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Abstract.  Recent innovations in Deep Reinforcement Learning (DRL) and Ar-
tificial Intelligence (AI) techniques have allowed for the development of artificial 
agents that can outperform human counterparts. But when it comes to multiagent 
task contexts, the behavioral patterning of AI agents is just as important as their 
performance. Indeed, successful multi-agent interaction requires that co-actors 
behave reciprocally, anticipate each other’s behaviors, and readily perceive each 
other’s behavioral intentions. Thus, developing AI agents that can produce be-
haviors compatible with human co-actors is of vital importance. Of particular 
relevance here, research exploring the dynamics of human behavior has demon-
strated that many human behaviors and actions can be modeled using a small set 
of dynamical perceptual-motor primitives (DPMPs) and, moreover, that these 
primitives can also capture the complex behavior of humans in multiagent sce-
narios. Motived by this understanding, the current paper proposes methodologies 
which use DPMPs to augment the training and action dynamics of DRL agents 
to ensure that the agents inherit the essential pattering of human behavior while 
still allowing for optimal exploration of the task solution space during training. 
The feasibility of these methodologies is demonstrated by creating hybrid 
DPMP-DRL agents for a multiagent herding task. Overall, this approach leads to 
faster training of DRL agents while also exhibiting behavior characteristics of 
expert human actors. 

Keywords: Deep Reinforcement Learning (DRL), Dynamical Motor Primitives 
(DMPs), Multiagent coordination. 

1 Introduction 

Rapid improvements in model-free Artificial Intelligence (AI) and Deep Reinforcement 
Learning (DRL) techniques [1–4] have resulted in the development of artificial agents 
capable of performing various tasks at levels equal to or better than human experts. In 
many cases, however, the success of these DRL agents requires a complex, highly 
tuned, and task-specific structure of DRL methodologies and neural-network 



architectures along with long and computationally intensive self-play training schemes 
[1, 2]. Moreover, even after constraining the action space of DRL agents to match hu-
man response limitations [1], the behavior of DRL agents is often qualitatively different 
from humans [5], such that, DRL agents often exhibit action sequences or behavioral 
strategies that are not readily performed by humans. Although this does not pose a 
problem if the goal is only to achieve optimal or near optimal performance, it poses a 
major challenge when the aim is to develop DRL agents capable of effective human-
AI agent interaction. Indeed, effective human performance in multiagent contexts re-
quires that co-actors behave reciprocally, are able to anticipate each other’s behaviors, 
and can readily perceive each other’s behavioral intentions [6] while maintaining the 
right interaction flexibility [7]. Thus, developing methods that produce DRL agents that 
are capable of human-like behavior leading to robust human-centered coordination is 
often essential. 

One way to improve the “human-like” nature of DRL agents is to employ prere-
corded human expert data or real-time human gameplay/interventions during the train-
ing process; e.g., behavior cloning [8], generative adversarial imitation learning (GAIL) 
[9], or oracle learning [10]. In addition to increasing the interactive effectiveness of 
DRL by exposing them to human actions and reciprocal patterns of coordination that 
are likely to be missed during self-play training [6], the use of human data to pre-train 
AI agents also helps to scaffold the essential “dynamics of gameplay” (e.g., basic action 
and coordination patterns that lead to preliminary levels of task success), both ensuring 
effective task learning and decreasing training time [11]. Unfortunately, these methods 
rely on the availability of large datasets of human gameplay, which are not readily 
available for most tasks (both real and computer based), and can suffer sharp perfor-
mance declines when the expert data is sparse or imperfect [12]. 

However, despite the variability and complexity of human data within and across 
task contexts, research exploring the dynamics of human behavior has demonstrated 
that it typically reflects the context-specific realization of low-dimensional principles. 
Indeed, a growing body of research [13–17] has revealed that the spatiotemporal pat-
terning of the behavioral actions that define human performance and decision making 
in both individual and multiagent task contexts can be modelled using a small, funda-
mental set of dynamical primitives (i.e., nonlinear dynamical functions) [15–18]. More-
over, that the task-specific structure and parameterization of such models can be 
achieved with small human datasets (i.e., 5 to 10 individuals/teams) and can readily 
generalize across various task contexts [19–23].  

