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Abstract
The strong Goldbach’s conjecture states that every even integer greater than 2 can be written
as the sum of two primes. The conjecture that all odd numbers greater than 7 are the sum of
three odd primes is known today as the weak Goldbach conjecture. A principal complexity class is
NSPACE(S(n)) for some S(n). We show if the weak Goldbach’s conjecture is true, then the problem
PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n). However, if this happens, then the strong
Goldbach’s conjecture is true or this has an infinite number of counterexamples. In addition, if
this happens, then the Twin prime conjecture is true. Moreover, if this happens, then the Beal’s
conjecture is true. Furthermore, if this happens, then the Riemann hypothesis is true. Since the
weak Goldbach’s conjecture was proven, then this will certainly happen.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of com-
putation → Regular languages; Theory of computation → Problems, reductions and completeness;
Mathematics of computing → Number-theoretic computations

Keywords and phrases complexity classes, regular languages, reduction, number theory, conjecture,
primes

1 Introduction

1.1 Goldbach’s conjecture
Number theory is a branch of pure mathematics devoted primarily to the study of the integers
and integer-valued functions [30]. Goldbach’s conjecture is one of the most important and
unsolved problems in number theory [14]. Nowadays, it is one of the open problems of
Hilbert and Landau [14]. Goldbach’s original conjecture, written on 7 June 1742 in a letter
to Leonhard Euler, states: “... at least it seems that every number that is greater than 2 is
the sum of three primes” [10]. This is known as the ternary Goldbach conjecture. We call a
prime as a natural number that is greater than 1 and has exactly two divisors, 1 and the
number itself [33]. However, the mathematician Christian Goldbach considered 1 as a prime
number. Euler replied in a letter dated 30 June 1742 the following statement: “Every even
integer greater than 2 can be written as the sum of two primes” [10]. This is known as the
strong Goldbach conjecture.

Using Vinogradov’s method [32], it has been showed that almost all even numbers can
be written as the sum of two primes. In 1973, Chen showed that every sufficiently large
even number can be written as the sum of some prime number and a semi-prime [6]. The
strong Goldbach conjecture implies the conjecture that all odd numbers greater than 7 are
the sum of three odd primes, which is known today as the weak Goldbach conjecture [10]. In
2012 and 2013, Peruvian mathematician Harald Helfgott published a pair of papers claiming
to improve major and minor arc estimates sufficiently to unconditionally prove the weak
Goldbach conjecture [16], [17]. In this work, we prove the strong Goldbach’s conjecture is
true or this has an infinite number of counterexamples.

1.2 Twin prime conjecture
On the other hand, the question of whether there exist infinitely many twin primes has been
one of the great open questions in number theory for many years. This is the content of the
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Twin prime conjecture, which states that there are infinitely many primes p such that p+ 2
is also prime [15]. In addition, the Dubner’s conjecture is an as yet unsolved conjecture by
American mathematician Harvey Dubner [11]. It states that every even number greater than
4208 is the sum of two t-primes, where a t-prime is a prime which has a twin [11]. We prove
there are infinite even numbers that comply the Dubner’s conjecture, where this also implies
that the Twin prime conjecture is true [11].

1.3 Beal’s conjecture
Fermat’s Last Theorem was first conjectured by Pierre de Fermat in 1637, famously in the
margin of a copy of Arithmetica where he claimed he had a proof that was too large to
fit in the margin [33]. This theorem states that no three positive integers a, b, and c can
satisfy the equation an + bn = cn for any integer value of n greater than two [33]. It is not
known whether Fermat found a valid proof or not [33]. His proof of one case (n = 4) by
infinite descent has survived [33]. After many intents, the proof of Fermat’s Last Theorem
for every integer n > 2 was finally accomplished, after 358 years, by Andrew Wiles in 1995
[34]. However, the Andrew’s proof seems to be quite different to the simple and unknown
proof that Fermat claimed.

On the other hand, there is a similar and unsolved conjecture called the Beal’s conjecture
[20]. This conjecture states if Ax +By = Cz, where A, B, C, x, y and z are positive integers
and x, y and z are all greater than 2, then A, B and C must have a common prime factor
[33]. Fermat’s Last Theorem can be seen as a special case of the Beal’s conjecture restricted
to x = y = z. Billionaire banker Andrew Beal claims to have discovered this conjecture
in 1993 while investigating generalizations of Fermat’s Last Theorem [20]. This conjecture
has occasionally been referred to as a generalized Fermat equation [4] and the Mauldin or
Tijdeman-Zagier conjecture [12].

