
EasyChair Preprint
№ 7483

EdgeSP: Scalable Multi-Device Parallel DNN
Inference on Heterogeneous Edge Clusters

Zhipeng Gao, Shan Sun, Yinghan Zhang, Zijia Mo and Chen Zhao

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 19, 2022

EdgeSP: Scalable Multi-Device Parallel DNN
Inference on Heterogeneous Edge Clusters

Zhipeng Gao1(�), Shan Sun1(�), Yinghan Zhang2, Zijia Mo1, and Chen Zhao1

1 State Key Laboratory of Networking and Switching Technology
Beijing University of Posts and Telecommunications, Beijing 100876, China

{gaozhipeng, sunshan, mozijia, zc zhaochen}@bupt.edu.cn
2 China International Engineering Consulting Corporation,Ltd, Beijing, China

zyh@ciecc.com.cn

Abstract. Edge computing has emerged as a promising line of research
for processing large-scale data and providing low-latency services. Un-
fortunately, deploying deep neural networks (DNNs) on resource-limited
edge devices presents unacceptable latency, hindering artificial intelli-
gence from empowering edge devices. Prior solutions attempted to ad-
dress this issue by offloading workload to the remote cloud. However,
the cloud-assisted approach ignores that devices in the edge environment
tend to exist as clusters. In this paper, we propose EdgeSP, a scalable
multi-device parallel DNN inference framework that maximizes resource
utilization of heterogeneous edge device clusters. We design a multiple
fused-layer blocks parallelization strategy to reduce inter-device commu-
nication during parallel inference. Further, we add early exit branches
to DNNs, empowering the device to trade-off latency and accuracy for
a variety of sophisticated tasks. Experimental results show that EdgeSP
enables inference latency acceleration of 2.3×-3.7× for DNN inference
tasks of various scales and outperforms the existing naive parallel infer-
ence method. Additionally, EdgeSP can provide high accuracy inference
services under various latency requirements.

Keywords: Edge computing · Edge intelligence · Parallel inference ·
Deep neural networks · Early-exit · Internet of Things.

1 Introduction

Deep neural networks (DNNs) have become indispensable for handling complex
tasks in computer vision, natural language processing, and other fields [1]. While
DNNs provide intelligent services with high accuracy, they place higher demands
on the computing resources of the devices. At the same time, the number of
Internet of Things (IoT) devices has grown exponentially in recent years, and
edge computing has emerged to cope with the resulting massive amounts of data
and tasks. Edge computing aims to provide low-latency services by performing
tasks close to the edge of the network where data is generated, such as end devices
or edge servers [2]. It is rewarding to equip DNNs on edge devices, enabling the
edge to provide a wide range of intelligent services.

2 Z. Gao et al.

Enable resource-limited edge devices to rapidly execute large DNNs to meet
the demands of real-time tasks has attracted extensive research. A common
approach is for edge devices to perform DNNs inference tasks collaboratively
with the edge server or cloud [3,4]. In addition, neural networks with early exit
branches are receiving more and more attention because of their effectiveness
and flexibility [5]. This kind of neural network reduces redundant calculations
by allowing simple samples to exit from the shallow layer of the network, thereby
significantly reducing inference latency. A triple-partition network with multi-
ple exit branches is proposed [6] based on the early exit mechanism, as shown
in Fig. 1. However, this server-assisted approach is critically hampered by the
quality of the device’s network connection to the remote servers. When the net-
work connection degenerates, the DNN inference time also increases sharply. In
addition, transferring local data to edge servers or cloud servers may result in
privacy disclosure.

Conv Conv

Conv

Conv

Conv

Conv Conv Conv

FC FC

FC

FC

.....

Local
Exit

Edge
Exit

Cloud
Exit

End Device Edge Server Cloud Server

Fig. 1. A sketch of the triple-partition network architecture: simple input samples can
be inferred at the DNN branch at the end device, while complex samples require further
computation at the edge server and cloud.

Another prospective way to accelerate DNN inference is to perform tasks in
parallel by multiple devices, as edge devices typically appear in the form of clus-
ters [7–10]. Some previous work explored the parallel execution of DNN inference
on multiple devices [11–13]. However, it is non-trivial to distribute the inference
of DNNs on multiple devices. Parallel inference presents data dependency prob-
lems since DNNs are inherently tightly coupled [7]. Due to the data dependency
problems, existing DNN parallel inference methods incur frequent inter-device
communication [14] or substantial overlapping computation [15]. Moreover, none
of the above methods can dynamically adjust the inference latency, yet the tasks
in edge computing scenarios typically have different requirements. Taking traffic
cameras as an example, the task of detecting traffic jams requires low latency
but not high accuracy; the task of identifying license plate numbers requires high
accuracy, but a moderate amount of latency is acceptable [16]. Therefore, it is
indispensable to provide different services according to the application require-
ments.

EdgeSP: Scalable Multi-Device Parallel DNN Inference 3

To tackle the aforementioned problems, we propose EdgeSP, a scalable multi-
device parallel DNN inference framework that leverages the computational re-
sources of heterogeneous edge devices in IoT environments. Multi-device synergy
enables fast execution of DNN inference on devices with scarce computing re-
sources. Unlike the server-assisted approaches, EdgeSP resides data on the local
trusted devices, avoiding performance instability and privacy disclosure caused
by sending data to remote servers. Furthermore, EdgeSP can trade-off between
dynamic response time and accuracy to adapt to the needs of different tasks in
the IoT environment.

