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Abstract

Waste, as a primary cause of visual pollution, not only impacts public health but also has significant economic implications,
particularly in tourism. Visual pollution from waste or trash encompasses various types that require classification. Cognitive cities
are beginning to develop automatic systems to classify these types, but the task is challenging due to the similarity among different
types of waste and the common features of most elements. To address this issue, we propose an innovative two-stage methodology
using YOLOv8 for object detection. This advanced approach is designed to detect and classify 16 different types of waste objects.
The proposed approach is compared to the traditional YOLOv8 to evaluate its performance. The experimental results demonstrate
the potential of the modified YOLOv8 approach, particularly when applied to larger image sizes, achieving a notable improvement
in F1-score, underscoring the viability of the proposed approach.
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1. Introduction

The rapid and often unchecked pursuit of development comes at a cost to our environment. While progress is
commendable, certain forms of development, particularly unplanned and unregulated growth, lead to significant con-
sequences, including pollution. As highlighted in (Ukaogo et al., 2020), human activities related to urbanization,
industrialization, mining, and exploration are at the forefront of global environmental pollution. Understanding the
magnitude of the danger posed by pollution, (Alharbi and Rangel-Buitrago, 2022) emphasizes that pollution’s impact
on health surpasses that of war, terrorism, diseases like malaria, HIV, tuberculosis, and even substances like drugs
and alcohol. Surprisingly, the number of deaths caused by pollution is comparable to those resulting from smoking.
Pollution, in essence, encompasses harmful activities caused by human actions that negatively affect the environment.
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Recognizing waste accurately in cognitive cities is crucial for reducing visual pollution, protecting public health, and
minimizing economic losses, particularly in the tourism sector. In light of these concerns, it becomes imperative to
seek solutions that can mitigate this issue. The utilization of object detection and deep learning concepts offers a
promising avenue for addressing visual pollution. By employing these technologies, we can identify instances of po-
tential visual pollution and take appropriate actions to reduce and eventually eliminate its impact on the environment.

Machine Learning (ML) has brought transformative change to diverse sectors (Al-Azani et al., 2022) like energy,
autonomous vehicles, cybersecurity, and environmental sciences. Unlike traditional programming, ML involves train-
ing the machine by providing input-output pairs, allowing it to learn correlations and construct algorithms. However,
this process requires data to be preprocessed into a suitable format, often involving feature extraction. Deep Learning
(DL), a subset of ML, takes this further. DL’s representation learning methods enable machines to learn from raw data
directly, bypassing the need for extensive preprocessing (LeCun et al., 2015).

Object detection, a specialized technique beyond image classification, serves to identify and categorize objects
within images by enclosing them in bounding boxes. This technique has found significance in diverse fields such
as autonomous vehicles, pedestrian detection, facial recognition, medical applications, video surveillance, and more.
The progress of object detection has generally gone through two historical periods: the traditional object detection
period (before 2014) and the deep learning-based detection period (after 2014) (Zou et al., 2023). The methods used
in DL for object detection can be broadly divided into two categories based on the detection process and the network
structure (Zou et al., 2023; Wang et al., 2021).

The first category is 2-stage object detection (Carranza-Garcı́a et al., 2020; Chen et al., 2019) which consists of
two stages starting with the first stage ”region proposal” where the model tries to identify the locations of possible
objects surrounding it by a box (Region of Interest ROI). Multiple methods can be used for region proposal including
selective search, CPMC, multi-scale combinatorial grouping, and RPN (Chen et al., 2020). In the second stage, the
model will try to refine the localization of the boxes and classify the proposals. Common 2-stage models (Chen et al.,
2020) include R-CNN released in 2015 (Girshick et al., 2014) and other improved versions following it such as Fast
R-CNN (Girshick, 2015).

Conversely, the second category, 1-stage object detection, a direct approach that swiftly classifies and localizes
objects using candidate anchor boxes. Its first exposure to the world began with YOLO (You Only Looks Once)
released in 2016 (Redmon et al., 2016). The name reveals the principle behind it which was to do both localization
and classification using only one convolution neural network. After that, many improved versions of YOLO were
introduced starting from the first version to YOLOv8 (Jocher et al., 2023) that was released in January 2023.

