial inversion (Inv), and binary polynomial multipli-
cation (Mul). The PRNG component is tasked with generating
the private key H , producing the h0 polynomial in both the
sparse and dense forms, and the sparse-only form for h1. The
dense-represented h0 polynomial is then inverted by the Inv
component, whose output is finally multiplied by the sparse
h1 within the Mul component. Mul produces the public key
h, that is output through the pub_o BW -bit port, while the
private key H is output through the prv_o BW -bit port.

Decapsulation module - The Decaps module,, shown in
Figure 3, implements Algorithm 3. It features three BW -bit
inputs to receive the private key H (prv_i), σ (sig_i), and
the shared secret encrypted by the server c (ctx_i), and it
outputs the shared secret K through ss_o.

The implementation of the decapsulation primitive of BIKE
requires performing a sequence of four hardware operations,
namely binary polynomial multiplication (Mul), QC-MDPC
bit-flipping decoding (Dec), computation of SHA-3 hash
digest (SHA-3), and pseudorandom generation (PRNG). The
dense syndrome s, which is part of the ciphertext c, is
multiplied by the sparse polynomial h0, obtaining the s′ vector,

which is then fed to the Dec module together with H to
decode it and obtain the e′ n-bit vector. The latter is hashed
by the SHA-3 module and the resulting digest is XORed with
m′, obtaining m′′. If the result of the pseudorandom generation
seeded by m′′ is equal to e′, then the SHA-3 module computes
the digest of {m′′, c}, i.e., m′′ concatenated to the ciphertext c,
otherwise it hashes {σ, c} to avoid information leakage while
also raising a decapsulation error flag. In case of a successful
decoding, the resulting digest is the shared secret, which is
output by the ss_o BW -bit port.

B. Server architecture

The server architecture implements the cryptographic core
to support the server-side execution of BIKE in TLS. The
architecture of the server consists of the encapsulation mod-
ule (Encaps). Although the software execution of the en-
capsulation is significantly faster than the more complex key
generation and decapsulation, the web server scenario foresees
a multitude of concurrently active TLS connections, thus man-
dating for efficient hardware support also for encapsulation.

Encapsulation module - The Encaps module, which is
depicted in Figure 4, implements Algorithm 2. It takes as
inputs a 256-bit random message m and the public key h
through the BW -bit trng_i and pub_i ports, respectively,
and outputs the shared secret K, through ss_i, and the
ciphertext c, i.e., the shared secret encrypted with the public
key received from the client, through ctx_o.

The implementation of the encapsulation primitive of BIKE
requires performing a sequence of three hardware operations,
namely pseudorandom generation (PRNG), binary polynomial
multiplication (Mul), and computation of the SHA-3 hash
function (SHA-3). m is first expanded by the PRNG com-
ponent to generate the random error vector e = [e0|e1]
with Hamming weight t, and the dense-represented h is then
multiplied by the sparse-represented e1 in the Mul component.
The resulting product is then XORed with e0, obtaining the
syndrome s. m′ is computed by XORing the message m
with the SHA-3 hash digest of the error vector e, and the
concatenation of s and m′ corresponds to the ciphertext c.
Finally, the shared secret K is produced as the SHA-3 hash
digest of the message m concatenated to the ciphertext c. c
is output through the ctx_o BW -bit port, while the ss_o
BW -bit port outputs the shared secret K.



TABLE I: Breakdown of relative execution time for each operation, expressed as a percentage, and total execution time,
expressed in milliseconds, of AVX2 software KEM primitives.

Operation
TLS client TLS server

Key generation Decapsulation Encapsulation
AES-128 AES-192 AES-128 AES-192 AES-128 AES-192

PRNG 7% 5% 2% 1% 29% 33%
Invert 90% 94% - - - -

Multiply 3% 1% 1% 1% 21% 26%
SHA3-384 - - 3% 2% 50% 41%

Decode - - 93% 95% - -
Execution time 0.21 0.69 0.83 2.69 0.05 0.11

C. Design space exploration

In order to provide the best hardware support, the proposed
client and server architectures leverage a set of state-of-the-art
configurable accelerators for the most complex operations em-
ployed within the KEM primitives. However, such flexibility
comes at the cost of a broad design space, which imposes the
use of an efficient search strategy to minimize the exploration
time.

Therefore, a four-step complexity-oriented heuristic drives
the design space exploration according to the time and space
complexity of the most computationally intensive operations
in the three KEM primitives. We note that the overall computa-
tion time on the client side can be considered as the sum of the
execution times of the key generation and decapsulation KEM
primitives [14], while encapsulation represents the sole server-
side functionality. Moreover, the configurable components
employed to implement multiplication [18], inversion [17], and
decoding [19] highlight block RAM (BRAM) as the scarcest
resource thus their space complexity can be approximated as
the sum of BRAMs used for key generation and decapsulation,
on the client side, and for encapsulation, on the server side.