Beal offered a prize of US $1,000,000 to the first person who tries to resolve it [33]. For
example, the solution 33 + 63 = 35 has bases with a common factor of 3, and the solution
76 + 77 = 983 has bases with a common factor of 7. There are some particular cases which
have been proved for this conjecture [8], [25], [29], [5]. There are considerable advances on
this topic [22], [9]. We contribute on this subject showing the Beal’s conjecture is true.

1.4 Riemann hypothesis
In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part 1

2 . Many
consider it to be the most important unsolved problem in pure mathematics [27]. It is of
great interest in number theory because it implies results about the distribution of prime
numbers [27]. It was proposed by Bernhard Riemann (1859), after whom it is named [27].
In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis, the
inequality:∑

d|n

d < eγ × n× log logn

holds for all sufficiently large n, where γ ≈ 0.57721 is the Euler’s constant and d|n means that
the natural number d divides n [19]. The largest known value that violates the inequality is
n = 5040. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only
if the Riemann hypothesis is true [19]. Using this inequality, we prove that the Riemann
hypothesis is true.
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2 Background Theory

In 1936, Turing developed his theoretical computational model [31]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [31]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [31]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [31].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each
string w in Σ∗ there is a computation associated with M on input w [3]. We say that M
accepts w if this computation terminates in the accepting state, that is M(w) = “yes” [3].
Note that M fails to accept w either if this computation ends in the rejecting state, that
is M(w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M(w) = y (when M outputs the string y on the
input w) [3].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [7].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [7]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [7]. We use
o-notation to denote an upper bound that is not asymptotically tight. We formally define
o(g(n)) as the set

o(g(n)) = {f(n) : for any positive constant c > 0, there exists a constant

n0 > 0 such that 0 ≤ f(n) < c× g(n) for all n ≥ n0}.

For example, 2× n = o(n2), but 2× n2 6= o(n2) [7].
In theoretical computer science and formal language theory, a regular language is a formal

language that can be expressed using a regular expression [2]. The complexity class that
contains all the regular languages is REG. The complexity class NSPACE(f(n)) is the set
of decision problems that can be solved by a nondeterministic Turing machine M , using
space f(n), where n is the length of the input [21]. The two-way Turing machines may
move their head on the input tape into two-way (left and right directions) while the one-way
Turing machines are not allowed to move the head on the input tape to the left [18]. The
complexity class 1-NSPACE(f(n)) is the set of decision problems that can be solved by a
nondeterministic one-way Turing machine M , using space f(n), where n is the length of the
input [21].

3 Results

3.1 Goldbach’s conjecture
I Definition 1. We define the weak Goldbach’s language LWG as follows:

LWG = {12×n+10p0q0r : n ∈ N∧n ≥ 4∧p, q and r are odd primes ∧2×n+1 = p+q+r}.
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We define the strong Goldbach’s language LG as follows:

LG = {12×n0p0q : n ∈ N ∧ n ≥ 3 ∧ p and q are odd primes ∧ 2× n = p+ q}.

I Theorem 2. If the weak Goldbach’s conjecture is true, then the weak Goldbach’s language
LWG is non-regular. Moreover, if the strong Goldbach’s conjecture is true, then the strong
Goldbach’s language LG is non-regular.

Proof. If the weak Goldbach’s conjecture is true, then the weak Goldbach’s language LWG

is equal to the another language L′ defined as follows:

L′ = {12×n+102×n+1 : n ∈ N ∧ n ≥ 4}.

We can easily prove that L′ is non-regular using the Pumping lemma for regular languages
[26]. Moreover, if the strong Goldbach’s conjecture is true, then the strong Goldbach’s
language LG is equal to the another language L′′ defined as follows:

L′′ = {12×n02×n : n ∈ N ∧ n ≥ 3}.