Concretely, our contributions are summarized as follows:

– We propose EdgeSP, a scalable parallel DNN inference framework for het-
erogeneous edge devices, which accelerates DNN inference and improves the
utilization of computational resources in edge clusters.

– We propose a multiple fused-layer blocks (MFLB) parallelization strategy
to minimize inter-device communication and overlapping computation over-
head, and we further design an adaptive fused-layer workload partition al-
gorithm based on the compute capabilities of heterogeneous devices and
dynamic network bandwidth.

– We propose a stepwise method for determining the confidence threshold of
exit branches based on task latency requirements so that edge devices can
complete the inference task within the specified time.

– We implement EdgeSP on a cluster of heterogeneous edge devices and eval-
uate its performance on three different scales of DNNs. Experimental results
show that EdgeSP is effective in minimizing the inference latency and out-
performs prior works.

The rest of this paper is organized as follows. Sect. 2 provides background
information. Sect. 3 overviews the design of EdgeSP, followed by the description
of technical details. Sect. 4 evaluates the performance of EdgeSP, and Sect. 5
concludes.

2 Related Work

To enable resource-limited edge devices to perform large DNNs, some researchers
focus on refining neural network structures to reduce computation. Model prun-
ing is dedicated to removing nonsignificant weights in the DNNs model to reduce
calculation [17]. Weight quantization reduces the number of model parameters
and calculations by replacing the floating-point number parameters in the origi-
nal DNN network with low-bit parameters [18]. However, the above methods will
degrade the accuracy of the model. The early exit mechanism takes advantage
of the variability between samples by adding branches to the shallow layers of
the neural network to allow simple samples to complete their inference in ad-
vance [5, 19]. Although the early exit mechanism can reduce computation, its
acceleration of DNNs inference for edge devices is insufficient [20].

4 Z. Gao et al.

Some researchers are inclined to offload compute-intensive tasks from edge
devices to powerful servers. Neurosurgeon [3] proposes to accelerate DNNs in-
ference on edge devices with the help of the cloud. The edge device performs
the front part of the DNNs and sends the intermediate data to the cloud, which
subsequently performs the rest of the computation. Edgent [21] proposes an end
device and edge co-inference method with two early exit points by combining
BranchyNet and Neurosurgeon. The Triple-partition Network [6] adds three exit
points to traditional DNNs and deploys them to end devices, the edge, and the
cloud. However, this server-assisted approach is highly dependent on the quality
of the network connection. Worse still, sending local data to edge or cloud servers
may result in privacy disclosure.

Another rising star, multi-device parallel inference, has attracted increas-
ing attention. MoDNN [14] first put forward to allocate DNN inference tasks to
multiple devices for parallel execution, but its method will cause additional com-
munication overhead. DeCNN [22] reduces frequent inter-device communication
during parallel inference by modifying the network structure. Deepthings [15]
fuses the first few layers of the DNN network to reduce the communication over-
head, which will generate extensive overlapping computations when the number
of fused layers is too large. None of the parallel inference architectures men-
tioned above are scalable, i.e., they cannot provide the flexibility to adjust DNN
inference response times according to task requirements.

3 EdgeSP Framework

Our work aims to accelerate DNN inference by leveraging heterogeneous edge
device clusters and provide edge devices with the ability to trade-off latency
and accuracy to accommodate the varied needs of real-time applications. To do
this, we need to address the following issues: (1) how to optimize the impact of
data dependency problems caused by parallel inference; (2) how to adaptively
distribute tasks to heterogeneous devices in a dynamic network environment; (3)
how to empower devices with scalable DNN inference capabilities. Our research
focuses on convolutional neural networks (CNNs) as they are widely used in
broad-spectrum intelligent services [11].

3.1 Framework Overview

We design a framework, EdgeSP, that can adaptively distribute CNN inference
tasks to heterogeneous devices in a dynamic network environment. In order to
enable the device to adapt to tasks with different response time requirements,
EdgeSP adds several early exit branches to the original CNN network. EdgeSP
includes the preparation phase and inference phase. In the preparation phase, we
first train CNNs with branching structure and subsequently train the compute
capability models of the heterogeneous devices to quantify their performance.
As the compute capability of the devices is invariant, each device only needs
to be trained once. Each edge device will then broadcast the trained compute

EdgeSP: Scalable Multi-Device Parallel DNN Inference 5

Device 1

Device 1

Device 2

Device 3

Branch 1

Convolutional layers

Fused-layer Block

Exit 1
Output

Main Branch

Main
Branch
Output

Branch 2

Exit 2
Output

Fig. 2. An example of the inference workflow of EdgeSP. In addition to the main
branch, two early exit branches are added to the DNN, namely Branch 1 and Branch
2. An input sample is distributed to three heterogeneous devices, and they execute the
DNN in parallel using a multiple fused-layer blocks approach.

capability model to the other devices involved in parallel inference. Eventually,
each device will be aware of the compute capabilities of the other devices.