In the following, we describe the four steps of the employed
heuristic.
Step 1 - Starting from the computational time of the AVX2
implementation of BIKE, the heuristic computes the fraction
of time spent executing each primitive in the server and
the client. Table I shows that the fraction of time for key
generation and decapsulation is 20% and 80%, respectively,
on the client side, while the encapsulation represents the entire
server time. Such ratios are used to assign the amount of
resources devoted to each KEM primitive module in the client
and server architectures.
Step 2 - For each KEM primitive module, the heuristic iden-
tifies the operations executed by parametric components that
require the largest fraction of execution time. In particular, the
heuristic considers the set of parametric operations for which
the execution time is at least 90% of the total execution time
of the primitive or the entire set of configurable components
otherwise. Table I shows that multiplication is the sole para-
metric operation in our implementation and accounts for up to
26% of the encapsulation time. In contrast, decoding, which
is computed by a configurable component, accounts for more
than 90% of the execution time in the AVX2 implementation
of decapsulation.

Step 3 - For each component or group of components, the
heuristic explores time- and space-complexity formulas to
identify the combination of parameters that allows maximiz-
ing performance within the assigned resource budget. The
exhaustive search in the parameter space to find out the best
parameter configurations for each module is very fast since
it leverages the configurable components’ time- and space-
complexity formulas without involving any time-consuming
hardware synthesis and place-and-route tasks.

Step 4 - The heuristic implements the client and server designs
employing the configurations obtained at Step 3. Notably, our
algorithm is robust and conservative to account for i) the non-
predictability of the synthesis and implementation of EDA
tools, and ii) the fact that a small change in the parameters
can severely affect the performance and resource utilization.
Therefore, the heuristic could land to an unfeasible config-
uration or to a configuration for which not all the available
resources can be used since small increments in the parameters
would make it unfeasible within the resource budget. In the
former case, the heuristic iteratively re-implements the failed
design by lowering the values of the parameters for which
the time-complexity formulas show the smallest performance
degradation, and this process keeps on until the design be-
comes feasible. In the latter case, the heuristic iteratively re-
implements the non-optimal design by increasing the values
of the parameters for which the space-complexity formulas
highlight the smallest resource utilization increase, until either
the performance improvement is lower than a certain threshold
or the design saturates the available hardware resources.

TABLE II: Parameters of QC-MDPC codes for BIKE [14].

Code Security p t v iter
B1 AES-128 12323 134 71 5
B3 AES-192 24659 199 103 5

IV. EXPERIMENTAL EVALUATION

This section analyzes the area and performance of the
instances of the proposed quantum-resistant TLS client and
server architectures identified through the design space explo-
ration. The rest of this section is organized in two parts. Sec-
tion IV-A provides an overview of the BIKE code parameters
and of the experimental setup, while Section IV-B details the
area and performance results.



TABLE III: Area results for the proposed and reference [21] client cores, expressed in terms of look-up tables (LUT), flip-
flops (FF), and block RAM (BRAM), and relative resource utilization, expressed as a percentage within round brackets.

Code
Our BIKE [21]

Artix-7 50 Artix-7 200 Lightweight (LW) High-speed (HS)
LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM

B1 31792 17805 43.5 126510 51492 357 11454 4602 14 43084 610 39
(98%) (27%) (58%) (94%) (19%) (98%) (55%) (11%) (28%) (32%) (2%) (11%)

B3 31411 20181 45.5 124891 53067 360 - - - - - -
(96%) (31%) (61%) (93%) (20%) (99%)

Available 32600 65200 75 134600 269200 365 20800 41600 50 134600 269200 365

TABLE IV: Area results for the proposed and reference [21] server cores, expressed in terms of look-up tables (LUT), flip-
flops (FF), and block RAM (BRAM), and relative resource utilization, expressed as a percentage within round brackets.