We can easily prove that L′′ is non-regular using the Pumping lemma for regular languages
as well [26]. J

I Definition 3. We define the weak verification Goldbach’s language LWVG as follows:

LWVG = {(2× n+ 1, p, q, r) : such that 12×n+10p0q0r ∈ LWG}.

We define the strong verification Goldbach’s language LV G as follows:

LV G = {(2× n, p, q) : such that 12×n0p0q ∈ LG}.

I Definition 4. We define the weak Goldbach’s language with separator LWSG as follows:

LWSG = {02×n+1#0p#0q#0r : such that 12×n+10p0q0r ∈ LWG}

and we define the strong Goldbach’s language with separator LSG as follows:

LSG = {02×n#0p#0q : such that 12×n0p0q ∈ LG}

where # is the blank symbol.

I Lemma 5. The weak Goldbach’s language with separator LWSG is the unary representation
of the weak verification Goldbach’s language LWVG. The strong Goldbach’s language with
separator LSG is the unary representation of the strong verification Goldbach’s language
LV G.

Proof. This is trivially true from the definition of these languages. J

I Theorem 6. If LWVG ∈ NSPACE(S(n)) for some S(n) = o(logn), then LWG ∈ REG.

Proof. In case of LWVG ∈ NSPACE(S(n)) for some S(n) = o(logn), then there is a
nondeterministic Turing machine which decides LWSG that uses space that is smaller
than c × log logn for all c > 0, because of LWSG is the unary version of LWVG due to
Lemma 5 [13]. Certainly, the standard space translation between the unary and binary
languages actually works for nondeterministic machines with small space [13]. This means
that if some language belongs to NSPACE(S(n)), then the unary version of that language
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belongs to NSPACE(S(logn)) [13]. In this way, we obtain that LWSG ∈ REG because
of REG = NSPACE(o(log logn)) [21]. In addition, we can reduce in a nondeterministic
constant space the language LWG to LWSG just nondeterministically inserting the blank
symbol # within two arbitrary positions between the 0’s on the input. Moreover, this
nondeterminism reduction inserts the blank symbol # between the 1’s and 0’s and converts
the 1’s to 0’s from the original input of LWG just generating the final output to LWSG.
Consequently, we prove LWG ∈ REG under the assumption that LWVG ∈ NSPACE(S(n))
for some S(n) = o(logn), since REG is also the complexity class of languages decided by
nondeterministic Turing machines in constant space [28]. J

I Theorem 7. LWVG /∈ NSPACE(S(n)) for all S(n) = o(logn).

Proof. If the weak Goldbach’s conjecture is true, then LWG /∈ REG as a consequence of
Theorem 2. However, if LWVG ∈ NSPACE(S(n)) for some S(n) = o(logn), then LWG ∈
REG due to Theorem 6. In this way, the weak Goldbach’s conjecture cannot be true
under the assumption that LWVG ∈ NSPACE(S(n)) for some S(n) = o(logn). Since the
weak Goldbach’s conjecture is true, then we obtain that LWVG /∈ NSPACE(S(n)) for all
S(n) = o(logn) [16], [17]. J

The checking whether a number is prime can be decided in polynomial time by a
deterministic Turing machine [1]. This problem is known as PRIMES [1].

I Theorem 8. PRIMES /∈ NSPACE(S(n)) for all S(n) = o(logn).

Proof. From the Theorem 7, we obtain that LWVG /∈ NSPACE(S(n)) for all S(n) = o(logn).
However, the checking of whether the four numbers on the input are odds and proving the
equality of the sum’s equation can be done in NSPACE(o(logn)). Certainly, the verification
of the odd property could be done in constant space. In addition, the verification of the
equality of the sum’s equation 2× n+ 1 = p+ q + r can be done in NSPACE(o(logn)).

Indeed, given four natural numbers p, q, r and t in binary encoding, it is obviously possible
to check in NSPACE(logn) whether p + q + r = t. We need to go through corresponding
bits from p, q, r and t starting from least significant bits to most significant bits. So for each
i from 1 to n, we check if p, q, r and t have compatible/matching bits at position i (i.e. pi,
qi, ri, and ti are compatible). Then, we keep track of any carry bit in constant space and
move to index i+ 1. We just need to keep track of i written in binary. If n is the greatest
bit length between p, q, r and t, then we need logn bits to keep track of i. However, we can
keep track of i using o(logn) space.