Generally, two-stage detectors achieve higher accuracy compared to one-stage detectors, though this comes with
a greater computational cost (Kraus and Dietmayer, 2019), (Carranza-Garcı́a et al., 2020). However, this outcome
is significantly influenced by the choice of convolutional backbone network and the hyperparameter configuration,
which is a complex and nuanced process (Wang et al., 2021)

In this paper, we present a dual-stage approach utilizing the YOLOv8 detection model to detect and classify 16
types of waste. For the detection task, Yolov8 has been utilized, while for the classification task, different CNN-based
architectures and a Swin transformer have been evaluated.

Fig. 1: High-level architecture of the proposed method
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Fig. 2: Detailed flowchart illustrating the applied methodology

2. Methodology

We propose a method that involves using YOLOv8 for object detection, followed by a classifier to categorize the
objects predicted by YOLOv8, as depicted in Figure 1.

In Figure 2, we present two distinct lines: the baseline and our new approach. This configuration facilitates a
comparative analysis between the outcomes of our proposed method and those of the original YOLOv8 results. The
baseline operates conventionally. We employ a dataset comprising training, validation, and test sets. We train YOLOv8
on the training and validation sets, utilizing the model to predict classes and bounding boxes for all objects across test
set images.

Conversely, the new approach entails altering the dataset structure into a single-class dataset by modifying the yaml
file with ’nc = 0’. We then adjust labels in the training and validation sets to have a class index of ’0’, while keeping the
test set unchanged. Subsequently, we train another YOLOv8 on these modified training and validation sets, employing
the model to predict bounding boxes for objects within the test set images. Returning to the original dataset, we crop
objects from the train and validation set images, organizing them by class. This process generates a suitable dataset
for training a classifier. Multiple classifiers are trained and tested, with the best one selected. Moving forward, we
take the prediction results from the YOLOv8 trained on the single-class dataset and input them into the classifier,
image by image and object by object. The classifier’s predictions overwrite the YOLOv8’s original predictions for
the single-class dataset. The underlying assumption that motivated this approach is that training a robust classifier on
objects from the train and validation set images, then using this classifier to predict object classes in test set images,
could produce better outcomes compared to the original YOLO classification results.
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3. Experiments

3.1. Environment Setup

The experiments were conducted using a NVIDIA GeForce GPU RTX3090 with CUDA Version 12.0. The environ-
ment utilized Linux as the operating system, Python Version 3.8.17, PyTorch Version 2.0.1+cu117, and Torchvision
Version 0.15.2+cu117. The available memory for the experiments was 26Gi. These specifications provided the neces-
sary computational resources for our study.

3.2. Dataset and preprocessing

The dataset utilized in this study originates from Roboflow which was developed by Technological Institute of the
Philippines (Roboflow, 2023), specifically identified as ”YoloV7 - Trash Dataset V3 - 04/01/2023 Computer Vision
Project”. It is composed of 16 classes, with a total of 10543 images. 9,740 of the images are used for training, 748
images for validation, and 55 images for testing. The original split ratio did not evenly distribute the data for training,
validation, and testing. To ensure more reliable results, we adjusted the split to 70% for training, 10% for validation,
and 20% for testing.

To prepare for classifier training, we converted the dataset into a suitable structure by cropping all objects from the
images and organizing them into their respective class folders. The resulting dataset exhibited imbalances across some
classes, as shown in Table 1. Figure 3 depicts examples of the considered waste objects. To address the imbalance
issue, we established specific criteria: each class in the training folder would contain a maximum of 1,000 cropped
objects, while the validation folder would include up to 100 cropped objects per class. When a class exceeded this
limit, we randomly removed objects until the threshold was met. Conversely, if a class fell short, we duplicated images
strategically to achieve the desired count, prioritizing those that had not been duplicated previously.

Following the object cropping and dataset balancing steps, we applied data augmentation techniques to enrich the
dataset’s diversity. These techniques randomly apply transformations—such as RandomHorizontalFlip, RandomVer-
ticalFlip, RandomRotation (30 degrees), and GaussianBlur (kernel size 3)—to each image. By augmenting the dataset
with varied transformations, we aimed to create a more resilient and adaptable dataset. This process enhances the
model’s capacity to generalize effectively across different scenarios, ultimately improving its performance in real-
world applications.

