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—— Abstract
Assuming the Birch and Swinnerton-Dyer conjecture, an odd square-free integer n is a congruent
number if and only if the number of triplets of integers (x,y, z) satisfying 2- 2% + 3> + 8- 2> =n is
twice the number of triplets satisfying 2z + % +32- 22 = n due to Tunnell’s theorem. However, we
show these equations are instances of a variant of counting solutions of the homogeneous Diophantine
equations of degree two which is a #P—-complete problem. Deciding whether n is congruent or not is
a problem in NP since congruent numbers could be easily checked by a congruum, because of every
congruent number is a product of a congruum and the square of a rational number. We conjecture
that if P = NP and FP # #P, then the Birch and Swinnerton-Dyer conjecture would be false.
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1 Introduction

Let {0,1}* be the infinite set of binary strings, we say that a language L; C {0,1}* is
polynomial time reducible to a language Lo C {0,1}*, written L; <, Lo, if there is a
polynomial time computable function f : {0,1}* — {0,1}* such that for all « € {0,1}*:

x € Ly if and only if f(x) € Ls.

An important complexity class is NP-complete [5]. If L; is a language such that L’ <, L;
for some L' € NP-complete, then Ly is NP-hard [2]. Moreover, if L; € NP, then L; €
NP-complete [2]. A principal NP-complete problem is SAT [5]. An instance of SAT is a
Boolean formula ¢ which is composed of:

1. Boolean variables: x1, o, ..., Zn;

2. Boolean connectives: Any Boolean function with one or two inputs and one output, such
as A(AND), V(OR), —(NOT), = (implication), < (if and only if);

3. and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables in ¢. A
satisfying truth assignment is a truth assignment that causes ¢ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [5]. We define a C NF' Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [2]. A Boolean
formula is in conjunctive normal form, or CN F| if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [2]. A Boolean formula is in 3-conjunctive normal
form or 3CNF, if each clause has exactly three distinct literals [2]. For example, the Boolean
formula:

(x1V — 21V — x2) A (23 V22 V 24) A (— 21V — 23V — 4)

is in 3CNF. The first of its three clauses is (x1V — 21V — x2), which contains the three
literals 21, — 21, and — 3. In computer science, not-all-equal 3-satisfiability (NAE-3SAT)
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is an NP-complete variant of SAT over 3CNF Boolean formulas. NAE-3SAT consists in
knowing whether a Boolean formula ¢ in 3CNF has a truth assignment such that for each
clause at least one literal is true and at least one literal is false [5]. NAE-3SAT remains
NP-complete when all clauses are monotone (meaning that variables are never negated), by
Schaefer’s dichotomy theorem [10].

In computational complexity, the complexity class #P (or Sharp-P) is the set of the
counting problems associated with the decision problems in the set NP [12]. Besides, the
complexity class F'P is the set of the function problems associated with the decision problems
in the set P [8]. Whether F'P = #P or not is an open problem [8]. A problem is #P-complete
if it is in #P and every #P problem has a Turing reduction or polynomial-time counting
reduction to it. In some cases we use the parsimonious reductions which is a more specific
type of reduction that preserves the exact number of solutions.

The counting version of NAE-35AT on monotone clauses is #P—complete since to date,
all known NP-complete languages have a defining relation which is #P-complete [7]. We
know that the variant of XOR 2SAT that uses the logic operator @ (XOR) instead of V
(OR) within the clauses of 2C' N F' Boolean formulas can be decided in polynomial time [6, 9].
We announce a variant of its counting version which is in #P—-complete.

» Definition 1. #Monotone Exact XOR 25AT (#EX2SAT)

INSTANCE: A Boolean formula @ in 2C N F with monotone clauses between logic operators
@ and a positive integer K.

ANSWER: Count the number of truth assignments in @ such that in each truth assignment
there are exactly K satisfied clauses.

» Theorem 2. #EX2SAT € #P-complete.

A homogeneous Diophantine equation is a Diophantine equation that is defined by a
polynomial whose nonzero terms all have the same degree [3]. The degree of a term is the
sum of the exponents of the variables that appear in it, and thus is a non-negative integer [3].
From general homogeneous Diophantine equations of degree two, we can reject an instance
when there is no solution reducing the equation modulo p. We define another counting
problem:

» Definition 3. #ZERO-ONE Homogeneous Diophantine Equation (#HDE)
INSTANCE: A homogeneous Diophantine equation of degree two P(x1,xa,...,2,) = B
with the unknowns x1,xa,...,T, and a positive integer B.
ANSWER: Count the number of solutions ui,us,...,u, on {0,1}" where we have
P(Jfl,xz,...7.’lﬁn) = B.

» Theorem 4. #HDE € #P-complete.
We generalize this problem.

» Definition 5. #Modulo Homogeneous Diophantine Equation (#MHDE)
INSTANCE: A homogeneous Diophantine equation of degree two P(x1,22,...,2,) = B

with the unknowns x1,xs,...,x, and two positive integers B, M.
ANSWER: Count the number of solutions u; mod M,us; mod M,..., u, mod M on
non-negative integers evaluated with modulo M such that P(x1,2a,...,2,) = B.

» Theorem 6. #M HDE € #P—complete.