The significant implication of the latter work is that human-inspired, dynamical 
models could be employed to (a) enhance DRL training across task contexts where 
large human datasets are not available or augment DRL models to inherit the low-di-
mensional dynamics of human behavior or decision making and (b) produce DRL 
agents that enact more human-like behavior, and thus, work more effectively in mixed 
human-AI multiagent task contexts. Thus, the aim of this paper is to provide a brief 
background of the application of dynamical primitives to model individual behavior in 
multiagent task contexts and to provide a methodology for using dynamical primitives 
to augment DRL agents trained to complete a complex multiagent herding task. 



 

2 Modeling Perceptual-Motor Behaviors 

2.1 Dynamical Perceptual-Motor Primitives in Individual Behavior 

Research on perceptual-motor behavior [24] has revealed that human actions are com-
posed of two fundamental movement types: (1) discrete movements, as when one 
reaches for an object or target location, taps a key, or throws a dart; and (2) rhythmic 
movements, as when one waves a hand, hammers a nail, or simply walks. Furthermore, 
previous research has demonstrated how task-defined human perceptual-motor behav-
ior and decision making can be modelled using a relatively small set of nonlinear dy-
namical primitives: namely, environmentally coupled fixed-point (mass-spring) and 
limit cycle (self-sustained oscillator) equations, as well as multi-stable bifurcation func-
tions [13–17]. For instance, research has shown these dynamical primitives can be em-
ployed to effectively model human reaching, object passing, rhythmic wiping, cranking 
tasks [25], goal-directed human navigation within an obstacle-ridden environment, in-
cluding route selection [21], and drumming and racket ball tasks [20]. The dynamical 
primitives used to model human perceptual-motor behaviors can be termed as dynam-
ical perceptual-motor primitives (DPMPs).  

2.2 DPMPs in Multiagent Tasks 

To succeed in human-human multiagent task contexts, individual agents have to plan 
their action in relation to both the desired goal and their partner’s state and action [26]. 
This results in individuals coordinating their actions physically and temporally to col-
lectively influence the environment [18, 27]. The stable patterns of such coordination, 
whether between a group of friends clearing a dinner table or teammates playing foot-
ball, naturally emerge from the changing physical constraints and informational cou-
plings that exist between the environmentally embedded co-acting individuals [28–30]. 
Thus, the same dynamical primitives used to model human perceptual-motor behavior 
can also be employed to model the task dynamics of numerous complex multiagent 
tasks, including cooperative object pick-and-place tasks [31] and goal-directed multia-
gent navigation and collision avoidance behaviors, as well as multiagent shepherding 
behavior [14, 19]. The latter research has also demonstrated how these DPMPs can be 
employed to control the behavior of artificial agents in human-AI agent contexts, with 
human-AI agent performance equivalent to and indistinguishable from human-human 
performance. It is also important to note that the DPMPs that underly these models can 
be readily generalized across a wide range of multiagent task contexts [19, 31–33]. 

2.3 Use of Deep Reinforcement Learning (DRL) in Conjunction with DPMPs 

Importantly, DPMPs have the potential to provide a highly generative set of dynamical 
functions for developing low-dimensional models of synergistic human perceptual-mo-
tor behavior. Several researchers have demonstrated how DPMPs can significantly re-
duce the dimensionality of motor-skill training and control in artificial systems [34, 35]. 
For instance, Ijspeert and colleagues [23, 36] have shown how DPMPs can be employed 



to generatively train a virtual end-effector or multi-joint robotic arm to perform goal-
directed reaching, obstacle avoidance movements, and racket swinging. It is important 
to note here that the use of DPMPs introduces the need for the selection of task-specific 
models and further optimization of the model parameters. Various machine learning 
techniques can be used for DPMP model selection and parameter optimization e.g., 
imitation- and reinforcement-based techniques [23], supervised learning [37], and 
search-based optimization techniques [38]. 