Table 1: Dataset Statistics

Class Train Instances (objects) Valid Instances (objects) Test Instances (objects)

Cans 1216 174 472
Cardboard 1865 300 556
Face Mask 1883 298 643
Glass Bottle 1022 165 308
Paper Bag 3472 499 1001
Paper Cup 834 106 234
Paperboard 498 123 181
Peel 288 58 98
Pile of Leaves 732 117 226
Plastic Bag 1436 171 469
Plastic Bottle 2877 389 680
Plastic Cup 861 128 298
Plastic Wrapper 4700 730 1174
Rags 329 48 86
Styrofoam 759 87 223
Tetra Pak 2196 331 671

Total 24968 3724 7320
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Fig. 3: Examples of the waste objects considered in this study

3.3. Selection of YOLOv8 Configuration

We conducted an analysis of the performance of the nano, small, and medium YOLOv8 versions before and after
transforming the dataset into a single-class dataset. We set the batch size to 32, epochs to 100, optimizer to ’auto’,
and image size to 640. Table 2 provides a clear picture of our findings. Across all model versions, there is a no-
table improvement of approximately 10% in mAP50 and Recall, alongside an approximate 8% increase in Precision.
Moreover, the mAP50-95 metric exhibits a growth of about 6% to 7%.

Interestingly, the medium model demonstrates a more pronounced improvement in terms of mAP50 convergence
when utilizing the single-class dataset. This trend is distinct from the results observed in the small and nano versions.
Based on these insights, we have chosen to focus on the medium model of YOLOv8 for our study.

To further investigate the effects of reducing the image size on the metrics improvements when transforming the
dataset to a single class, we experimented by changing the image size to 160. As can bee seen in Table 3, there is an
increase of mAP by approximately 3%, but the convergence is slower and the overall performance lags behind when
using an image size of 640 by an approximation of 7%. Therefore, we decided to use the medium version with an
image size of 640 in our experiment.

3.4. Classifier Selection

In this comprehensive experimentation, we conducted an in-depth evaluation of various classifiers, including
EffecientNet, ResNet50, ResNetx50, and Swin-transformer, with selecting the hyperparameters systemati-
cally. The dataset used for these experiments comprised cropped objects extracted from the dataset, mentioned previ-
ously.

We conducted two distinctive scenarios to evaluate classifier performance utilizing the original cropped dataset
and the augmented cropped dataset, presented in Table 4. In the first scenario, we utilized the original cropped image
dataset, as comprehensively presented in the left part of Table 4. Subsequently, we delved into the second scenario,
where we applied data balancing and augmentation techniques to the cropped image dataset. The results of this
augmentation are presented in the right part of the same table.

In the context of classifying performance using the original cropped dataset, the EfficientNet model stands out
with remarkable achievements. It recorded the highest training accuracy of 91.43% and secured the top position in
validation accuracy at 89.19%, both accomplished when employing the SGD optimizer with a learning rate (LR) of
0.001. Upon analyzing the optimizers, a consistent pattern emerges: the SGD optimizer consistently outperforms the
Adam optimizer. This trend is evident in the validation accuracy values. In summary, the combination of the SGD
optimizer with LR and weight decay of 0.001 consistently yielded the best validation results. In this configuration, the
EfficientNet model excelled with a high accuracy of 89.19%, followed by ResNet50 achieving 87.83%, ResNetx50
with 87.04%, and finally Swin transformer with 86.35%.

On the other hand, the augmented balanced dataset yielded the following highest validation accuracies: EfficientNet
achieved 86%, ResNet50 demonstrated 85%, ResNetx50 neared 85%, and Swin transformer reached 82%.

By looking at these results, we found that models trained on the original, unbalanced, and non-augmented dataset
outperformed those trained on the balanced and augmented dataset. This performance drop can be due to a couple of
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Table 2: YOLOv8 Performance Metrics of YOLOv8 Using Image Size 640

