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Abstract

We propose a general methodology framework for eXplainable credit
scoring to provide interpretability of each individual variable and mea-
sure fairness. Specifically, it is able to detect important variables and
quantifies their individual impact on a firm’s credit classification via
the Shapley-Lorenz metric; and it quantifies the degree of discrimina-
tion, conditional on the endogenous effects generated by the variables,
via the Kolmogorov-Smirnov test. In the experiment on a panel dataset
of 119, 857 credit records for approximately 20, 000 small and medium-
sized enterprises (SMEs) in four European countries and 21 industry
sectors for the period 2015 to 2020, we showcase the application of the
eXplainable credit classification. We find that Leverage and P /L are
the most important variables in credit scoring. In contrast there is
marginal discrimination in terms of Country and Sector. The fairness
tests show consistent results.
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1 Introduction

In the era of artificial intelligence (AI), advanced credit scoring methods have
been developed that promise to improve accuracy and cost-effectiveness, and
are expected to promote a sustainable financial ecology and drive the devel-
opment of disruptive business models in financial services. The reliance of
the AI credit scoring however has raised public concerns about opacity, un-
fair discrimination and poor interpretability given that the machine learning
algorithms and big data techniques adopted are “black-box” in nature. Our
study provides a general methodology framework for eXplainable credit scor-
ing which provides interpretability and measures fairness. Specifically, it is
able to detect important variables and quantifies their individual impact on
a firm’s credit classification via the Shapley-Lorenz metric; and it quantifies
the degree of discrimination, conditional on the endogenous effects generated
by the variables, via the Kolmogorov-Smirnov test.

This study is motivated by the real-world problem of developing an eX-
plainable credit scoring methodology for small and medium-sized enterprises
(SMEs) based on a panel dataset of 119, 857 credit records for approximately
20,000 SMEs, and measures the fairness among the SMEs in four European
countries and 21 industry sectors for the period 2015 to 2020. Questions to
be answered include 1) the extent to which each financial accounting vari-
able affects and explains a company’s credit score, and 2) whether there is
unfairness in credit scoring in terms of countries and industries.

A basic prerequisite for the credit scoring methodology is undoubtedly to
attain a high predictive accuracy of credit classification. Credit scoring is pos-
sibly one of the first fields Machine Learning (ML) methods have been widely
applied in economics, see e.g. |41, 42| with decision trees; [36, 37| with the
k-nearest neighbours; [44, 45| with neural networks (NN) and support vector
machines (SVMs); [34, 38| with bagging and boosting. The performance of
ML based scoring models has improved substantially in the last few years,
where ensemble (aggregation) methods deliver superior performance, see e.g.
[32, 43]. We refer to [39] for a comparison among random forests, AdaBoost,
XGBoost, Light GBM and Stacking, on five popular baseline classifiers: NN,
decision trees (DT), logistic regression (LR), Naive Bayes (NB), and SVM.
The experimental results, show that the performance of ensemble learning
is generally better than that of individual learners, and random forest is the
best method in terms of accuracy metrics such as the area under the curve
(AUC), the Kolmogorov—Smirnov statistic (KS) and the Brier score (BS).

Despite the high predictive performance, ML methods are lack of intu-
itive interpretation given nonlinear complex dependence, making the under-
lying rationale of automatic classification not easy to explain. Given the



presence of randomness, the consequences of blindly following any Al de-
termined results (both correct and “wrong”) can be financially and ethically
costly. Authorities and regulators have begun to monitor the risks (see, e.g.
[8]) arising from the adoption of (unexplainable) Al methods. The Euro-
pean Commission has introduced regulations on the trustworthiness of Al by
meeting a number of key principles in terms of accuracy, explainability, fair-
ness and robustness (e.g, [7]). Regulators require Al approaches in certain
industries, such as energy, finance and healthcare, to be validated against
international standards, such as ISO/IEC CD 23894. At the institutional
level, explanations should be able to address varieties of questions about a
model’s operations (e.g., [1]): developers, managers, model checkers, regula-
tors. To be explainable, Al methods must be able to provide detailed reasons
clarifying their functioning and address questions by developers, managers,
model checkers, and regulators. Among others, eXplainable Al credit scor-
ing methods should allow users to detect and understand risks, particularly
which factors are attributed to the results.