The advantage of reinforcement learning (RL) is that such machine learning ap-
proaches do not require the agents have a-priori knowledge of the dynamics of the en-
vironment nor the agent’s action capabilities or consequences. In RL, agents learn via 
trial-and-error, modifying their behavior to maximize desired outcomes. Computation-
ally, the goal of machine-based RL is to find the policy (state-action mapping) that 
results in an agent maximizing its reward within a complex dynamical environment 
[39]. Combined with deep-neural-network architectures and a “replay-memory”, deep 
reinforcement learning (DRL) methods have gained wide notoriety for their ability to 
learn various tasks at or above human levels of performance [1–4]. This is in-part due 
to the powerful function approximation properties of deep neural networks which can 
learn low-dimensional feature representations from high-dimensional state-action 
spaces [40]. Most relevant here is the work demonstrating how DRL can be employed 
to map continuous action or parameter spaces [41, 42]. Interestingly, DRL applied 
within multiagent contexts can result in more robust behavioral policies than single 
actor RL [43]. However, although DRL methods have the advantage of generalizing 
over a wide set of state-action-reward scenarios and mapping high-dimensional states 
to actions, DRL methods are notoriously slow and computationally intensive resulting 
in researchers often relying on imitation learning methods to enhance the speed of novel 
task learning [44, 45].  

The advantages and shortcomings of both DPMP and DRL methods necessitate the 
use of both methodologies in conjunction. Indeed, we propose that the DPMPs can be 
used in two ways to enhance the training and performance of DRL agents: 1) using 
DPMPs during DRL training and 2) augmenting DRL model architectures with 
DPMPs. The former approach is analogous to imitation learning approaches [8–10] 
while treating the DPMP model as an expert “human” demonstrator. The rest of the 
paper will however focus on the latter and will specifically present the application of 
the proposed methods to the multiagent herding problem. 

3 The Herding Problem 

3.1 Modeling Human Behavior using DPMPs 

The herding problem is a widely studied multiagent paradigm wherein two or more 
herders (agents) have to corral multiple targets agents (e.g., sheep, autonomous agents) 
and either contain them or move them from one location to another [19]. The task is 
ideally suited for the investigation of human group and multiagent coordination and 
problem-solving behaviors, including task division, behavior-mode switching (corral-
ling to containment), and adaptation to task perturbations (new targets) [46]. In the 



 

context of this paper, of particular interest is the recent research demonstrating how 
DPMPs can be employed to model the emergence of the coordinated perceptual-motor 
strategies of humans during successful task completion [13, 14, 19]. The task consists 
of ‘herding agents’ (HAs) successfully corralling and containing a set of ‘target agents’ 
(TAs), typically ranging from 3 to 7 targets, within a red containment region located on 
a game field. When left unperturbed, TAs exhibit Brownian motion, and thus naturally 
disperse if left alone. Importantly, however, the TAs are repelled away from the HAs, 
such that, when an HA is within a critical distance from a TA, the TA flees in the op-
posite direction. Thus, continuous action by both HAs is required to corral and keep the 
TAs contained within the containment region. Task trials are typically between 1 to 2 
minutes, with a trial deemed successful if an HA dyad can contain the TAs within the 
containment area for a specified period or percentage of trial time (e.g., 70% of a 1-min 
trial or continuously for 10 s). An overview of the task layout is show in in Figure 1. 
An effective strategy to complete this task is to select and recover the TA that is farthest 
from the containment region, such that at each point in time each HA moves towards 
the farthest-TA closest to their current location (and not currently being corralled by 
another HA). This strategy, termed as Search and Recover (S&R), can be modelled by 
a DPMP based task dynamic model taking the form, 

 
�̈�𝑟𝑖𝑖 + 𝛼𝛼𝑟𝑟�̇�𝑟𝑖𝑖 + 𝜔𝜔𝜃𝜃

2�𝑟𝑟𝑖𝑖 − (𝑟𝑟𝑇𝑇,𝑖𝑖 + 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚�) = 0 (1) 
  

and 
 

�̈�𝜃𝑖𝑖 + 𝛼𝛼𝜃𝜃�̇�𝜃𝑖𝑖 + 𝛽𝛽�̇�𝜃𝑖𝑖3 + 𝛾𝛾𝜃𝜃𝑖𝑖�̇�𝜃𝑖𝑖 + 𝜔𝜔𝜃𝜃
2(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑇𝑇,𝑖𝑖) = 0, (2) 