Model Size Dataset Metric Last Epoch Value Best Value Best Epoch

Nano

Original

Precision 0.81567 0.83152 92
Recall 0.68631 0.72474 70

mAP50 0.76001 0.77547 66
mAP50-95 0.44599 0.45512 80

Single-class

Precision 0.90882 0.90885 95
Recall 0.80531 0.82176 77

mAP50 0.86639 0.87884 77
mAP50-95 0.51405 0.52534 78

Small

Original

Precision 0.82066 0.82141 98
Recall 0.70704 0.75839 82

mAP50 0.76963 0.80379 58
mAP50-95 0.47889 0.50934 63

Single-class

Precision 0.90417 0.90928 78
Recall 0.82901 0.85028 54

mAP50 0.88447 0.89747 77
mAP50-95 0.54818 0.56013 65

Medium

Original

Precision 0.82062 0.83886 81
Recall 0.76164 0.76861 60

mAP50 0.806 0.81669 81
mAP50-95 0.51611 0.51995 89

Single-class

Precision 0.91832 0.91832 99
Recall 0.83509 0.85962 52

mAP50 0.89461 0.90157 52
mAP50-95 0.58377 0.58639 89

Table 3: YOLOv8 Performance Metrics of YOLOv8 Using Image Size 160

Model Size Dataset Metric Last Epoch Value Best Value Best Epoch

Medium

Original

Precision 0.8127 0.84869 78
Recall 0.65216 0.65712 96

mAP50 0.70883 0.70961 78
mAP50-95 0.44322 0.44322 99

Single-class

Precision 0.87967 0.89029 95
Recall 0.75442 0.75442 99

mAP50 0.82003 0.82003 99
mAP50-95 0.51646 0.51646 99

factors. One possible factor is the data balancing, we reduced the number of objects to a maximum of 1,000 per class
for training and 100 per class for validation, which likely led to a loss of valuable information and reduced the variety
of training samples. This reduction left the model with fewer diverse examples to learn from, impacting its ability to
generalize.

Another possible factor is the process of data augmentation, while it was intended to enhance dataset diversity, it
introduced redundancy and noise. Duplication of images to balance classes resulted in the model overfitting to these
repetitive samples rather than learning new patterns. Additionally, the augmented variations might not have accurately
represented real-world scenarios, further degrading the model’s performance.
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Table 4: Classifiers Performance Using Original and Augmented Cropped Datasets

Model Optimizer Original Cropped Datase Augmented Cropped Dataset
Train Acc. (%) Val. Acc.(%) Train Loss Val. Loss Train Acc. (%) Val. Acc.(%) Train Loss Val. Loss

EffcientNet ADAM 80.23 78.13 0.61 0.65 78.4 76.63 0.68 0.77
SGD 91.43 89.19 0.26 0.36 89.48 86.13 0.32 0.5

ResNet50 ADAM 84.3 81.1 0.49 0.56 76.26 72.69 0.74 0.8
SGD 92.03 87.83 0.25 0.41 90.39 85.25 0.3 0.5

ResNetx50 ADAM 77.1 75 0.7 0.77 77.38 76.5 0.7 0.75
SGD 90.98 87.04 0.28 0.44 88.22 84.75 0.37 0.54

Swin ADAM 70.8 66.02 0.91 1.05 70.61 63.19 0.93 1.13
SGD 91.63 86.35 0.26 0.47 84.52 82.25 0.47 0.59

4. Results & Discussion

The proposed approach is evaluated using different evaluation measures including Mean Average Precision (mAP),
Precision, Recall, and F1.

To assess the performance of the modified YOLOv8 approach, we start presenting the results of the original
YOLOv8m baseline, trained on both image sizes 640 and 160, on the test set. Subsequently, we examine the out-
comes of the modified YOLOv8m, also trained on both image sizes, using two distinct calculation methods. For the
modified YOLOv8m, its performance is evaluated by multiplying the classifier F1-score with the Yolo single class
F1-score. The performance of the trained classifiers on the original cropped dataset using SGD optimizer with LR and
weight decay of 0.001 is presented in Table 5.

The consolidated outcomes for the modified YOLOv8m, trained on image sizes 640 and 160, are illustrated in
Table 6. This table includes the results for both the modified YOLOv8m and the baseline original YOLOv8m on both
image sizes 640 and 160. It provides a comprehensive overview of the performance metrics for the different scenarios.

Table 7 provides the final results when comparing the baseline approach with the new approach using the F1-
score. It can be seen that the new approach is better when considering larger image sizes, also it can be seen that we
achieved almost 2% more F1-score for the modified version. This can be justified due to that YOLO’s simultaneous
balancing of localization and classification tasks can lead to suboptimal performance, especially with closely packed
or overlapping objects, unlike single-class-based classifiers that focus on one class at a time.