From a mathematical view point, the explainability requirement can be
fulfilled by measuring the impact of each variable in the credit classification.
For example, it is explainable by design when using logistic and linear re-
gression models, but at a cost of reduced predictive accuracy, given their
simple parametric structure. On the other hand, the ML methods such as
random forests can enhance accuracy but with limited interpretability. This
trade-off can be solved empowering accurate credit scoring models with post-
processing tools. [3] proposed to apply correlation networks (see, e.g [26])
to Shapley values (see, e.g. [28]) that group AI predictions by the similarity
in the underlying explanations. Shapley values are then used to interpret
individual prediction in terms of which variables mostly affect performance
(see, e.g. [8] and [18]). However, Shapley values are not normalised, making
comparisons between applications difficult.

Besides explainability, Al methods have to ensure the fairness principle.
From the law perspective, to be trustworthy, credit scoring systems should
not be discriminatory, especially with respect to specific population sub-
groups, such as country of belonging and industry. The notion of fairness
is strictly addressed to protect individuals or groups from biased and mis-
treatment behaviours, see [27]. Analogously, the fairness should also play a
basic role in the sustainable credit markets. As pointed out by [17], credit
markets may discriminate between individuals sharing a specific attribute
(e.g. gender, age, ethnicity) and the rest of the population. There are how-
ever not yet statistical methods measuring fairness, within the context of
explainable Al

We aim to fill the gap, proposing an Al credit scoring method that



can jointly measure explainability and fairness. Our study is based on the
Shapley-Lorenz values built on Lorenz Zonoids [12] that explain the contri-
bution of each variable to predictive accuracy rather than to the value of the
predictions. We propose a mechanism, based on the Gini measure, which
compares the distribution of the Shapley-Lorenz values in different groups of
the available data. We assess whether the explanation of each predictor vari-
able is independent or not on group characteristics such as economic sector
or country. A Kolmogorov-Smirnov test is developed to test the significance
of the degree of discrimination.

We apply the proposed eXplainable credit scoring framework on a panel
data of 119,857 credit records for approximately 20,000 SMEs, where an
overall classification accuracy of 88.55% is achieved with random forests. We
find that Leverage and P/L have the largest shares of Shapely-Lorenz val-
ues of 33.48% and 20.60% respectively, indicating their importance in credit
scoring. Country and Sector in contrast have very small Shapely-Lorenz val-
ues, implying marginal discrimination in these aspects. We conducted two
levels of fairness tests on a benchmark model with all variables are used and
different models grouped by country and sector respectively. Tests show that
there is no unfairness among credit scoring for neither country nor sector.

The paper is organized as follows. Section 2 presents the credit scoring
data that are employed to validate our method. Section 3 describes the
theoretical framework. Section 4 discusses the empirical findings. Section 5
contains some brief concluding remarks.

2 Data

We consider a credit rating panel data of about 20,000 small and medium-
sized enterprises (SMEs) in four European countries, Germany (DEU), France
(FRA), Italy (ITA), and Spain (ESP), and 21 sectors from 2015 to 2020.
Due to bankruptcy, the SMEs composition is not necessarily the same over
the six years. There are in total 119,857 credit records in the data. Each
record contains a company’s annual credit rating, from AAA to D, six finan-
cial accounting variables, including operating revenue (Turnover), operating
profit/loss (EBIT), profit/loss after tax (P/L), Leverage, return on equity
(ROE), and total assets (TA), the courntry and industrial sector informa-
tion of the company. Our interest is to study the individual impact of each
variable and fairness of credit ratings using eXplainable AI. Specifically, the
fairness is measured by the magnitude of discrimination in either country
or sector, conditional on the impact of various financial variables in a credit
classification framework.



We aggregate the ten credit ratings into three groups and perform ternary
classification:

- Strong: high capacity to meet financial commitments, including three

ratings AAA, AA and A.

- Normal: adequate capacity to meet financial commitments, but may
subject to adverse economic conditions, including BBB, BB and B.

- Vulnerable: default or default has not yet occurred, but is expected to
be a virtual certainty, including ratings of CCC, CC, C' and D.

Figure 1 shows the Leverage, P/L, and EBIT of the SMEs grouped in country
and credit rating clusters. The Strong group tends to fall in the upper left
corner and the vulnerable group is on the right side, which means that there
is a difference in the distribution of Leverage, P/L and EBIT for companies
with different credit ratings.

