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Abstract

In a smart manufacturing system involving workers, recognition of the worker’s

activity can be used for quantification and evaluation of the worker’s perfor-

mance, as well as to provide onsite instructions with augmented reality. In

this paper, we propose a method for activity recognition using Inertial Mea-

surement Unit (IMU) and surface electromyography (sEMG) signals obtained

from a Myo armband. The raw 10-channel IMU signals are stacked to form a

signal image. This image is transformed into an activity image by applying Dis-

crete Fourier Transformation (DFT) and then fed into a Convolutional Neural

Network (CNN) for feature extraction, resulting in a high-level feature vector.

Another feature vector representing the level of muscle activation is evaluated

with the raw 8-channel sEMG signals. Then these two vectors are concate-

nated and used for work activity classification. A worker activity dataset is

established, which at present contains 6 common activities in assembly tasks,

i.e., grab tool/part, hammer nail, use power-screwdriver, rest arm, turn screw-

driver, and use wrench. The developed CNN model is evaluated on this dataset
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and achieves 98% and 87% recognition accuracy in the half-half and leave-one-

out experiments, respectively.

Keywords: Smart Manufacturing; Activity Recognition; Deep Learning;

Convolutional Neural Networks (CNN); IMU; sEMG.

1. Introduction

The availability of low-cost sensors and the development of Internet-of-

Things (IoT) technologies enable access to big data for the manufacturing indus-

try [1], which builds up the data foundation for smart manufacturing. A variety

of methods and algorithms have been developed to learn valuable information5

from the data, and to make the manufacturing smarter [2]. The fast-growing ar-

tificial intelligence technologies, particularly deep learning [3], are promising to

further boost this industry. In a smart manufacturing system involving workers,

recognition of the worker’s activity can be used for quantification and evalua-

tion of the worker’s performance, as well as to provide onsite instructions with10

augmented reality. Wearable devices, such as an armband embedded with an

Inertial Measurement Unit (IMU) or surface electromyography (sEMG) sensors,

directly sense the movement of human body or the level of muscle activation,

which can provide information of the body status. In addition, there are a lot

of inexpensive wearable devices in the market, such as Myo armbands [4] and15

smartphones, which are widely used in activity recognition tasks.

For activity recognition in the manufacturing area, Stiefmeire et al. [5] uti-

lized ultrasonic and IMU sensors for worker activity recognition in a bicycle

maintenance scenario using a Hidden Markov Model classifier. Later they

proposed a string-matching based segmentation and classification method us-20

ing multiple IMU sensors for recognizing worker activity in car manufacturing

tasks [6, 7]. Koskimaki et al. [8] used a wrist-worn IMU sensor to capture the

arm movement and a K-Nearest Neighbors model to classify five activities for
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industrial assembly lines. Maekawa et al. [9] proposed an unsupervised mea-

surement method for lead time estimation of factory work using signals from a25

smartwatch with an IMU sensor.

In general, the activity recognition task can be broken down into two sub-

tasks: feature extraction and subsequent multiclass classification. To extract

more discriminative features, various methods have been applied to the raw

signals in the time or frequency domain, e.g., mean, correlation, and Principal30

Component Analysis [10, 11, 12, 13]. Different classifiers have been explored on

the features for activity recognition, such as the Support Vector Machine [10, 12],

Random Forest, K-Nearest Neighbors, Linear Discriminant Analysis [11], and

Hidden Markov Model [13]. To effectively learn the most discriminative features,

Jiang et al. [14] proposed a method based on Convolutional Neural Networks35

(CNN). They assembled the raw IMU signals into an activity image, which en-

abled the CNN model to automatically learn the discriminative features from

the activity image for classification.

In the present research, we choose a Myo armband to capture the worker’s

activity because it can provide both IMU and sEMG signals. Motivated by40

the study of Jiang et al. [14], we stack the raw IMU signals to form a signal

image. This image is transformed into an activity image by applying Discrete

Fourier Transformation (DFT) and then fed into a CNN for feature extraction,

resulting in a high-level feature vector. Another feature vector representing the

level of muscle activation is calculated from the raw sEMG signals. Then these45

two vectors are concatenated and used for worker activity classification. An

overview of our method is illustrated in Figure 1. To evaluate the method,

a worker activity dataset containing 6 common activities in assembly tasks is

established.

The remainder of this paper is organized as follows. Section 2 discusses50

how we build up the worker activity dataset. Our proposed method is detailed

in Sections 3 and 4. The experimental setups and results are described in

Sections 5 and 6, respectively. Finally, Section 7 provides the conclusions.
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Figure 1: Overview of our worker activity recognition method.