 
which model the radial distance and angle of each herder, respectively. More specifi-
cally, in Eq. (1), �̇�𝑟, and �̈�𝑟 represent the velocity and acceleration of HA-i's radial dis-
tance, respectively, 𝑟𝑟𝑇𝑇,𝑖𝑖 is the radial distance of the farthest TA that is being pursued, 
and 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚 is a fixed parameter that specifies HA-i’s minimum preferred radial distance 
from a TA during herding to ensure repulsion towards the goal. In Eq. (2), �̇�𝜃𝑖𝑖 and �̈�𝜃𝑖𝑖 
represent the velocity and acceleration of the radial angle, respectively, 𝛼𝛼𝜃𝜃 and 𝜔𝜔𝜃𝜃

2  rep-
resent the dampness and stiffness parameters, 𝜃𝜃𝑇𝑇,𝑖𝑖 represents the radial angle of the TA 
pursued by HA-i, and 𝛽𝛽�̇�𝜃𝑖𝑖3 and 𝛾𝛾𝜃𝜃𝑖𝑖�̇�𝜃𝑖𝑖 are the nonlinear Rayleigh and van der Pol terms. 
The inclusion of the nonlinear terms captures the amplitude-frequency and peak veloc-
ity-frequency relationship exhibited by human actors [25].  

The S&R strategy is effective in corralling TAs into a containment region, but when 
tasked with continuously containing more than four TAs within a containment region 
for extended periods of time, the S&R strategy becomes unstable (ineffective) and a 
more robust strategy is adopted by experienced herders. This latter containment strat-
egy involves the HAs performing oscillatory movements that together encircle the en-
tire TA herd and has been termed as coupled oscillatory containment (COC) [19]. A 
more complex and robust DPMP model can be used to model both S&R and COC 
behaviors with additional terms for coupling between HAs (see [46] for more details). 
However, for the scope of this paper, which is concerned with demonstrating the 



feasibility of using DPMP models to augment DRL agents, the simplified model ap-
proximated by Eqs. (1) and (2) is sufficient.  

 

 
Fig. 1. Top view of the herding environment  

3.2 Target Selection (Decision Dynamics) 

It is also important to note here that, in general, the DPMP model for the S&R herding 
approximated by the above equations defines the action dynamics of a herder (i.e., the 
movement dynamics when moving towards and corralling a TA).  However, the effec-
tiveness of Eqs. (1) and (2), is dependent on the decision dynamics of target selection, 
which determines the TA to be pursued (i.e., (𝑟𝑟𝑇𝑇,𝑖𝑖 ,𝜃𝜃𝑇𝑇,𝑖𝑖)). Indeed, research has demon-
strated how the specifics of the target selection rule (dynamics) can significantly influ-
ence task performance [47]. Auletta et al. [48], for example, showed that the TA selec-
tion strategies derived from expert human players can be significantly different and lead 
to better task performance than those derived from novice human players, while result-
ing in the same number of task successes.   

Of particular importance here, Nalepka et al. [19] demonstrated how human TA se-
lection can be modeled heuristically as: select the TA that was (i) closer to their HA 
than the other HA and (ii) was furthest from the containment area. Rigoli et al. [49] 
further demonstrated that this TA selection rule results in robust novice human-AI agent 
interaction while also providing training equivalent to a human expert. 

3.3 Hybrid DRL Agents for Herding  

A classical approach to applying DRL techniques to a multiagent problem like herding 
would be to use a single deep neural network to approximate the target selection and 
action dynamics policy for each HA where the states of all the TAs and HAs are pro-
vided as an input and the network outputs the HA’s action. This approach can be further 
decentralized by using separate networks for target selection and action dynamics 
which can be trained independently. To draw upon the advantages of DPMP models, 
the decentralized DRL architectures can be augmented by creating hybrid models such 
that either the target selection or the action dynamics of the DPMP model described in 



 

the previous sub-section is used with a deep neural network which is trained by DRL. 
Here we will refer to these hybrid models as DRL-target selection and DRL-action dy-
namic models, respectively, and their schematic is shown in Figure 2.  