Table 1 presents the distribution of the SMEs in each credit rating group
and for every year. The majority of the companies, at 64.6%, belong to the
Normal group, 24.5% of companies are Strong with a credit rating of A and
above, and the remaining 10.8% of companies are in the Vulnerable group
with CCC or below. While the distribution is relatively stable over time,
there is a monotonic increase in the Strong group, and in contrast a mono-
tonic decrease in the Normal group, though marginal in both number and
proportion. Meanwhile, there is a sudden jump in the Vulnerable group in
2020, possibly due to the Covid-19 pandemic, causing a drop of company’s
credit rating to CCC or lower and a 2% increase of companies in the Vul-
nerable group in 2020.
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Figure 1: Leverage, P/L, and EBIT of the SMEs grouped in country and
credit rating

We study the characteristics of the accounting variables for each credit
rating group, see Table 2. The table shows that there is a direct and strong
correlation between credit rating and four variables, i.e. EBIT, P/L, Lever-
age, and ROE. Specifically, companies with better creditworthiness on aver-
age have a higher EBIT, P/L and ROE, and a lower leverage. The group
Vulnerable for example exhibits substantially low mean and median in EBIT,
P/L and ROE, with some negative values. It highlights how difficult for this
group to meet financial commitments. TA and Turnover, on the other hand,
remain relatively stable among the three credit rating groups, implying that
the size and turnover of a company possibly play a trivial role in credit rating



Table 1: Summary Statistics for credit rating groups from 2015 to 2020
‘ Strong ‘ Normal ‘ Vulnerable ‘ Total

2015 | 4,311 21.6% | 13,296 66.7% | 2,315 11.6% | 19,922
2016 | 4,716 23.6% | 13,137 65.8% | 2,017 10.1% | 19,960
2017 | 4,946 24.7% | 12,998 65.0% | 2,053 10.3% | 19,997
2018 | 5,023 25.1% | 12,929 64.6% | 2,041 10.2% | 19,993
2019 | 5,116 25.6% | 12,835 64.2% | 2,040 10.2% | 19,991
2020 | 5,286 26.4% | 12,278 61.4% | 2,430 12.2% | 19,994
Total | 20,398 24.5% | 77,473 64.6% | 12,986 10.8% | 119,857

evaluation. To further highlight the feature of company size, we stratified
TA into three groups (i.e. large, medium ,and small) using the 25th and 75th
percentiles in Section 4. The intuitive analysis may help interpret credit rat-
ing evaluation at individual level. It is unclear how a specific variable plays
a role in machine learning credit scoring methods where the variables are
considered together.

Table 2: Summary Statistics for credit rating groups

Rating ‘ Turnover ‘ EBIT ‘ P/L ‘ Leverage ‘ ROE ‘ TA
Strong Mean 26,635 2,956 2,312 0.92 23.01 22,853
(29, 398) Median | 25,351 2,101 1,614 0.74 17.53 | 16,501
SD 9,382 3,602 3,214 0.76 20.59 | 37,893
Normal Mean 26,190 1,138 720 8.03 21.96 | 28,370
(77,473) Median | 25,076 622 395 2.57 9.74 16, 446
SD 10, 049 2,314 3,310 289 805 53,930
Vulnerable Mean 25,454 —1,148 | —1,710 | 41.06 130.15 | 36,720
(12,986) Median | 24,601 —389 —490 5.07 —8.23 | 17,348
SD 10, 803 5,127 5,281 2,916 10,715 | 82,700

Moreover, we aim to measure fairness of credit allocation in two as-
pects, country and industry sector. Among the available credit records,
48,667 records (40.6%) are for companies registered in Italy (ITA) and 43, 238
records (36.1%) in France (FRA). Spain (ESP) accounts for a small propor-
tion of 22,732 records (19.0%). Germany (DEU) is the lowest, with only
5,220 records (4.4%). While the number of sample SMEs are proportional
to their population counterpart in France, Spain and Italy, we have a very
small sample for Germany. This is due to the fact that in Germany, differently
from the other countries, the public disclosure of balance sheet information
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is voluntarily and not compulsory.

In terms of credit rating distribution, see Figure 2, ITA and ESP com-
panies have a similar rating distribution, with 23.94%, 67.32%, 8.74% and
24.31%, 66.33%, 9.35% for Strong, Normal and Vulnerable respectively. In
comparison, FRA have higher portion in two extreme groups, with 26.02%
and 14.08% for Strong and Vulnerable respectively. The number of records in
Germany is quite low in our data, but it has the largest proportion of Normal
group, with 71.48%, and has a portion of 18.58% for Strong and 9.94% for
Vulnerable.