2. Data Collection

To establish our dataset of worker activity, six activities commonly per-55

formed in assembly tasks are chosen, which are: grab tool/part (GT), hammer

nail (HN), use power-screwdriver (UP), rest arm (RA), turn screwdriver (TS),

and use wrench (UW).

A Myo armband equipped with IMU and sEMG sensors from Thalmic Labs

is used for data acquisition. The IMU returns three types of signals (3-channel60

acceleration, 3-channel angular velocity, and 4-channel orientation) at the sam-

ple rate of 50Hz. A set of 8 sEMG pods attached to the skin return 8 channels

of unitless signals in the range of [-128, 127] at the sample rate of 200Hz, which

represent the corresponding muscle activations. These 18-channel signals are

transmitted via Bluetooth to the computer.65

There are 8 subjects recruited to conduct a set of tasks (listed in Table

1) containing the 6 activities. As demonstrated in Figure 2(a), the subject

is asked to stand in front of the workbench, wear a Myo armband on his/her

right forearm with a fixed orientation (Figure 2(b)), and perform the tasks on

assembly dummies in a natural way. The Myo data are collected during the tasks70

and an overhung camera is used to record the assembly activities simultaneously

for monitoring the process. Examples of the 6 activities are shown in Figure 3,

which are taken from the overhung camera.
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Figure 2: (a) Data collection setup; (b) Wearing orientation of a right-hand.

3. Signal Preprocessing

Although the Myo data are collected separately for different tasks and each75

task consists of only one activity, there still might be some noise inside the

data, such as preparing activities between hammering nails. To address it, the

recorded videos are reviewed to locate the time durations, each of which contains

only one of the six activities. These durations are used to segment the raw Myo

data.80

Usually, the duration of a segmented instance ranges from a few seconds

to more than one minute, which consists of repeated activity patterns. Thus,

sampling is needed to prepare the data samples for recognition. As depicted in

Figure 4, the 50Hz IMU signals are sampled using a sliding window with the

width of 64 timestamps and 75% overlap between two steps. Thus each IMU85

sample lasts for about 1.3 seconds, which covers at least one activity pattern.
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Table 1: Tasks for collecting worker activity.

No Tasks Activities

1 Grab 30 tools/parts from the 3 containers GT

2 Hammer 15 nails into the wooden dummy HN

3 Tighten 20 screws using a power-screwdriver UP

4 Rest arms for about 60 seconds RA

5 Tighten 10 nuts using a screwdriver TS

6 Tighten 10 nuts using a wrench UW

After sampling the IMU signals, the 200Hz sEMG signals are sampled according

to the time durations of the IMU samples. Then each sEMG sample has an

approximate width of 256 timestamps.

After sampling, suppose we have N IMU samples and N sEMG samples, by90

using the method proposed by Jiang et al. [14], the 10-channel signals in an IMU

sample are stacked and shuffled, forming a signal image with the size of 42×64.

Then this signal image is transformed into an activity image by applying two-

dimensional (2D) Discrete Fourier Transform (DFT) and taking its logarithmic

magnitude. Figure 5 shows activity image examples for each activity. For a95

sEMG sample, the 8-channel signals are averaged along each channel, forming

an 8-dimensional vector, which represents the level of muscle activation.

4. CNN Architecture

The architecture of our CNN model is illustrated in Figure 6. It accepts two

inputs, the IMU activity image and the sEMG vector, and outputs a probability100

distribution of the 6 activities.

After the preprocessing steps described in Section 3, there are N activity

images XIMU
i and N sEMG vectors XsEMG

i , where i ∈ [1, N ]. XIMU
i has the

size of 42× 64× 1 (height, width, depth, respectively) and is normalized to the

interval [0, 1] before being fed into three 5 × 5 convolutional layers for feature105

extraction. Each convolutional layer is down-sampled to a half by implementing

a 2× 2 max pooling layer.
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Figure 3: Examples of the 6 activities.

Figure 4: Sampling method.