Proof. This is trivial since we can make a parsimonious reduction from (P(z1, za,...,z,), B)
in #HDE to (P(z1,xa,...,x,),B,2) in # MM HDE (i.e. using M = 2). Due to #HDEF is in
#P-complete, then # M HDUF is in #P-hard. Finally, we know that # M HDF is in #P. <«
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Assuming the Birch and Swinnerton-Dyer conjecture, an odd square-free integer n is
a congruent number if and only if the number of triplets of integers (z,y,z) satisfying
222 + 4% + 8. 22 = n is twice the number of triplets satisfying 2 - 22 + y? + 32 - 22 = n due
to Tunnell’s theorem [11]. Deciding whether n is congruent or not is a problem in NP since
congruent numbers could be easily checked by a congruum since every congruent number is
a product of a congruum and the square of a rational number [1]. Certainly, every congruum
is in the form of 4 - m - n - (m?
integers [4]. Thus, we state our finally conjecture:

» Conjecture 7. Under the assumption that P = NP and FP # #P, then the Birch and
Swinnerton-Dyer conjecture would be false.

—n?) (with m > n), where m and n are two distinct positive

Proof. Under the assumption that P = NP, we know that deciding whether an odd square-
free integer n is congruent or not can be done in polynomial time since this problem is in N P.
On the other hand, for a given n, counting the numbers of solutions of 2- 22 +y? +8-2%2 =n
and 2- 22 +y? +32- 22 = n can be calculated by exhaustively searching through x, v, z in the
range —/n, ..., +/n. Note that, the solutions with negative values in z,y, z can be generated
by the equivalent non-negative values. For example, if there is a solution in (ug, uy,u.), then
(—Ug, Uy, u;) is also a solution when u, # 0 and so on. Hence, we can multiply the number of
non-negative solutions by 8 and be able to obtain all the possible number of solutions for these
equations. After that, we must subtract the exceeded amount of those non-negative triplets
of integers (z,y, z) that contain a single or double zeros (once or two times, respectively)
where the remaining values can be positive. We know the amount of triplets of integers
(2,9, z) which contains a zero and the remaining values can be positive is not exponential
and so, we could find them and count them in polynomial time under the assumption that
P = NP. However, the instances 2- 22 +y?> +8-22 =n and 2- 22 + 32 + 32 22 = n belong
to the #P-complete problem #M HDE just using B = n and M = [\/n], where [...] is
the ceiling function when we consider only the non-negative values on the triplets. Since
FP # #P, then the problem #M H DE cannot be solved in polynomial time. We don’t know
specifically whether counting the number of non-negative integer solutions of the instances
2224+ 9?2 +8-22=nand 2 22 +y?+ 32 22 = n cannot be solved in polynomial time
as well. If that would be the case, then we might obtain a contradiction and therefore, the
Birch and Swinnerton-Dyer conjecture would be false by reductio ad absurdum. <

2  Proof of Theorem 2

Proof. Take a Boolean formula ¢ in 3C N F with n variables and m clauses when all clauses
are monotone. Iterate for each clause ¢; = (a VbV ¢) and create the conjunctive normal form
formula

di = (a®a;)) N(bDb;) A(c®ci) A(a; ®bi) A(a; Deci) A (b @ c)

where a4, b;, ¢; are new variables linked to the clause c¢; in ¢. Note that, the clause ¢; has
exactly at least one true literal and at least one false literal if and only if d; has exactly one
unsatisfied clause. We notice that the value of positive literals a, b, ¢ coincide in ¢; and d;,
which means that those values are linked one-to-one in both directions. Finally, we obtain a
new formula

(p:dl/\d2/\d3/\~-~/\d7n

where there is not any repeated clause. In this way, we made a parsimonious reduction
from ¢ in #Monotone NAE-3SAT to (¢,5-m) in #EX2SAT. As we mentioned before,
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#Monotone NAE-35AT is in #P-complete and thus, # EX2SAT is in #P-hard. Moreover,
we know that #FX2SAT is in #P. <

3 Proof of Theorem 4

Proof. Take a Boolean formula ¢ in XOR 2CN F with n variables and m clauses when all
clauses are monotone and a positive integer K. Iterate for each clause ¢; = (a ®b) and create
the Homogeneous Diophantine Equation of degree two

2 2
P(zg,xp) =25 — 224 - xp + T}

where x,, Ty are variables linked to the positive literals a, b in the Boolean formula ¢. When
the literals a, b are evaluated in {false,true}, then we assign the respective values {0,1} to
the variables x,,zp (1 if it is true and 0 otherwise). Note that, the clause ¢; is satisfied if
and only if P(x,,x;) = 1. We notice that ¢; is unsatisfied if and only if P(z,,x) = 0, so the
corresponding and translated values are linked one-to-one in both directions. Finally, we
obtain a polynomial

P(x1,22,...,2,) = P(zq,2) + P(xe, 2q) + ... + P(ze, xy)

that is a Homogeneous Diophantine Equation of degree two. Indeed, K satisfied clauses in
¢ correspond to K distinct small pieces of Homogeneous Diophantine Equation of degree
two P(z;, ;) which are equal to 1. In this way, we made a parsimonious reduction from
(p, K) in #EX2SAT to (P(x1,xa,...,x,), K) in #HDE. Since we obtain that #EX2SAT
is in #P-complete, then #HDFE is in #P-hard. Furthermore, we know that #HDFE is in
#P. |
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