The position i is stored using a triple (a, b, c) of binary strings that represent positive
integers. In the least significant bit position we use (1, 0, 0). For a current bit position i in a
triple (a, b, c), we move for the new bit position i+ 1 using the rules of the following steps:

1. If 0 < a < b n
lognc, then the next step i+ 1 into the new bit position is (a+ 1, b, c),

2. else if a = b n
lognc, then the next step i+ 1 into the new bit position is (0, 0, 1),

3. else if a = 0 then:
a. if c = blognc, then the next step i+ 1 into the new bit position is (a, b+ 1, 1) otherwise

if c 6= blognc, then the next step i+ 1 into the new bit position is (a, b, c+ 1).

Every triple (a, b, c) represents the bit position a ≤ b n
lognc when a > 0 or b n

lognc +
(blognc × b) + c when a = 0. In this way, b and c always comply with c ≤ blognc and
b ≤ n−b n

log n c
blognc . Certainly, this is based on the following equation

b n

lognc+ blognc ×
n− b n

lognc
blognc = n
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However, the bit length of blognc is bounded by logblognc. In addition, the bit length
of b n

lognc is bounded by logn − log logn. Moreover, the bit length of the integer part of
n−b n

log n c
blognc is bounded by log(n−b n

lognc)− logblognc. Since we add the bit length of c in case
of a = 0, then this will be log(n− b n

lognc). In this way, the whole computation is bounded
by log(n− b n

lognc) or logn− log logn space. Furthermore, we use a single triple (a′, b′, c′) to
put the head into the bit positions of the binary numbers:

1. if we want to put the head of the tape into the bit position (a′, b′, c′) inside of a binary
string, then we just set the head in the least significant bit position and move to the
left while we decrement in 1 the bit position using the same rules that we used for
incrementing until we reach the value (1, 0, 0)

2. and after that, if we want to put the head of the tape into the bit position (a′, b′, c′)
inside of another binary string, then from the current position in the head tape, we move
to the right while we just increment in 1 the bit position from the value (1, 0, 0) using
the same rules above until the head will stay in the least significant bit position of the
current binary string reaching the previous value (a′, b′, c′)

3. and while we doing that, we copy the bits pi, qi, ri, and ti to the work tapes from the bit
position i that represents (a′, b′, c′) and do the necessary verification

4. and finally, when we finish all that, then we erase the bits pi, qi, ri, and ti and create the
next step i+ 1 from the value (a′, b′, c′) into the new bit position using the same rules
above.

However, we know that logn − log logn = o(logn) and log(n − b n
lognc) = o(logn) for

n ≥ 3 where the whole computation can be done in a nondeterministic way because of it is
indeed deterministic [24]. In addition, the ultimate remaining verification that we need to
analyze in LWVG is whether p, q and r are primes. Since the other properties can be done in
NSPACE(o(logn)) excluding the primality test and LWVG /∈ NSPACE(S(n)) for all S(n) =
o(logn), then we have as unique remaining possibility that PRIMES /∈ NSPACE(S(n)) for
all S(n) = o(logn). J

I Theorem 9. The strong Goldbach’s conjecture is true or this has an infinite number of
counterexamples.

Proof. If the strong Goldbach’s conjecture is false, then LG ∈ REG or LG is non-regular
and its complement is infinite, since every finite set is regular and REG is also closed under
complement [24]. Let’s assume the possibility of LG ∈ REG. However, this implies that
the exponentially more succinct version of LG, that is LV G, should be in NSPACE(S(n))
for some S(n) = o(logn), because of REG = NSPACE(o(log logn)) and the same algorithm
that decides LG within NSPACE(o(log logn)) could be easily transformed into a slightly
modified algorithm that decides LV G within NSPACE(S(n)) for some S(n) = o(logn) [21],
[13]. Actually, LG could be reduced to LSG in a nondeterministic constant space following
the idea of steps in Theorem 6 and LSG is the unary version of LV G due to Lemma 5.
As we mentioned before, the standard space translation between the unary and binary
languages actually works for nondeterministic machines with small space [13]. This means
that if some unary language belongs to NSPACE(S(logn)), then the binary version of that
language belongs to NSPACE(S(n)) [13]. It is not possible that LV G ∈ NSPACE(S(n))
for some S(n) = o(logn), because of PRIMES /∈ NSPACE(S(n)) for all S(n) = o(logn).
Certainly, the verification of whether p and q are primes need to be done in order to accept
the elements of this language. Consequently, we obtain that LG /∈ REG, since it is not
possible that LG ∈ NSPACE(o(log logn)) under the result of LV G /∈ NSPACE(S(n)) for
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all S(n) = o(logn). In this way, we obtain a contradiction just assuming that the strong
Goldbach’s conjecture is false and LG ∈ REG. In contraposition, we have the strong
Goldbach’s conjecture is true or this has an infinite number of counterexamples. J