Code
Our BIKE [21]

Artix-7 35 Artix-7 200 Lightweight (LW) High-speed (HS)
LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM

B1 19804 11401 30 91422 46208 275.5 6730 3298 3 14829 3471 10
(95%) (27%) (60%) (68%) (17%) (75%) (32%) (8%) (6%) (6%) (1%) (3%)

B3 19979 12282 28 72725 37795 235.5 - - - - - -
(96%) (30%) (56%) (54%) (14%) (65%)

Available 20800 41600 50 134600 269200 365 20800 41600 50 134600 269200 365

A. Experimental setup

BIKE code parameters - The proposed architectures target
the security levels 1 and 3 of the BIKE KEM, which cor-
respond to AES-128- and AES-192-equivalent security and
each with a different underlying QC-MDPC code. Such two
security levels are also targeted by the reference software [30]
and hardware [31] implementations. The employed QC-MDPC
codes have a 2p-bit code word length and a p-bit information
word length. For each BIKE code Bj, where j corresponds to
the security level, Table II reports the size p of hi blocks of H ,
the Hamming weight v of the rows of hi blocks, the Hamming
weight t of e, and the number of decoding iterations iter.
Hardware setup - The architectures discussed in Section III
have been described in SystemVerilog and implemented in
Xilinx Vivado 2020.2, targeting Artix-7 FPGAs and a clock
frequency of 91 MHz.

All the identified instances satisfy the area constraints given
by the available resources on the target FPGAs and the
timing requirements, i.e., a 91 MHz clock frequency. For each
considered FPGA and code configuration, in the following
we only reported the best hardware implementations. Such
instances have been identified after a design space exploration
that employed the four-step, complexity-oriented heuristic
described in Section III-C considering the configurable pa-
rameters of the architecture, not described in detail due to
the lack of space, that are the parallelism of the sparse-dense
multiplier (PARM ), of the bit-flipping decoder (PARD), and
of the multiplication (PARIM ) and exponentiation compo-
nents (PARIE ) within the inversion module.
Software setup - The software implementation of BIKE we
considered as our software reference is the open source version
freely available online [30]. It provides both a baseline C99
portable software implementation and an optimized code that
employs the Intel AVX2 extension, thus providing higher per-
formance. The two software versions were executed on an Intel

Core i5-10310U CPU, forcing a fixed operating frequency
of 4.4 GHz to avoid performance variability due to power
management. For each BIKE code configuration, the execution
times of key generation, encapsulation, and decapsulation for
the C99 and AVX2 software have been obtained as the average
of 30 executions.
Functional validation - The proposed architectures have
been functionally validated through both post-implementation
timing simulation and board prototype execution, checking
the correctness of the obtained results against the software
implementation of BIKE [30]. For each code configuration,
correctness was checked against software execution of 10000
key generation, encapsulation, and decapsulation primitives.

Post-implementation simulation targeted the Xilinx Artix-
7 35 (xc7a35tcpg236-1), Artix-7 50 (xc7a50tcpg236-1), and
Artix-7 200 (xc7a200tsbg484-1) FPGAs, while board proto-
type execution targeted the Digilent Nexys 4 DDR board,
that features an Artix-7 100 (xc7a100tcsg324-1) FPGA. In
both cases, we implemented instances of the proposed ar-
chitectures for each BIKE code configuration and for each
target FPGA. Each hardware instance executed 10000 key
generations, encapsulations, and decapsulations, whose results
were compared with the corresponding outputs of software
execution.

B. Experimental results

Area results - The proposed architecture makes extensive
use of the FPGA BRAM for storage purposes, allowing the
cryptographic core to fit on smaller FPGAs even for codes
with a large block size p. Flip-flops would otherwise quickly
become the scarcest resources on small FPGAs, due to the
need to store multiple p-bit vectors, where p ranges between
12323 and 24659. Indeed, the smallest considered FPGA,
i.e., Artix-7 35, features just 41600 flip-flops while, instead,
packing 50 36kb BRAM memories, that can store overall up
to 1843200 bits.



TABLE V: Client-side execution times, expressed in milliseconds, and speedup over AVX2 software, within round brackets.

Code CPU BIKE [30] FPGA Our FPGA BIKE [21]
C99 AVX2 Artix-7 50 Artix-7 200 LW HS

B1 8.56 1.03 5.71 0.58 35.25 4.66
(0.12×) (0.18×) (1.78×) (0.03×) (0.22×)

B3 27.65 3.40 19.27 1.71 - -
(0.12×) (0.18×) (1.91×)

TABLE VI: Server-side execution times, expressed in milliseconds, and speedup over AVX2 software, within round brackets.

Code CPU BIKE [30] FPGA Our FPGA BIKE [21]
C99 AVX2 Artix-7 35 Artix-7 200 LW HS

B1 0.28 (0.18×) 0.05 0.03 (1.70×) 0.03 (1.70×) 1.25 (0.04×) 0.13 (0.38×)
B3 0.92 (0.12×) 0.11 0.08 (1.38×) 0.06 (1.83×) - -

However, we identified a few factors that concurred to
limit the maximum degree of parallelism. For the multiplier
component Mul, the PARM parallelism is bounded by the
values of v and t. Concerning the inversion component Inv,
increasing the PARIM parallelism over 3, i.e., implementing
parallel computation of 4 or more Karatsuba recursions within
the multiplier functional unit, requires a number of LUTs and
BRAMs that is not available on any FPGA from the Artix-
7 family. The PARIE parallelism is instead bounded by the
value of the bandwidth BW . Finally, the degree of parallelism
PARD of the decoding component Dec is limited by the
imposed timing constraint of a 91MHz clock frequency.