Then the feature map from the third pooling layer having the size of 2×5×32
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Figure 5: Examples of activity image.

is flattened into a 320-dimension feature vector, which is subsequently densified

by a fully connected layer to a 16 dimensional feature vector.110

On the other side, XsEMG
i representing muscle activation levels at 8 positions

is injected directly as a high-level feature. It is concatenated to the previous 16-

dimension feature vector from IMU signals, resulting in the total dimension of

24. Then another fully connected layer is used to densify the feature vector to the

dimension of 6, which is the number of activities. Then this 6 dimensional score

vector {Sj , j = 1, 2, ..., 6} is transformed to output the predicted probabilities

using a softmax function [15] as follows:

P (y = j|[XIMU
i , XsEMG

i ]) =
exp(Sj)∑6
k=1 exp(Sk)

(1)

where P (y = j|[XIMU
i , XsEMG

i ]) is the predicted probability of being class j

based on the inputs XIMU
i and XsEMG

i .
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Figure 6: The architecture of our CNN model. The volume size is represented in height ×

width× depth. ‘Conv.’ and ‘Pool.’ denote the operations of convolution and pooling, respec-

tively.

Training a CNN model involves optimizing the network’s weights w to mini-

mize a chosen cost function. We select the cross entropy [15] as the cost function:

L(w) =

N∑
i=1

6∑
j=1

yij log[P (y = j|[XIMU
i , XsEMG

i ])] + λl2(w) (2)

where yij is 0 if the ground truth label of the ith data [XIMU
i , XsEMG

i ] is the115

jth label, and is 1 otherwise. The L2 regularization term [16] is added to the

cost function to penalize large weights, and λ is its coefficient. The Adam

optimization method [17] is used in the training.

The dropout regularization [18] randomly drops units from the neural net-

work during training, which is commonly used to avoid the overfitting. It is120

implemented after the flatten layer in the CNN model.

5. Experiment

We evaluate our method on an established worker activity dataset, which

has 6 activities performed by 8 subjects. The quantitative information of the

dataset is listed in Table 2. There are 11,211 data samples in total. These125

subjects use different amounts of time to finish each task, therefore they have

different numbers of data samples for each activity.

Two evaluation policies are conducted, i.e., half-half and leave-one-out poli-

cies. In the half-half evaluation, after randomly shuffling, one half of the dataset
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Table 2: Number of data samples for each activity of different subjects.

Subject No. GT HN UP RA TS UW

1 193 140 364 266 222 442

2 302 408 195 56 274 751

3 198 183 171 251 214 567

4 204 172 188 29 82 344

5 187 204 142 43 213 372

6 216 77 179 47 129 301

7 213 196 203 254 231 576

8 200 184 262 145 148 273

is prepared for training and the other half is kept for testing. In the leave-one-130

out evaluation, the samples from 7 out of 8 subjects are used for training, and

the samples of the left one subject are reserved for testing. We employ several

commonly used metrics [16] to evaluate the classification performance, which

are listed as follows:

• Accuracy

Accuracy =

∑N
i 1(ŷi = yi)

N
(3)

• Precision and Recall

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(4)

• F1 score

F1 = 2 · Precision ·Recall
Precision+Recall

(5)

where 1 is an indicator function in Equation 3. For a certain class yi, True135

Positive (TP) is defined as a sample of class yi that is correctly classified as

yi; True Negative (TN) means a sample from a class other than yi is correctly

classified as ‘not yi’; False Positive (FP) means a sample from a class other

than yi is misclassified as yi; False Negative (FN) means a sample from the
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class yi is misclassified as another ‘not yi’ class. F1 score is the harmonic mean140

of Precision and Recall, which ranges in the interval [0,1].

The CNN model described in Section 4 is created using the Google Tensor-

Flow library. For training hyperparameters, we choose the batch size as 512, the

learning rate as 0.001, the dropout rate as 0.5, and the regularizer coefficient

as 1e-5. The number of epochs is 1000. We use a workstation with one 12 core145

Intel Xeon processor, 64GB of RAM and one Nvidia Geforce 1080 Ti graphic

card for the CNN training.

6. Results

To explore the optimal combination of inputs for the CNN model, we first

compare the performance of three cases using different inputs: 1). activity150

images from the IMU signals (IMU-AI); 2). activity images from the sEMG

signals (sEMG-AI); and 3). vectors representing the muscle activation levels

from the sEMG signals (sEMG-V). The model described in Section 4 is adapted

accordingly to fit these 3 cases. For case 1, the lower stream of the CNN model

for the second input shown in Figure 6 is abandoned. Case 2 uses a CNN model155

similar to the one in case 1. Since the size of an activity image from the sEMG

signals is 25× 64, this model only has two sets of convolutional layers with the

maximum depth of 16, instead of 32. For case 3, only the lower stream of the

CNN model shown in Figure 6 is reserved, which is a fully connected neural

network from 8 nodes to 6 nodes.160

The performance of these three cases in terms of accuracy, precision, re-

call and F1 score with two evaluation strategies (half-half and leave-one-out) is

summarized in Table 3. Case 1 has the highest performance among the three,

which is about 30% higher than the other two. It demonstrates that the activity

images from the IMU signals provide more discriminative features for activity165

recognition. Compared to case 2, case 3 has higher performance as well as lower

computational cost due to the simplicity of its model.