Table 5: Classifiers Performance on Test Set

Model Accuracy % Precision % Recall % F1-score %

EffecientNet 90.77 91.58 90.77 91.17
ResNet50 89.23 90.31 89.23 89.77

ResNetx50 89.23 91.40 89.23 90.30
Swin-transformer 91.54 94.07 91.54 92.79

Table 6: YOLOv8m Performance on test Set

Image
Size Dataset Precision% Recall% F1-score% mAP50%

640
Original 93.0 75.0 83.04 83.8

Single Class 92.2 91.5 91.85 95.0

160
Original 88.9 74.5 81.07 78.9

Single Class 89.0 74.7 81.23 85.2
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Table 7: Model Performance Comparison Based on F1-score

Image Size YOLO Base% YOLO Single Class% Classifier YOLO Modified (Multiplication)%

640 83.04 91.85 92.79 85.23
160 81.07 81.23 92.79 75.37

5. Conclusion

This study presented a novel approach to object detection using YOLOv8, by extending it into a two-stage frame-
work through the incorporation of a classifier for refining its predictions. From the conducted analysis, it can be
observed that the new approach demonstrates superior performance with larger datset. Specifically, it achieves nearly
a 2% increase in F1-score compared to the base model, indicating a significant improvement in Precision and Recall
metrics for object detection tasks. Future efforts may include adopting mean Average Precision (mAP) as a perfor-
mance metric alongside the F1-score. Additionally, exploring more advanced classifiers or optimizing hyperparame-
ters could further enhance classification performance and elevate the overall accuracy and robustness of our proposed
approach. Furthermore, comparing our YOLO model with other 2-stage object detection models would allow for an
assessment of computational efficiency and accuracy trade-offs, guiding the selection of the most suitable model for
practical applications.

6. Acknowledgements

The authors would like to thank King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for all its
support. They would like to extend their sincere appreciation to SDAIA-KFUPM Joint Research Center for Artificial
Intelligence (JRC-AI) and the Uxplore program at KFUPM for providing the resources and facilities that were crucial
to the completion of this study.

References

Al-Azani, S., Sait, S.M., Al-Utaibi, K.A., 2022. A comprehensive literature review on children’s databases for machine learning applications.
IEEE Access 10, 12262–12285.
Alharbi, O.A., Rangel-Buitrago, N., 2022. Scenery evaluation as a tool for the determination of visual pollution in coastal environments: The
rabigh coastline, kingdom of saudi arabia as a study case. Marine Pollution Bulletin 181, 113861.
Carranza-Garcı́a, M., Torres-Mateo, J., Lara-Benı́tez, P., Garcı́a-Gutiérrez, J., 2020. On the performance of one-stage and two-stage object
detectors in autonomous vehicles using camera data. Remote Sensing 13, 89.
Chen, K., Li, J., Lin, W., See, J., Wang, J., Duan, L., Chen, Z., He, C., Zou, J., 2019. Towards accurate one-stage object detection with ap-loss,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5119–5127.
Chen, K., Lin, W., Li, J., See, J., Wang, J., Zou, J., 2020. Ap-loss for accurate one-stage object detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 43, 3782–3798.
Girshick, R., 2015. Fast r-cnn, in: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448.
Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation, in:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587.
Jocher, G., Chaurasia, A., Qiu, J., 2023. Yolo by ultralytics (version 8.0. 0)[computer software]. YOLO by Ultralytics (Version 8.0. 0)[Computer
software] .
Kraus, F., Dietmayer, K., 2019. Uncertainty estimation in one-stage object detection, in: 2019 ieee intelligent transportation systems conference
(itsc), IEEE. pp. 53–60.
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436–444.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 779–788.
Roboflow, 2023. Yolov7 - trash dataset v3 -04/01/2023 dataset. https://universe.roboflow.com/

technological-institute-of-the-philippines/yolov7-trash-dataset-v3-04-01-2023. Visited on 2024-05-22.
Ukaogo, P.O., Ewuzie, U., Onwuka, C.V., 2020. Environmental pollution: causes, effects, and the remedies, in: Microorganisms for sustainable
environment and health. Elsevier, pp. 419–429.
Wang, Z., Jiao, B., Xu, L., 2021. Visual object detection: A review, in: 2021 40th Chinese Control Conference (CCC), IEEE. pp. 7106–7112.
Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J., 2023. Object detection in 20 years: A survey. Proceedings of the IEEE 111, 257–276.

 https://universe.roboflow.com/technological-institute-of-the-philippines/yolov7-trash-dataset-v3-04-01-2023 
 https://universe.roboflow.com/technological-institute-of-the-philippines/yolov7-trash-dataset-v3-04-01-2023 