3.2 Twin prime conjecture
I Definition 10. We define the Dubner’s language LD as follows:

LD = {12×n0p0q : n ∈ N ∧ n > 2104 ∧ p and q are t-primes ∧ 2× n = p+ q}.

I Theorem 11. If the Dubner’s conjecture is true, then the Dubner’s language LD is
non-regular.

Proof. If the Dubner’s conjecture is true, then the Dubner’s language LD is equal to the
another language L′ defined as follows:

L′ = {12×n02×n : n ∈ N ∧ n > 2104}.

We can easily prove that L′ is non-regular using the Pumping lemma for regular languages
as well [26]. J

I Definition 12. We define the verification Dubner’s language LV D as follows:

LV D = {(2× n, p, q) : such that 12×n0p0q ∈ LD}.

I Definition 13. We define the Dubner’s language with separator LSD as follows:

LSD = {02×n#0p#0q : such that 12×n0p0q ∈ LD}

where # is the blank symbol.

I Lemma 14. The Dubner’s language with separator LSD is the unary representation of the
verification Dubner’s language LV D.

Proof. This is trivially true from the definition of these languages. J

I Theorem 15. There are infinite even numbers that comply the Dubner’s conjecture.

Proof. If the Dubner’s conjecture is false, then LD ∈ REG or LD is non-regular and
its complement is infinite, since every finite set is regular and REG is also closed under
complement [24]. Let’s assume the possibility of LD ∈ REG. However, this implies that
the exponentially more succinct version of LD, that is LV D, should be in NSPACE(S(n))
for some S(n) = o(logn), because of REG = NSPACE(o(log logn)) and the same algorithm
that decides LD within NSPACE(o(log logn)) could be easily transformed into a slightly
modified algorithm that decides LV D within NSPACE(S(n)) for some S(n) = o(logn) [21],
[13]. Actually, LD could be reduced to LSD in a nondeterministic constant space following
the idea of steps in Theorem 6 and LSD is the unary version of LV D due to Lemma 14.
As we mentioned before, the standard space translation between the unary and binary
languages actually works for nondeterministic machines with small space [13]. This means
that if some unary language belongs to NSPACE(S(logn)), then the binary version of that
language belongs to NSPACE(S(n)) [13]. It is not possible that LV D ∈ NSPACE(S(n))
for some S(n) = o(logn), because of PRIMES /∈ NSPACE(S(n)) for all S(n) = o(logn).
Certainly, the verification of whether p and q are t-primes need to be done in order to accept
the elements of this language. Consequently, we obtain that LD /∈ REG, since it is not
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possible that LD ∈ NSPACE(o(log logn)) under the result of LV D /∈ NSPACE(S(n)) for all
S(n) = o(logn). In this way, we obtain a contradiction just assuming that the Dubner’s
conjecture is false and LD ∈ REG. In contraposition, we have there are infinite even numbers
that comply with the Dubner’s conjecture, since in case of LD would be finite, then we obtain
that the Dubner’s conjecture is false and LD ∈ REG and we prove that is not possible. J

I Lemma 16. The Twin prime conjecture is true.