I Vulnerable
40,000 + B Normal
Strong
30,000 A
20,000 A
10,000 -
N B
ITA FRA ESP DEU

Figure 2: Number and rating composition of companies of each country

There is variation of company characteristics between countries. For ex-
ample, the average of ROE is 50.30 in FRA, which is much higher than 26.02
in ITA, 22.70 in ESP ,and 21.28 in DEU, yet the average of Leverage in FRA
is below zero, which means that default likely happens. The average of total
assets also differ, with 63,536 for DEU, 33,423 for ESP, 27, 348 for ITA, and
21,376 for FRA. One can easily argue that the distribution of company char-
acteristics varies by country, but the effect of the variations on both credit
rating evaluation and how it influences fairness remains unknown. We sepa-
rate the data into four subsets by country, conduct credit rating prediction
under the single-country model, and compare to the baseline model for fur-
ther investigation. More details of summary statistics of each characteristic
are reported in Table 3.

We also pay attention on fairness between the 21 sectors. The sectors
covering different aspects from e.g. food supply, retailing, to commercial and
professional services are grouped to eleven industry sector clusters.
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Table 3: Summary Statistics for each country

Country Turnover | EBIT | P/L | Leverage ROE TA
ITA Mean 25,681 | 1,340 | 814 23.78 26.02 | 27,348
(48,667) | Median 24,571 797 | 442 2.38 10.00 | 18,900
SD 9,971 | 2,735 | 2,583 | 1,029.49 | 2,071.14 | 51,617
FRA Mean 26,719 | 1,014 732 —0.07 50.30 | 21,376
(43,238) | Median 25,482 637 | 510 1.93 13.48 | 13,427
SD 9,990 | 2,756 | 2,721 | 1,098.01 | 4,928.15 | 37,682
ESP Mean 25,676 | 1,650 | 1,032 1.31 22.70 | 33,423
(22,732) | Median 24,772 812 560 1.47 10.04 | 16,706
SD 9,933 | 4,801 | 6,479 175.47 | 1,232.25 | 74,55
DEU Mean 29,457 | 2,594 | 1,300 —0.21 21.28 | 63,536
(5,220) | Median 28,066 | 1,653 | 996 1.26 6.07 | 27,204
SD 9,342 | 3,560 | 3,452 | 1,546.44 | 6,889.62 | 77,733

- Retailing: Retailing.

- Capital Goods: Capital Goods and Diversified Financials.

- Materials: Materials.

- Food: Food Beverage and Tobacco and Food and Staples Retailing.
- Utilities: Transportation, Utilities, and Energy.

- Manufacturing: Automobiles and Components and Technology Hard-
ware and Equipment.

- Consumer: Consumer Durables and Apparel and Household and Per-
sonal Products.

- Health Care: Health Care Equipment and Services and Pharmaceuti-
calcs biotechnology and life sci

- Entertainment: Media & Entertainment, Consumer Services and Telecom-
munication Services.

- Real Estate: Real Estate.

- Services: Software and Services and Commercial and professional ser-
vices.



Consumer industry accounts for a large proportion, including e.g. retailing,
Food Beverage and Tobacco, and Food and Staples Retailing with 33,437,
8,719, and 8,278 records respectively. In contrast, for some regulated in-
dustries, there are only 370 records in Telecommunication Services and 102
in Energy. The number of companies also vary within the same industry.
For example, manufacturing industry, there are 11, 291 records for Materials,
3,955 for Automobiles and Components, and 338 for Household and Personal
Products. The identifiers for sector in original data have similar categories
and the number of records in each varies widely.

3 Theoretical Framework

To meet the requirement of explainability,we propose to extend the Shapley-
Lorenz decomposition approach to credit scoring, where the normalised mea-
sure of the impact is provided by each financial ratio to a company’s credit
rating. We extend the Shapley-Lorenz approach to a multi label classifi-
cation problem in Subsection 3.1. To measure fairness, we employ a re-
formalization of the Gini’s heterogeneity index, based on the distribution of
Shapley-Lorenz values for each financial ratio variable, conditional to coun-
try and sector. Subsection 3.2 also proposes a Kolmogorov-Smirnov test to
assess its statistical significance.

3.1 Shapley-Lorenz decomposition for a multi class re-
sponse

The theoretical framework of the Shapley-Lorenz approach was originally
developed by [12], along with an application to explain the variability of
Bitcoin prices, a continuous response variable. An extension of the approach
was provided in [14], in the context of explaining cyber losses: an ordinal
response variable.

Here we extend the Shapley-Lorenz approach to a multi-class response
variable, and apply it to credit rating. To this aim, instead of computing the
Lorenz Zonoid of the predictions through the covariance operator, as illus-
trated by [11] and [22], we resort to the notion of the Gini-mean difference.