Fig. 2 illustrates an instance of the EdgeSP inference workflow. Three de-
vices execute a CNN with two branches in parallel. The inference workflow is as
follows:

– Device 1, which initiates the CNN inference task, runs the adaptive fused
layer workload partition algorithm that assigns different workloads to Device
2 and Device 3 based on network bandwidth and devices’ compute capability.

– The three devices perform successive multilayers in a multiple fused layer
blocks manner, which will be discussed in Sect. 3.2. The fused layer blocks
are followed by synchronization points where the devices will recombine the
feature maps.

– When the neural network executes to Branch 1, each device will save the
feature maps computed in the main branch at this point and initiates a
new fused layer block. When executing to the fully connected layer, each
device sends the computed feature map to the device with the most powerful
compute capability in the entire cluster, i.e., Device 2.

– Then Device 2 will execute the fully connected layer and determine whether
to exit the inference in advance at this branch. The details of the early
exit mechanism will be elucidated in Sect. 3.4. If Device 2 determines to
quit the inference at this point, it will send the result to the task initiating
device. Otherwise, Device 2 will send the command to continue execution
to Device 1 and Device 3, and the edge cluster will restore the feature map
just retained and continue to execute the main branch.

– When the execution reaches the later branches, the cluster will repeat the
above process and determine whether to exit the inference until the whole
CNN network is executed.

6 Z. Gao et al.

5 2 5 9 7 4 2 3

4 1 8 6 3 9 7 8 1 1

1

1

16 28 25 23 22 20

12

Input Feature Maps Output Feature Maps

Convolution
Kernel

Device A

Device B

Device C

Fig. 3. Schematic diagram of the data dependency problem arising from parallel infer-
ence. Device A needs data from device B to compute the output feature map.

3.2 Multiple Fused-Layer Blocks Parallelization Strategy

According to [13], convolutional operations account for more than 70% of the
overall execution time of CNN networks, so accelerating the execution of the
convolutional layer has become a hot research topic. Since the structure of the
convolutional neural network is tightly coupled, distributing the convolution
operation to multiple devices incurs data dependency problem. In this section,
we present the details of the data dependency problem and the corresponding
solutions.

In a convolutional neural network, the convolutional layer extracts massive
features from the input samples and passes the results to subsequent convolu-
tional layers to extract higher-level features. For a convolution layer with feature
map M {ChM , H,W} and convolution kernel K {ChK , F, F}, the convolution
operation can be expressed as follows [23]:

M⊗K =

F−1∑
i=0

F−1∑
j=0

M[Sx+ i][Sy + j]×K[i][j]

0 ≤ x < H − F + S

S
, 0 ≤ y < W − F + S

S

(1)

where H, W , and ChM denote the height, width, and number of input channels
of the feature map, F , S, and ChK denote the size, stride, and number of output
channels of the convolution kernel, respectively.

From Eq. 1, it can be derived that a neuron in the output of the convolution is
only relevant to the partial data in the input feature map. This characteristic of
the convolution operation provides the possibility of distributing the CNN task
to multiple devices for parallel execution. But this characteristic also indicates
that the CNN structure is highly coupled, which incurs the data dependency
problem. Fig. 3 presents an instance of the data dependency problem. In Fig. 3,

EdgeSP: Scalable Multi-Device Parallel DNN Inference 7

...

Input
Feature Maps

Intermediate
Feature Maps

Output
Feature Maps

(b) Single Fused-Layer Block (c) Multiple Fused-Layer Blocks

Layer 1

Layer 4

Layer 3

Layer 2
Block 1

Block 2

(a) Fused-Layer Structure

Overlapping
Computation

Fig. 4. Comparison of overlap computation caused by fused layer. (a) Schematic dia-
gram of overlap computation caused by fused layer. Variation of computation area size
for (b) a single fused layer block and (c) multiple fused layer blocks.

the input feature map is assigned to three devices. Calculating the data in the
red box in the output feature map requires the contents of a 2× 2 size matrix in
the input data, but these data are stored in two different devices. Generally, for a
convolution kernel of F×F , each device needs its allocated feature map partition
to extend bF/2c along the edges to contain the data required for convolution.

To resolve the data dependency problem, some researchers have adopted a
layer-wise approach [11, 12, 14], where each device exchange overlapping data
before performing each layer of convolution. This layer-wise approach will un-
doubtedly incur frequent inter-device communications [13]. We propose a mul-
tiple fused-layer blocks (MFLB) parallelization strategy. Each device performs
multiple consecutive convolutional layers without exchanging overlapping data
during this period, thus avoiding frequent inter-device communication. For work-
load assignment, we first divide the last layer of the block according to the device
compute capability and network bandwidth, and then each workload feature map
is extended bF/2c along the edge and recursively to the first layer of the block
layer by layer.

As shown in Fig. 4(a), the fused-layer method removes data dependencies by
introducing overlapping computations. As the number of fusion layers increases,
redundant computations also increase layer by layer. Therefore, we trade off the
communication overhead and overlapping computation and adopt multiple fused-
layer blocks to reduce the overlapping computation caused by too many fusion
layers, as shown in Fig. 4(c). We divide the entire CNN network into blocks,
where each device performs the workload within a block consecutively. Each
fused block is followed by a synchronization point where each device aggregates
and redistributes the feature maps. Fig. 4(b) and Fig. 4(c) are sketches of the
naive fused layer method and the MFLB method. In order to calculate Layer

8 Z. Gao et al.

4, the computation amount of the single fused layer block is more than that of
multiple fused layer blocks. How to determine the size of each fusion block will
be elucidated in Sect. 3.3.