The DRL-target selection model for each HA uses a neural network to observe the 
states of all the TAs and HAs and outputs the TA to be pursued. The position of this 
selected TA is used with the DPMP model described by Eqs. (1) and (2) to determine 
the action of each HA. It is expected that by using this hybrid model and training it by 
DRL, the HAs would be able to exhibit better task division and the neural network 
trained for TA selection can compensate for the absence of the oscillatory and coupling 
behaviors in the action dynamics. This should further result in a better performance as 
compared to the simplified DPMP model, which only models the S&R behavior, when 
the goal containment time is higher (>5s). 

On the other hand, the DRL-action dynamics model for each HA uses the heuristic 
TA selection rule from the DPMP model to select the TA to pursue and the neural 
network takes the state of that selected TA with the states of all the HAs and outputs 
the change in position in radial distance and radial angle. In this case, it is expected that 
the neural network trained to approximate the action dynamics will exhibit the oscilla-
tory and coupling behaviors observed in human experts and thus result in better task 
performance than the simplified DPMP model. 

 

4 Simulation Experiments 

4.1 Task Environment 

The herding environment was developed using the Unity game engine (Unity Tech-
nologies, San Francisco, USA) and the DRL agents were implemented using the Unity 
ML-Agents package [50]. The environment size was set to 1m x 1.8m with two HAs 
corralling four TAs which spawned randomly in a ±0.3m x ±0.6m rectangle at the cen-
ter of the field. The task goal was for the HAs to contain the TAs continuously for 10 s 
while each trial lasted 90 s. The velocity of the HAs was limited to 1 m/s in each direc-
tion and the TA behavior and DPMP parameters for equations (1) and (2) were set 

Fig. 2. Schematic of Hybrid DRL agents. (Left) DRL-target selection agent 
and (Right) DRL-action dynamics agent  



according to a model tested to approximate human-like behavior (see Nalepka et al. 
[14] for more details). 

4.2 DRL models and Training 

The DRL-target selection model for each HA used a neural network with 2 densely 
connected hidden layers with 128 neurons each and took the states (position and veloc-
ity) of all TAs and HAs as inputs (24 inputs) and outputted a one-hot vector of the TA 
to pursue. The same neural network was used to approximate the policy of both HAs in 
any given environment, but the actions and observations were transformed such that 
each HA observed the playing field from the bottom. The neural network was trained 
according to the Proximal Policy Optimization (PPO) algorithm for reinforcement 
learning (RL) for 10 million training steps with observations collected every 15th frame 
while the environment updated at 50 Hz. A curriculum learning was implemented such 
that, during the first 3 million training steps, the TA spawn area increased in steps lin-
early from ±0.15m x ±0.3m to ±0.3m x ±0.6m. 

For the DRL-action dynamics model, the state of the selected TA and the HAs was 
used as an input (12 inputs) to a neural network with 2 densely connected hidden layers 
with 128 neurons each and outputted a continuous action vector (2 outputs) of change 
in radial distance and radial angle for each HA. The neural network was trained accord-
ing to the Proximal Policy Optimization (PPO) algorithm for reinforcement learning 
(RL) for 25 million training steps with observations collected every 5th frame while the 
environment updated at 50 Hz. Between 2 and 10 million training steps, the TA spawn 
area increased in steps linearly from ±0.15m x ±0.3m to ±0.3m x ±0.45m while the area 
of the field increased in steps linearly from 0.8m x 1.2m to 1m x 1.8m. During training, 
the environment started with 2 TAs and an additional TA was added at 10 and 15 mil-
lion training steps. Finally, at 5, 7.5, and 10 million training steps the distance within 
which the HA influenced a TA was stepped from 20cm to 16cm to 12cm and the ran-
dom motion of TAs when not influenced by HAs proportional to the experimental value 
(used in [14]) was stepped from 0.25 to 0.5 to 1 times, respectively.  

  During training, the reward for both hybrid DRL agents was calculated in each 
environment update such that each HA received a negative (0.01 x distance of TA from 
center of environment) reward for every TA outside the containment area and positive 
0.01 reward for every TA in the containment area. 