Table III and Table IV detail the resource utilization, in
terms of look-up tables (LUT), flip-flops (FF), and block
RAM (BRAM), for the instances targeting the Artix-7 35 and
200 FPGAs of the proposed client and server architectures
and for the lightweight and high-speed instances of the ref-
erence hardware implementations [21]. The reported results
demonstrate how the proposed cryptographic cores can scale
from the smaller Artix-7 35 FPGA up to the larger Artix-
7 200 FPGA. Moreover, they show that BRAM memories
are the most used resources, relatively to the ones available
on the target chip, on the larger Artix-7 200 FPGAs, while
instances targeting the smaller chips are bounded by the LUT
utilization. The proposed architectures usually employ a large
fraction of the available look-up tables, while requiring a
smaller fraction of flip-flops. On the contrary, the state-of-the-
art implementation [21] chosen as the hardware reference can
not effectively use all the resources available on larger FPGAs,
since the high-speed instance employs only 32%, 2%, and 11%
of the LUT, FF, and BRAM resources available on the largest
Artix-7 FPGA, respectively.

Performance results - Performance of the proposed archi-
tectures are assessed by comparing the execution times of
client-side and server-side computations to the ones of the C99
and AVX2 reference software and hardware implementations
of BIKE. To better evaluate the performance compared to
software execution, we define the speedup as the ratio between
the execution time of the AVX2 software and the one resulting
from the execution on a specific software or hardware instance.
A speedup value greater than 1 indicates a performance
improvement over the AVX2 software while a value below

1 corresponds to worse performance. Table V reports the
performance results for the two software references, i.e., C99
and AVX2, the instances of the proposed client architecture
that target the Artix-7 50 and 200 FPGAs, and the lightweight
and high-speed instances of the reference hardware implemen-
tation [21]. Performance data are reported as the execution
time, expressed in milliseconds, and as the corresponding
speedup over AVX2 software execution, reported within round
brackets. Table VI provides performance data for the server-
side hardware support.

The instance of the proposed client architecture targeting the
Artix-7 50 FPGA provides a hardware support that is around
six times slower than the reference AVX2 software execution,
as shown by the speedup of 0.18× for the B1 and B3 BIKE
configurations. On the contrary, instantiating the client module
on the Artix-7 200 FPGA results in a significant performance
improvement over the AVX2 reference, with speedups of
1.78× for B1 and 1.91× for B3. Referring to the B1 use
case in the client scenario, our Artix-7 50 implementation is
around six times faster than the lightweight instance of [21],
while our Artix-7 200 client implementation is around eight
times faster than the high-speed instance of [21].

In the server scenario, both the Artix-7 35 and Artix-
7 200 instances improve performance over AVX2. Artix-7 35
provides speedups of 1.70× and 1.38× for B1 and B3, while
Artix-7 200 is 1.70× and 1.83× faster than AVX2, respec-
tively. Moreover, both the Artix-7 35 and 200 implementations
of our server architectures outperform the high-speed instance
of [21].

V. CONCLUSIONS

This paper presented a complete hardware implementation
of BIKE that targets the Xilinx Artix-7 family of FPGAs
and supports client and server KEM operations in a quantum-
resistant TLS. Apart from the complete hardware implemen-
tation of BIKE, our research explored, thanks to a new
complexity-based design space exploration heuristic, the best
option between hardware and software implementations, given
a set of available hardware resources and a realistic use-
case scenario. The experimental evaluation comparing our
client and server support against the reference AVX2 and
hardware implementations of BIKE highlighted two aspects.
First, our implementation always overcomes the reference



hardware implementations of BIKE. Considering the B1 use
case in the client scenario, our implementations on the Artix-
7 50 and Artix-7 200 are six and eight times faster than the
lightweight and high-speed instances of [21]. Moreover, both
instances of our server architectures outperform the high-speed
instance of [21] by more than four times. Second, our client
architecture targeting the Artix-7 35 FPGA is around six times
slower than the reference AVX2 software execution, while the
one targeting the Artix-7 200 is almost twice as fast. Such
results highlighted that i) the use of the hardware support
imposes a careful design of the architecture to maximize the
parallelism and ii) the optimized software implementation is
advantageous in case the hardware resources for a custom
accelerator are scarce.
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