3.3 Workload Partition Algorithms

In this part, we discuss how to distribute workloads to heterogeneous devices
adaptively. The fused-layer block assigned to each device can be regarded as a
separate task. Each block’s last layer is followed by a synchronization point. The
goal of distributing workloads is to strive for near-synchronous completion of the
fused-layer block tasks by individual devices to avoid long waits at synchroniza-
tion points.

It was clarified in [24] that the execution time of convolution operation is
approximately proportional to the number of floating-point operations (FLOPs)
required. To quantify the performance differences between heterogeneous devices
Dk = {D1, D2, · · · , DK}, in the preparation phase, each device runs a series
of convolutional layers with different parameters to train the linear regression
model of its compute capability. For a convolutional layer L with feature map
M {ChM , H,W} and convolutional kernel K {ChK , F, F}, the FLOPs required
can be expressed as follows [25]:

FLOPs = 2HW
(
ChMF

2 + 1
)
ChK (2)

The linear regression model of the compute capability of the device Dk is denoted
as Ck. Then the execution time for the device Dk to run convolutional layer L
can be predicted, which is Ck(L).

Data transmission delay is another factor that affects the execution time
of each individual fused-layer block. Edge devices are typically under the same
network, so we focus on edge clusters under the same LAN in this work. We use
B to denote the network bandwidth. We take a bottom-up approach to analyze
the size of the communication data, i.e., we first calculate the size of the last layer
of the fused layer block. For device Dk, assuming that the size of the feature map
matrix for the last layer of the block is Wend, the amount of data required to
transmit the last layer is 4Wend bytes since the size of the floating-point number
is 4 bytes. The size of the first layer of the fused layer block, denoted as Wfirst,
can be obtained by expanding bF/2c layer by layer along the edge of the Wend

and recursively to the first layer. Then the total time for device Dk to execute
a fused layer block with N layers can be expressed as follows:

Tk =

N∑
i=1

Ck(Li) +
4 (Wfirst +Wend)

B
(3)

We perform one-dimensional workload partitioning of the feature map because
one-dimensional partitioning has better performance than two-dimensional par-
titioning [8].

We propose an adaptive fused-layer workload partition algorithm, as shown
in Algorithm 1. This algorithm continuously fine-tunes each device’s workload

EdgeSP: Scalable Multi-Device Parallel DNN Inference 9

Algorithm 1 Adaptive Fused-Layer Workload Partition Algorithm

Input:
{Dk|k = 1, ...,K}: K available devices
{Ck|k = 1, ...,K}: computation capabilities of K devices
{Lstart, Lend}: the start and end layer of the block
ζ: waiting time factor

Output:
S {Wk}: workload partition strategy

1: Procedure
2: for Dk (k = 1, ...,M) do
3: Wkend ← Lend × Ck∑M

k=1
Ck
, Wkfirst ←Wkend

4: compute Tk from Eq. 3
5: end for
6: Tavg ← 1

M
×

∑M
k=1 Tk

7: T diff
k ← abs (Tavg − Tk)

8: if max T diff
k > ζ · Tavg then

9: Wargmin(Tk) expands by one pixel
10: Wargmax(Tk) decreases by one pixel
11: Goto Step 6
12: else
13: return S {Wk}
14: end if

based on its compute capability and network bandwidth until the execution
time of each device differs by no more than ζ, where ζ is a hyperparameter that
adjusts the tolerable wait time of the synchronization point. For example, when
ζ is set to 10%, the maximum tolerable wait time at the sync point is 10% of
the total execution time of the current fusion layer block.

With the workload partition strategy S, we can further determine the size of
each fused-layer block. As mentioned above, the MFLB parallelization strategy
reduces inter-device communication overhead while also introducing overlapping
computation. The amount of overlapping computation Woc can be obtained by
extending bF/2c layer by layer along Wk in S. We design a multiple fused-layer
blocks strategy search algorithm that greedily expands the fused-layer block
layer by layer until the maximum overlap computation delay is greater than the
reduced communication delay or an early exit branch is encountered, as shown
in Algorithm 2. This greedy algorithm can select the size of each fused-layer
block based on the CNN structure and network bandwidth to minimize the
total latency.