4.3 Comparison between modeling methodologies 

Twenty hybrid DRL agents were trained by each methodology and the 3 top agents 
of each type were selected by ranking them by the average episode length in the last 
0.25 million training steps. 20 simulation trials were carried out for each selected agent 
(60 trials per condition) and 60 simulation trials were carried out using the DPMP 
model (parameters set to values specified in [14]) while they completed the 2-HA, 4-
TA herding task where both HAs were controlled by the same model. The trial data 
(states of HAs and TAs) recorded from all trials was used to discern basic performance 
outcomes for the three agent types.  



 

The analysis revealed that the DPMP, DRL-action dynamics, and DRL-target selec-
tion models were found to be successful in 26.67%, 98.33%, and 100% of the simula-
tion trails, respectively. Further, a similar procedure employed by Nalepka et al. [19, 
46] was used to classify oscillatory (COC) behaviour during containment for each agent 

and proportion of time spent oscillating (%OSC) was then averaged for each agent type. 
This measure is displayed in Fig. 3 (right).  

5 Discussion 

The analysis of the performance measures from the simulated trials of the agents mod-
eled by DPMP, DRL-target selection, and DRL-action dynamics methods is in line with 
the expectation of the hybrid agents performing better than the agent modeled by the 
simplified DPMP.  Indeed, agents trained by both hybrid DRL methods outperform the 
DPMP agent in terms of task success and total time required for task completion. It is 
again important to note that the DPMP model used for comparison was a simplified 
model without the oscillatory and coupling behavior which are characteristic of expert 
human behavior during successful TA containment [19]. The better performance of the 
hybrid DRL agents can be attributed to the differences in strategies approximated by 
the simplified DPMP model and the corresponding deep neural networks. In the case 
of the DRL-target selection agent, it was observed that the policy diverges from the 
heuristic policy of the simplified DPMP once the TAs are in the containment region – 
resulting in higher task success. On the other hand, the policy of the DRL-action dy-
namics agent when pursuing the TA which is inside the containment region results in 
oscillatory behavior. This may be due to the fact that the TA selection heuristic encodes 
information regarding whether all TAs are within the containment region, and thus 
whether oscillatory behaviors are appropriate. This change in policy is also reflected by 
the higher proportion of time spent oscillating during containment by the DRL-action 
dynamics model. Finally, from the box plots in Figure 3, it can be seen that the total 
trial time taken by the hybrid DRL agents is comparable to expert human pairs. Further, 

Fig. 3. Boxplots displaying the total time taken to complete a trial (left) and proportion of 
time spent oscillating during containment (right) for the three agent types, where TS refers to 

the DRL-target selection model and AD refers to the DRL-action dynamics model. Dotted lines 
indicate human expert performance for reference. 



although the time spent by the hybrid DRL agents oscillating during containment is not 
even close to the expert human level, it is sufficient for task success and supports the 
occurrence of a bifurcation in human behavior with the increased skill level [13].    
 In this paper, we successfully demonstrated the usage of DPMP models for creating 
better hybrid DRL agents. Although not presented here, an alternative approach of us-
ing a single deep neural network, or two separate deep neural networks to approximate 
both target selection and action dynamics, was unsuccessful in learning the task with 
similar curriculum learning steps and even longer training times (> 100 million steps). 
If required, the networks from the hybrid DRL agents can be detached and combined 
to create a completely neural network-based agent for further training using DRL. Fi-
nally, as highlighted at the end of section 2, DPMP models can also be used to supple-
ment methods that use expert data (imitation learning) or expert models (oracle learn-
ing) for DRL and will need further exploration and testing. Given that the DPMPs cap-
ture the essence of human movement behaviors, their use for creating DRL agents can 
allow for creating DRL agents for a much wider range of tasks without being limited 
by the complexity of state-action-reward structures and lack of expert datasets. Finally, 
more research is required to create DRL agents which can exhibit adaptive behavior 
based on the human teammate’s skill level such that DRL agents can be used as a trainer 
or synthetic teammate for skill-learning.   
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