Therefore, we choose the two inputs, i.e., IMU-AI and sEMG-V, for our CNN
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Table 3: Overall performance (%) of the half-half (hh) and leave-

one-out (loo) experiments.

Inputs* Accuracy Precision Recall F1 Score

IMU-AI
hh 97.5 97.5 97.5 97.5

loo 85.0 87.2 87.3 85.3

sEMG-AI
hh 60.4 64.0 60.3 61.8

loo 49.2 52.8 49.1 48.4

sEMG-V
hh 66.4 66.8 67.4 67.0

loo 50.7 52.5 53.1 47.9

IMU-AI,

sEMG-V

hh 97.6 97.8 97.5 97.7

loo 87.4 89.0 89.5 87.6

* ‘AI’ denotes activity images from either IMU or sEMG signals,

and ‘V’ denotes vectors that represent the muscle activation

levels from sEMG signals.

model. As shown in Table 3, its performance of the leave-one-out experiment is

about 2% higher than that in case 1 with only one IMU-AI input. For the half-170

half experiment, 97.6% of the testing samples are correctly recognized. Also,

as shown in Figure 7, only a small number of samples are misclassified and not

along the diagonal. It is about 10% higher than 87.4% of the leave-one-out

experiment. This is because all the testing subjects are seen in the half-half

experiment, while the testing subject in the leave-one-out experiment is unseen.175

The leave-one-out results on each testing subject are detailed in Table 4. The

4th subject has the highest performance, which reaches 98.2%, 97.1%, 98.8%

and 97.9% in accuracy, precision, recall and F1 score, respectively. The lowest

performance is from the 7th subject, which has about 37% of the testing samples

misclassified. The UW activity of the 7th subject has the largest recognition180

errors, which is shown in Figure 8(7). The majority of UW are misclassified as

TS, GT and UP. By reviewing the recorded videos, as illustrated in Figure 9

where the arrows show the approximate trajectories of the arm movements, we

find the reason for the low performance of the UW activity is that the 7th

subject performed the UW task significantly differently from other subjects and185
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thus it is difficult for the CNN model to learn using the leave-one-out strategy.

Table 4: Results (%) of the leave-one-out experiments evaluated on each test subject.

Subject No. Accuracy Precision Recall F1 Score

1 92.3 93.2 92.7 92.7

2 92.0 88.0 92.6 89.8

3 90.0 88.8 88.9 88.0

4 98.2 97.1 98.8 97.9

5 93.6 93.0 94.7 93.6

6 84.4 91.8 85.2 87.0

7 63.3 74.7 76.7 66.7

8 85.1 85.4 86.5 84.9

To address the confusing issues and further improve the model performance,

some directions for future work are considered, such as recruiting more sub-

jects to learn more working styles, using data augmentation techniques to add

more variations to the collected data, and exploring different methods of signal190

preprocessing and feature extraction to fully exploit the sEMG signals. In addi-

tion, the recording videos can also be utilized to create an image-based activity

recognition module.

7. Conclusion

In this paper, we develop a Convolutional Neural Network (CNN) model195

for worker activity recognition in smart manufacturing using the Inertial Mea-

surement Unit (IMU) and surface electromyography (sEMG) signals obtained

from a Myo armband. A worker activity dataset is established, which in-

volves 8 subjects and contains 6 common activities in assembly tasks (i.e.,

grab tool/part, hammer nail, use power-screwdriver, rest arm, turn screwdriver200

and use wrench). The developed CNN model is evaluated on this dataset and

achieves 98% and 87% recognition accuracy in the half-half and leave-one-out

experiments, respectively.
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Figure 7: Confusion matrix of the half-half experiment. The values represent the number of

samples, e.g., the ‘562’ on the upper-left corner means there are 562 samples of actual ‘rest

arm’ (RA) correctly predicted as RA, and the ‘6’ on the upper-right corner means there are

6 samples of actual RA incorrectly predicted as ‘use wrench’ (UW).
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Figure 8: Confusion matrix of the leave-one-out experiment on each of the eight testing

subjects.
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Figure 9: Use of wrench (UW) activities of each of the eight subjects. The arrows show the

approximate trajectories of the arm movements.
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