3.4 Early Exit Mechanism

To meet the needs of different real-time tasks, we leverage the early exit mech-
anism to provide devices with the ability to trade-off latency and accuracy. The
early exit mechanism adds branches to the original CNN, allowing simple input
samples to be inferred in a shallow layer of the CNN. Here entropy is used to

10 Z. Gao et al.

Algorithm 2 Multiple Fused-Layer Blocks Strategy Search Algorithm

Input:
{Ck|k = 1, ...,K}: computation capabilities of K devices
{Li|i = 1, ..., N}: CNN model with N layers
E: set of early exit branches
B: network bandwidth
Woc: overlapping feature map

Output:
F : multi fused layer strategy

1: Procedure
2: Lstart ← L1, Lend ← Lstart

3: if Lend+1 6= LN and Lend+1 6∈ E then
4: Lend ← Lend+1

5: execute Algorithm 1 with {Lstart, Lend}
6: if max Ck (Woc) > max

∑end−1
i=first+1 4Wi/B then

7: add {Lstart, Lend} to F
8: Lstart ← Lend+1, Lend ← Lstart

9: end if
10: goto Step 3
11: else if Lend+1 ∈ E then
12: goto Step 7
13: else
14: add {Lstart, Lend} to F
15: end if
16: return F

evaluate how confident the branch is about the input sample. Entropy is defined
as:

entropy (y) =
∑
c∈C

yc log yc (4)

where y is a vector containing computed probabilities for all possible class labels
and C is a set of all possible labels [5]. It is worth noting that EdgeSP has
multiple synchronization points, which are well adapted to the added branches.

The confidence threshold for each exit branch needs to be dynamically scaled
according to the task latency requirements. For each branch n ∈ {1, 2, · · · , N},
the probability that a sample exits at this branch is Pn (Pn ∈ [0, 1]), where N is
the main branch. We can predict the execution time Tn for each branch based on
Eq. 3. Then for a given task time threshold Tth, Pn should satisfy the following
constraints:

N∑
n=1

Pn × Tn ≤ Tth,
N∑

n=1

Pn = 1 (5)

We propose a stepwise method for determining branches confidence thresholds
with the following procedure:

EdgeSP: Scalable Multi-Device Parallel DNN Inference 11

– In the training phase, we record a list of entropy values for the entire training
set samples at each exit branch, denoted as Ln

– In the inference phase, a set of eligible Pn values is generated based on the
delay requirement Tth, and the set with the highest percentage of posterior
exit branches is selected to obtain higher accuracy.

– The entropy value at P1 of the entropy list L1 is chosen as the confidence
threshold of the first branch.

– Subsequently, the first
∑n−1

i=1 Pi values are eliminated from the entropy list
Ln, and then we choose the entropy value at Pn

1−
∑n−1

i=1 Pi
as the confidence

threshold for exit branch n.

We note that adding too many exit branches is inadvisable since complex
samples need to go through each branch without being able to exit inference
earlier. Therefore, increasing the number of branches, while providing a more
fine-grained service, also leads to an increase in the average inference latency. The
exit branch at the shallow level of the CNN fails to give high confidence results
due to the insufficient features extracted. Therefore the exit branch should not be
positioned too close to the front of the models. Previous work has demonstrated
that branches added at 1/2 and 3/4 of the CNNs can achieve the satisfactory
speedup without excessive loss of accuracy [26]. In this work, for comparison
with the server-assisted architecture, we added exit branches at 1/2 and 3/4 of
the original CNNs to simulate the exit branches at the edge server and the cloud,
respectively.

4 Evaluation

We implement EdgeSP in a cluster of heterogeneous edge devices and evaluate its
performance under different device counts and network bandwidths. Moreover,
we further test the average inference accuracy of EdgeSP under different latency
requirements.

Table 1. Heterogeneous Edge Devices Used in Experiments

Device CPU Frequency Memory

Raspberry Pi 4B × 2 1.5 GHz 4 GB

Virtual Machine × 2 1000 MHz 4 GB

Virtual Machine × 2 800 MHz 4 GB

4.1 Experiment Settings

We simulate edge device clusters with heterogeneous computing capabilities with
the devices in Table 1. We increase the number of devices in the edge cluster

12 Z. Gao et al.

1 2 3 4 5 6
Device number

0

50

100

150
A

ve
ra

ge
 la

te
nc

y
(m

s)

(a) AlexNet on CIFAR10

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

1 2 3 4 5 6
Device number

0

200

400

600

800

A
ve

ra
ge

 la
te

nc
y

(m
s)

(b) ResNet50 on CIFAR10

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Sp
ee

du
p

1 2 3 4 5 6
Device number

0.0

2.5

5.0

7.5

10.0

12.5
A

ve
ra

ge
 la

te
nc

y
(s

)
(c) ResNet101 on ImageNet

Edgent
Triple-partition Network

comp time (MoDNN)
comm time (MoDNN)

comp time (EdgeSP)
comm time (EdgeSP)

1.00

1.25

1.50

1.75

2.00

2.25

Sp
ee

du
p

Speedup of MoDNN
Speedup of EdgeSP

Fig. 5. The performance of EdgeSP at different device counts. Its average latency is
compared with MoDNN, Edgent, and Triple-partition Network.

from 1 to 6 in the order shown in Table 1. For comparison with the Edgent [21]
and Triple-partition Network [6], we use a PC with an i5-8400 CPU to simulate
the edge server and a server with four GTX3090 GPUs to simulate the cloud.
We implement EdgeSP on AlexNet [27], ResNet50 [1], and ResNet101 [1] as
they represent CNN models with different depths. The CIFAR10 [28] and Ima-
geNet [29] datasets are employed to evaluate the performance of EdgeSP in tasks
of varying difficulty. We use the WonderShaper [21] tool to adjust the available
bandwidth between devices.