Proof. The Theorem 15 implies that there exists an infinite number of t-primes, and thus
there will be an infinite number of twin prime pairs as well [11]. J

3.3 Beal’s conjecture
I Definition 17. For a specific choice of exponents (x, y, z) where x, y, z ∈ N and x, y, z ≥ 3,
we define the Beal’s language LB as follows:

LB = {1r0p0q : p, q, r ∈ N ∧ p ≤ q ∧ r = p+ q}

where when p = 1 then r has not a perfect z-root or r has a perfect z-root and there are no
positive integers p and q such that r = p+ q, p has a perfect x-root and q has a perfect y-root
otherwise when p > 1 then r = p+ q, r has a perfect z-root, p has a perfect x-root and q has
a perfect y-root. Moreover, if p > 1 then for a fixed value of r, which is a perfect z-root, the
greatest common divisor of p, q and r has the smallest possible value between all the possible
numbers p and q with the following properties: r = p+ q, p has a perfect x-root and q has a
perfect y-root. In addition, if p > 1 then p, q and r are not co-primes.

I Theorem 18. If the Beal’s conjecture is true, then the Beal’s language LB is non-regular.

Proof. If the Beal’s conjecture is true, then the Beal’s language LB is equal to the another
language L′ defined as follows:

L′ = {1n0n : n ∈ N ∧ n ≥ 2}.

L′ is a well-known non-regular language as a consequence of Pumping lemma [26]. J

I Definition 19. We define the verification Beal’s language LV B as follows:

LV B = {(r, p, q) : such that 1r0p0q ∈ LB}.

I Definition 20. We define the Beal’s language with separator LSB as follows:

LSB = {0r#0p#0q : such that 1r0p0q ∈ LB}

where # is the blank symbol.

I Lemma 21. The Beal’s language with separator LSB is the unary representation of the
verification Beal’s language LV B.

Proof. This is trivially true from the definition of these languages. J

I Theorem 22. coLV B /∈ 1-NSPACE(S(n)) for all S(n) = o(logn).
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Proof. The complement coLV B must check whether there is no a common prime factor
between the three numbers in order to prove that these numbers are co-primes [15]. Cer-
tainly, coLV B should contain the possible counterexamples of the Beal’s conjecture for the
chosen exponents (x, y, z) in coLV B. The COMPOSITE problem is the complement of
PRIMES language. Indeed, the computation of finding a common prime factor cannot be
computed in 1-NSPACE(S(n)) for some S(n) = o(logn), because of this would imply that
the COMPOSITE problem is in 1-NSPACE(S(n)) for some S(n) = o(logn) as well.

Certainly if this could be true, then we can go from the numbers 2 to n− 1 and check
whether these have a common prime factor with n and thus, we could decide whether n
is composite. This could be nondeterministically done on input n just choosing arbitrarily
another number lesser than n and greater than 1, but instead of putting in the work tapes,
then this will put with n in the output tape just using constant space in one-way. After that,
we use the space composition reduction just using the previous output of n and some integer
2 ≤ i ≤ n− 1 into a new nondeterministic Turing machine that would compute the finding of
a common prime factor in 1-NSPACE(S(n)) for some S(n) = o(logn) using (n, i) as input
[24]. Since 1-NSPACE(S(n)) for some S(n) = o(logn) is closed under 1-NSPACE-reductions
with constant space, then the whole computation could be done in 1-NSPACE(S(n)) for
some S(n) = o(logn).

Nevertheless, this would be a contradiction according to Theorem 8, since the language
PRIMES /∈ NSPACE(S(n)) for all S(n) = o(logn). The reason is because of NSPACE(S(n))
is closed under complement for S(n) ≥ logn [21]. Hence, if PRIMES /∈ NSPACE(S(n))
for all S(n) = o(logn), then COMPOSITE /∈ NSPACE(S(n)) for all S(n) = o(logn)
[21]. Furthermore, if COMPOSITE /∈ NSPACE(S(n)) for all S(n) = o(logn), then
COMPOSITE /∈ 1-NSPACE(S(n)) for all S(n) = o(logn) [21]. Since coLV B depends
mostly on checking whether there is no a common prime factor between the three numbers
in order to accept its elements, then coLV B /∈ 1-NSPACE(S(n)) for all S(n) = o(logn). J

I Theorem 23. The Beal’s conjecture is true.