4.2 Performance Comparison

The variation of the average inference delay for each CNN model with an exit
rate of Pn = [40%, 40%, 20%] and network bandwidth of 100 Mbps are shown
in Fig. 5. It’s a representative case as the entire inference workflow described
in Sect. 3.1 is executed at this exit rate, and different CNN models can achieve
satisfactory acceleration performance. Our framework achieves desired perfor-
mance in CNN inference tasks of three different sizes and difficulties. We can
observe that the average latency of CNN tasks decreases as the number of de-
vices increases. Benefiting from the early exit mechanism, the average latency of
EdgeSP is significantly lower than MoDNN in all three CNN tasks. Moreover,

EdgeSP: Scalable Multi-Device Parallel DNN Inference 13

a lower communication latency than MoDNN is achieved thanks to the MFBL
parallelization strategy. When the number of devices exceeds five, EdgeSP can
complete the inference task faster than Edgent and Triple-partition Network. Al-
though they speed up the inference with the help of edge servers and the cloud,
tasks that reside on end devices cannot be accelerated. Furthermore, EdgeSP
does not involve uploading data to third-party servers, thus avoiding the risk of
privacy disclosure.

As the number of devices increases, the acceleration ratio curves of EdgeSP
and MoDNN flatten out, but EdgeSP consistently achieves a higher acceleration
ratio than MoDNN. This trend is due to the increase in overlapping computation
and communication overhead, which suggests that involving too many devices
in parallel inference is not justifiable. Previous work [13] has demonstrated that
when the number of devices exceeds six, the additional overhead significantly
diminishes the acceleration effect.

2 4 6
Device number

150

200

250

300

C
om

m
 si

ze
 (K

B
)

(a)

40 60 80 100
Bandwidth (Mbps)

5.0

7.5

10.0

12.5

15.0

17.5

C
om

m
 ti

m
e

(m
s)

(b)

2 Devices
4 Devices
6 Devices

40 60 80 100
Bandwidth (Mbps)

15

20

25

30

35

Pr
op

or
tio

n
of

 c
om

m
 ti

m
e

(%
)

(c)

2 Devices
4 Devices
6 Devices

Fig. 6. AlexNet communication overhead at different bandwidths. (a) Variation of total
communication data size with the number of devices. (b) Variation of communication
time with bandwidth. (c) Variation of communication time as a percentage of total
time with bandwidth.

4.3 Analysis of the Communication Overhead

Fig. 6 shows the impact of network bandwidth on the performance of EdgeSP
using AlexNet as an example. As the number of devices increases in Fig. 6(a),
the workload is divided into smaller areas, but the overlap of tasks between
devices increases. Therefore, the amount of data to be transferred also increase.
The smaller the number of devices, the smaller the total communication size,
but the more workload is allocated to each device. Therefore, the communication
time is higher with fewer devices, as shown in Fig. 6(b). Combining Fig. 6(b)
and Fig. 6(c), we can see that the communication time gradually decreases as
the network bandwidth increases. The more devices there are, the faster the
computing task will be completed, so the communication time occupies a higher

14 Z. Gao et al.

20 40 60 80 100
Average latency requirement (ms)

76.0

77.0

78.0

79.0

A
ve

ra
ge

 a
cc

ur
ac

y
(%

)

(a) AlexNet on CIFAR10

200 300 400 500 600
Average latency requirement (ms)

82.0

84.0

86.0

88.0

A
ve

ra
ge

 a
cc

ur
ac

y
(%

)

(b) ResNet50 on CIFAR10

2 3 4 5 6 7 8 9
Average latency requirement (s)

65.0

67.5

70.0

72.5

A
ve

ra
ge

 a
cc

ur
ac

y
(%

)

(c) ResNet101 on ImageNet

1 Device
2 Devices

4 Devices
6 Devices

Acceleration bottleneck

Fig. 7. Variation of the average accuracy of the three CNNs for different task latency
requirements.

percentage when there are more devices. On the other hand, multi-device can
complete the task faster, which means that EdgeSP can mitigate the impact of
bandwidth reduction to some extent.

4.4 Performance under Different Latency Requirements

EdgeSP is capable of adjusting the inference time according to the task latency
requirements. Taking AlexNet in Fig. 7(a) as an example, when the latency
requirement is 59ms, the inference accuracy of a single device can only reach
77.9%, while the inference accuracy of multiple devices can reach 79.2%, and
a single device cannot complete the task within 38ms. As the number of de-
vices increases, EdgeSP can achieve higher accuracy with a specified latency
requirement. For example, when the latency requirement is 24ms, the inference
accuracy of two devices is 76.6%, while the inference accuracy of six devices can
be as high as 79%. Due to the complexity of ImageNet, the accuracy of early
exit branches is not as high as on CIFAR10, so the average accuracy in Fig. 7(c)

EdgeSP: Scalable Multi-Device Parallel DNN Inference 15

will have more attenuation than in Fig. 7(b), but is still within an acceptable
range. In Fig. 7(b) and Fig. 7(c), ResNet with multiple exit points running on
a single device suffers from the acceleration bottleneck phenomenon due to its
complex architecture. The acceleration bottleneck arises because the accuracy
of the preceding exit branch is unsatisfactory, and the later branches require
a longer execution time. Most input samples can only exit from the preceding
branches with lower accuracy to meet the latency requirement. However, multi-
device parallelism effectively suppresses the impact of acceleration bottlenecks.
In a word, the multi-device parallelism and early exit mechanism complement
each other, thus enabling EdgeSP to provide scalable and fast DNN inference
capability for edge devices.