Proof. If the Beal’s conjecture is false, then coLB ∈ REG and coLB is not empty or
coLB is non-regular and is infinite, since every finite set is regular [24]. Let’s assume
that coLB ∈ REG and coLB is not empty. Hence, this implies that the exponentially
more succinct version of coLB, that is coLV B, should be in 1-NSPACE(S(n)) for some
S(n) = o(logn), because of REG = 1-NSPACE(o(log logn)) and the same algorithm that
decides coLB within 1-NSPACE(o(log logn)) could be easily transformed into a slightly
modified algorithm that decides coLV B within 1-NSPACE(S(n)) for some S(n) = o(logn)
[21], [13]. Actually, coLB could be reduced to coLSB in a nondeterministic constant space
following the idea of steps in Theorem 6 and coLSB is the unary version of coLV B due to
Lemma 21. As we mentioned before, the standard space translation between the unary and
binary languages actually works for nondeterministic machines with small space [13]. This
means that if some unary language belongs to 1-NSPACE(S(logn)), then the binary version
of that language belongs to 1-NSPACE(S(n)) [13]. In this way, we obtain that coLB /∈ REG
when coLB is not empty, since it is not possible that coLB ∈ 1-NSPACE(o(log logn)) under
the result of coLV B /∈ 1-NSPACE(S(n)) for all S(n) = o(logn) as a consequence of Theorem
22. Consequently, we obtain a contradiction just assuming that coLB ∈ REG and coLB
is not empty. In contraposition, for a specific choice of exponents (x, y, z), we obtain that
the Beal’s conjecture is true, that is when coLB is empty (we know the empty language
is regular), or this has an infinite number of counterexamples (co-prime solutions), that
is when coLB is non-regular and is infinite, since coLB uses a specific choice of exponents
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(x, y, z). The Darmon-Granville theorem uses Faltings’s theorem to show that for every
specific choice of exponents (x, y, z), there are at most finitely many co-prime solutions for
(A,B,C) [9]. In conclusion, we obtain that necessarily the Beal’s conjecture is true for this
specific choice of exponents (x, y, z) as the remaining only option. Since we took arbitrarily
the exponents (x, y, z), then the Beal’s conjecture will be true for every specific choice of
exponents (x, y, z). J

3.4 Riemann hypothesis
I Definition 24. We define the Robin’s language LR as follows:

LR = {anbm1cm2 : n ∈ N ∧ n > 5040 ∧m1 = (σ(n)− n) ∧m2 = deγ × n× log logne}

where σ(n) =
∑
d|n d [19].

I Theorem 25. If the Riemann hypothesis is true, then the Robin’s language LR is non-
regular.

Proof. We can easily prove this using the Pumping lemma for regular languages [26]. J

I Definition 26. We define the verification Robin’s language LV R as follows:

LV R = {(n,m1,m2) : such that anbm1cm2 ∈ LR}.

I Definition 27. We define the Robin’s language with separator LSR as follows:

LSR = {0n#0m1#0m2 : such that anbm1cm2 ∈ LR}

where # is the blank symbol.

I Lemma 28. The Robin’s language with separator LSR is the unary representation of the
verification Robin’s language LV R.

Proof. This is trivially true from the definition of these languages. J

I Theorem 29. LV R /∈ 1-NSPACE(S(n)) for all S(n) = o(logn).

Proof. The language LV R cannot be computed in 1-NSPACE(S(n)) for some S(n) = o(logn),
because of this would imply that the PRIMES problem belongs to 1-NSPACE(S(n)) for
some S(n) = o(logn) as well. Certainly if this could be true, then we can find m2 =
deγ × n× log logne and check whether the triple (n, 1,m2) is an element of LV R and thus,
we could decide whether n is prime. Indeed, a number n is prime if and only if the sum of
its divisors is n+ 1 [15]. This could be nondeterministically done on input n just choosing
arbitrarily another number m2, but instead of putting in the work tapes, then this will put
with n and 1 in the output tape just using constant space in one-way. We are able to do
this, because of m2 should be polynomially bounded by the input n. After that, we use
the space composition reduction just using the previous output of n, 1 and some integer
m2 into a new nondeterministic Turing machine that would decide whether the instance
belongs to LV R in 1-NSPACE(S(n)) for some S(n) = o(logn) using (n, 1,m2) as input
[24]. Since 1-NSPACE(S(n)) for some S(n) = o(logn) is closed under 1-NSPACE-reductions
with constant space, then the whole computation could be done in 1-NSPACE(S(n)) for
some S(n) = o(logn). However, this would be a contradiction according to Theorem
8, since the language PRIMES /∈ NSPACE(S(n)) for all S(n) = o(logn). Certainly, if
PRIMES /∈ NSPACE(S(n)) for all S(n) = o(logn), then PRIMES /∈ 1-NSPACE(S(n))
for all S(n) = o(logn) [21]. Consequently, we obtain that LV R /∈ 1-NSPACE(S(n)) for all
S(n) = o(logn). J
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I Theorem 30. The Riemann hypothesis is true.