5 Conclusion

In this paper, we propose EdgeSP, a scalable multi-device parallel DNN infer-
ence framework, which substantially reduces the latency of DNN execution by
resource-limited edge devices. We design a multiple fused-layer blocks paral-
lelization strategy to minimize the communication overhead incurred by parallel
inference. In addition, we add early exit branches to the original DNNs and
propose a stepwise confidence threshold determination method, which empow-
ers the device to trade-off latency and accuracy. Experimental evaluations show
that EdgeSP achieves lower latency than server-assisted approaches and naive
parallel inference in tasks of different scales. Furthermore, EdgeSP enables scal-
able inference for edge devices to provide high-accuracy services under various
latency requirements. In future work, we plan to explore multi-device parallel
execution of fully connected layers to accelerate DNN inference further.

Acknowledgments

This work was supported in part by the General Program of National Natural
Science Foundation of China under Grant 62072049, and in part by the National
Key Research and Development Project of China under Grant 2019YFB2103202
and Grant 2019YFB2103200.

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

2. Xiao, K., Gao, Z., Shi, W., Qiu, X., Yang, Y., Rui, L.: Edgeabc: An architecture
for task offloading and resource allocation in the internet of things. Future Gener.
Comput. Syst. 107, 498–508 (2020). https://doi.org/10.1016/j.future.2020.02.026

3. Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J.,
Tang, L.: Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge. SIGARCH Comput. Archit. News 45(1), 615–629 (Apr 2017).
https://doi.org/10.1145/3093337.3037698

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.future.2020.02.026
https://doi.org/10.1145/3093337.3037698

16 Z. Gao et al.

4. Teerapittayanon, S., McDanel, B., Kung, H.: Distributed deep neural networks
over the cloud, the edge and end devices. In: 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). pp. 328–339 (2017).
https://doi.org/10.1109/ICDCS.2017.226

5. Teerapittayanon, S., McDanel, B., Kung, H.T.: Branchynet: Fast inference via
early exiting from deep neural networks. CoRR abs/1709.01686 (2017), http:
//arxiv.org/abs/1709.01686

6. Gao, Z., Miao, D., Zhao, L., Mo, Z., Qi, G., Yan, L.: Triple-partition network:
Collaborative neural network based on the ‘end device-edge-cloud’. In: 2021 IEEE
Wireless Communications and Networking Conference (WCNC). pp. 1–7 (2021).
https://doi.org/10.1109/WCNC49053.2021.9417243

7. Du, J., Shen, M., Du, Y.: A distributed in-situ cnn inference system for iot applica-
tions. In: 2020 IEEE 38th International Conference on Computer Design (ICCD).
pp. 279–287 (2020). https://doi.org/10.1109/ICCD50377.2020.00055

8. Zhang, S., Zhang, S., Qian, Z., Wu, J., Jin, Y., Lu, S.: Deepslicing: collaborative
and adaptive cnn inference with low latency. IEEE Transactions on Parallel and
Distributed Systems 32(9), 2175–2187 (2021)

9. Mohammed, T., Joe-Wong, C., Babbar, R., Francesco, M.D.: Distributed infer-
ence acceleration with adaptive dnn partitioning and offloading. In: IEEE INFO-
COM 2020 - IEEE Conference on Computer Communications. pp. 854–863 (2020).
https://doi.org/10.1109/INFOCOM41043.2020.9155237

10. Xue, F., Fang, W., Xu, W., Wang, Q., Ma, X., Ding, Y.: Edgeld: Locally dis-
tributed deep learning inference on edge device clusters. In: 2020 IEEE 22nd In-
ternational Conference on High Performance Computing and Communications;
IEEE 18th International Conference on Smart City; IEEE 6th International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS). pp. 613–619 (2020).
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00078

11. Zeng, L., Chen, X., Zhou, Z., Yang, L., Zhang, J.: Coedge: Coopera-
tive dnn inference with adaptive workload partitioning over heterogeneous
edge devices. IEEE/ACM Transactions on Networking 29(2), 595–608 (2021).
https://doi.org/10.1109/TNET.2020.3042320

12. Mao, J., Yang, Z., Wen, W., Wu, C., Song, L., Nixon, K.W., Chen, X., Li, H., Chen,
Y.: Mednn: A distributed mobile system with enhanced partition and deployment
for large-scale dnns. In: 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). pp. 751–756. IEEE (2017)

13. Zhou, L., Samavatian, M.H., Bacha, A., Majumdar, S., Teodorescu, R.: Adap-
tive parallel execution of deep neural networks on heterogeneous edge devices. In:
Proceedings of the 4th ACM/IEEE Symposium on Edge Computing. p. 195–208.
SEC ’19, Association for Computing Machinery, New York, NY, USA (2019),
https://doi.org/10.1145/3318216.3363312

14. Mao, J., Chen, X., Nixon, K.W., Krieger, C., Chen, Y.: Modnn: Local dis-
tributed mobile computing system for deep neural network. In: Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2017. pp. 1396–1401 (2017).
https://doi.org/10.23919/DATE.2017.7927211

15. Zhao, Z., Barijough, K.M., Gerstlauer, A.: Deepthings: Distributed adaptive deep
learning inference on resource-constrained iot edge clusters. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 37(11), 2348–2359
(2018)

16. Fang, B., Zeng, X., Zhang, M.: Nestdnn: Resource-aware multi-tenant on-
device deep learning for continuous mobile vision. In: Proceedings of the 24th

https://doi.org/10.1109/ICDCS.2017.226
http://arxiv.org/abs/1709.01686
http://arxiv.org/abs/1709.01686
https://doi.org/10.1109/WCNC49053.2021.9417243
https://doi.org/10.1109/ICCD50377.2020.00055
https://doi.org/10.1109/INFOCOM41043.2020.9155237
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00078
https://doi.org/10.1109/TNET.2020.3042320
https://doi.org/10.1145/3318216.3363312
https://doi.org/10.23919/DATE.2017.7927211

EdgeSP: Scalable Multi-Device Parallel DNN Inference 17

Annual International Conference on Mobile Computing and Networking. p.
115–127. MobiCom ’18, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3241539.3241559, https://doi.org/10.1145/
3241539.3241559

17. Xu, Z., Yut, F., Liu, C., Chen, X.: Reform: Static and dynamic resource-aware dnn
reconfiguration framework for mobile device. In: 2019 56th ACM/IEEE Design
Automation Conference (DAC). pp. 1–6 (2019)

18. Oh, Y.H., Quan, Q., Kim, D., Kim, S., Heo, J., Jung, S., Jang, J., Lee, J.W.:
A portable, automatic data qantizer for deep neural networks. In: Proceedings
of the 27th International Conference on Parallel Architectures and Compilation
Techniques. PACT ’18, Association for Computing Machinery, New York, NY,
USA (2018), https://doi.org/10.1145/3243176.3243180

19. Tan, X., Li, H., Wang, L., Huang, X., Xu, Z.: Empowering adaptive early-exit
inference with latency awareness. Proceedings of the AAAI Conference on Artificial
Intelligence 35(11), 9825–9833 (May 2021), https://ojs.aaai.org/index.php/AAAI/
article/view/17181

20. Laskaridis, S., Venieris, S.I., Almeida, M., Leontiadis, I., Lane, N.D.: Spinn: Syn-
ergistic progressive inference of neural networks over device and cloud. In: Pro-
ceedings of the 26th Annual International Conference on Mobile Computing and
Networking. MobiCom ’20, Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3372224.3419194

21. Li, E., Zeng, L., Zhou, Z., Chen, X.: Edge ai: On-demand accelerating deep neural
network inference via edge computing. IEEE Transactions on Wireless Communi-
cations 19(1), 447–457 (2020). https://doi.org/10.1109/TWC.2019.2946140

22. Du, J., Zhu, X., Shen, M., Du, Y., Lu, Y., Xiao, N., Liao, X.: Model paral-
lelism optimization for distributed inference via decoupled cnn structure. IEEE
Transactions on Parallel and Distributed Systems 32(7), 1665–1676 (2021).
https://doi.org/10.1109/TPDS.2020.3041474

23. Zhao, K., Di, S., Li, S., Liang, X., Zhai, Y., Chen, J., Ouyang, K., Cap-
pello, F., Chen, Z.: FT-CNN: algorithm-based fault tolerance for convolu-
tional neural networks. IEEE Trans. Parallel Distributed Syst. 32(7), 1677–
1689 (2021). https://doi.org/10.1109/TPDS.2020.3043449, https://doi.org/10.
1109/TPDS.2020.3043449

24. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: Proceedings of the European conference on
computer vision (ECCV). pp. 116–131 (2018)

25. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolu-
tional neural networks for resource efficient transfer learning. arXiv preprint
arXiv:1611.06440 3 (2016)

26. Zhang, L., Tan, Z., Song, J., Chen, J., Bao, C., Ma, K.: Scan: A scalable neu-
ral networks framework towards compact and efficient models. arXiv preprint
arXiv:1906.03951 (2019)

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25,
1097–1105 (2012)

28. Krizhevsky, A.: Learning multiple layers of features from tiny images pp. 32–33
(2009), https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf

29. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Ima-
genet: A large-scale hierarchical image database. In: 2009 IEEE Confer-
ence on Computer Vision and Pattern Recognition. pp. 248–255 (2009).
https://doi.org/10.1109/CVPR.2009.5206848

https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1145/3243176.3243180
https://ojs.aaai.org/index.php/AAAI/article/view/17181
https://ojs.aaai.org/index.php/AAAI/article/view/17181
https://doi.org/10.1145/3372224.3419194
https://doi.org/10.1109/TWC.2019.2946140
https://doi.org/10.1109/TPDS.2020.3041474
https://doi.org/10.1109/TPDS.2020.3043449
https://doi.org/10.1109/TPDS.2020.3043449
https://doi.org/10.1109/TPDS.2020.3043449
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/CVPR.2009.5206848

	EdgeSP: Scalable Multi-Device Parallel DNN Inference on Heterogeneous Edge Clusters