Proof. If the Riemann hypothesis is false, then LR ∈ REG or LR is non-regular and
its complement is infinite, since every finite set is regular and REG is also closed under
complement [24]. Let’s assume the possibility of LR ∈ REG. Hence, this implies that the
exponentially more succinct version of LR, that is LV R, should be in 1-NSPACE(S(n)) for
some S(n) = o(logn), because of REG = 1-NSPACE(o(log logn)) and the same algorithm
that decides LR within 1-NSPACE(o(log logn)) could be easily transformed into a slightly
modified algorithm that decides LV R within 1-NSPACE(S(n)) for some S(n) = o(logn) [21],
[13]. Actually, LR could be reduced to LSR in a nondeterministic constant space following
the idea of steps in Theorem 6 and LSR is the unary version of LV R due to Lemma 28. As
we mentioned before, the standard space translation between the unary and binary languages
actually works for nondeterministic machines with small space [13]. This means that if some
unary language belongs to 1-NSPACE(S(logn)), then the binary version of that language
belongs to 1-NSPACE(S(n)) [13]. In this way, we obtain that LR /∈ REG, since it is not
possible that LR ∈ 1-NSPACE(o(log logn)) under the result of LV R /∈ 1-NSPACE(S(n)) for
all S(n) = o(logn) as a consequence of Theorem 29. Consequently, we obtain a contradiction
just assuming that the Riemann hypothesis is false and LR ∈ REG. Hence, we obtain
that the Riemann hypothesis is true or the Robin’s inequality has an infinite number of
counterexamples. However, the asymptotic growth rate of the sigma function can be expressed
by [19]:

lim sup
n→∞

σ(n)
n× log logn = eγ

where lim sup is the limit superior and σ(n) =
∑
d|n d. In this way, if the Robin’s inequality

has an infinite number of counterexamples, then the previous limit superior should be false.
Since this is a previous checked result, then we have the Riemann hypothesis is true as the
remaining only option. J

4 Conclusions

4.1 Goldbach’s conjecture
Statistical considerations that focus on the probabilistic distribution of prime numbers present
informal evidence in pos of the strong conjecture for sufficiently large integers: The greater
the integer, the more ways there are available for that number to be represented as the sum of
two other numbers, and the more “likely” it becomes that at least one of these representations
consists entirely of primes. In this way, the statement that the strong Goldbach’s conjecture
has an infinite number of counterexamples is certainly “unlikely”. To sum up, this work
represents a big step forward in showing the strong Goldbach’s conjecture should be really
true.

4.2 Beal’s conjecture
Peter Norvig, Director of Research at Google, have conducted a series of numerical searches
for counterexamples to Beal’s conjecture. Among his results, he excluded all possible solutions
having each of x, y, z = 7 and each of A,B,C = 250, 000, as well as possible solutions having
each of x, y, z = 100 and each of A,B,C = 10, 000 [23]. We conclude announcing the failure
in the prolonged search of counterexamples since the Beal’s conjecture is true.
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Fermat’s Last Theorem established that An + Bn = Cn has no solutions for n > 2 for
positive integers A, B, and C. If any solutions had existed to Fermat’s Last Theorem, then
by dividing out every common factor, there would also exist solutions with A, B, and C
co-prime which would mean they do not have a common prime factor [15]. Hence, Fermat’s
Last Theorem can be seen as a special case of the Beal’s conjecture restricted to x = y = z

[4].
The Fermat-Catalan conjecture is that Ax +By = Cz has only finitely many solutions

with A, B, and C being positive integers with no common prime factor and x, y, and z being
positive integers satisfying 1

x + 1
y + 1

z < 1 [33]. Beal’s conjecture can be restated as “All
Fermat-Catalan conjecture solutions will use 2 as an exponent”.
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