More formally, following the notation proposed in [21], given a population
composed of several attributes s = 1,...,d, let A = [a;5] be an n x d data
matrix; a; its i-th row and F4 be the d-variate empirical distribution that
puts equal mass 1/n to each a;. A Gini mean difference can be derived as:
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LZ(Fy) = o7 2]2“1<2<L8%)2>1/2_ (1)

s=1

On the other hand, [12], a mathematical derivation of the Shapley-Lorenz
decomposition can be defined as

7oy -y BRI g 0 - 12l @)

X' CC(X)\ Xy

where K is the total number of explanatory variables; C(X)\ X} is the set of
all the possible model configurations which can be obtained excluding vari-
able X (with k =1,...,K); | X'| denotes the number of variables included
in each possible model; LZ (}A/X/ka) and LZ(Yy) describes the (mutual)
variability explained by the models including the X' U X} variables and the
X' variables, respectively.

In the credit allocation framework, the multi-labels denote the ratings
assigned to the companies. When dealing with credit rating data, the interest
is in evaluating the impact of the financial ratios on the probability of a
company to be classified as “vulnerable” instead of “normal” or “strong”. This
implies that the term d in equation (1) is replaced by d — 1, that is, the
number of the rating categories—1. It therefore results that LZ(Yy, x,) and

LZ(Yy'), appearing in equation (2), can be re-written as

d g X'Ux ) . Q(X/UX ) 2\ 1/2
9 k)is k)js
L2y = g 0 (30 (Pt ) )

j=1 i=1 s=1

and

i) =g 3 (X () )

7j=1 =1 s=1

3.2 Measurement of fairness

The concept of fairness is extensively mentioned in the literature. However,
its definition is rather loose, and it can take different meanings in different
domains and disciplines (see e.g. [27]).

In fields of computer science, economics and statistics, fairness is typically
interpreted as an “equal allocation” of economic quantities or as an “equal
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assessment” of economic conditions. This intuition can be better formalised
using a statistical terminology. We can say that, when a statistical measure is
distributed homogeneously among the groups composing a population, there
is fairness. When, instead, the measure is concentrated in some groups, there
is unfairness.

A similar definition is employed in the field of meta-analysis (see e.g. [23]):
a “fair” treatment of the combined studies occurs when the treatment of their
results is homogeneous. In this context, a measure of heterogeneity can be
employed to assess fairness. Two extreme situations arise: on one hand, if all
the observations belong to the h-th variable category (with h = 1,..., H), the
frequency distribution of variable R can be classified as “unfair”; otherwise, if
the observations are equally distributed across the H categories, it is classified
as “fair”.

In our perspective, we propose to assess fairness with respect to countries
and sectors, by considering the weight of each considered financial variable
in affecting the company’s rating.

Differently to what discussed in [5], we deal with numerical values, which
measure the explanation of each financial variable to the determination of
the rating classes. We can extend heterogeneity to measure the shares of
Shapley-Lorenz values, for each relevant predictor, across different countries
and sectors.

In this context, a suitable measure for fairness is the classical Gini co-
efficient. As shown by [11], the Gini coefficient appears as an alternative
variability measure that, being based on the notion of mutual variability,
is robust to the presence of outlying observations. The employment of the
Gini coefficient is also consistent with the Shapley-Lorenz decomposition ap-
proach as, in the univariate case, the Gini coefficient corresponds to the
Lorenz Zonoid ([11]).

In the next subsection, we formalise the notion of Gini coefficient to
measure fairness, together with a proposal to test fairness, that is to assess
if the predictors equally impact regardless to the items they are related to
(Subsection 3.2.2).

3.2.1 A Gini measure of fairness

Denote with p,,, where m = 1,..., M, our reference items (countries or
sectors); Xy, where k = 1,..., K is a predictor (a specific financial ratio);
and v5% is the Shapley-Lorenz value associated with the k-th predictor and
referred to the m-th item.

We can organize the Shapley-Lorenz values v
as follows:

SL

¢ in a tabular format, such
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Table 4: Shapley-Lorenz values associated with the K predictors and the M
items

A global measure of explainability referred to each of the k predictors
and with respect to all the M items, can be determined as v3* = fozl VoL
for any k =1,..., K. The impact of the k-th predictor to the explainability
of the phenomenon under study for the m-th item can then be computed as
the ratio between the Shapley—Lorenz values v5F and the global measure of
explainability vl ie. ¢°% = vk /v3E. We denote this ratio with ¢5k as it
specifies the share (or quota) of the generic k-th predictor importance to the
explanation of the phenomenon under study for the m-th item.

Given these premises, a novel definition of fairness can be introduced.
Specifically, we assume that the maximum fairness with respect to the M
items can be achieved in the case that ¢°% = m/M, for any m = 1,..., M.
This scenario corresponds to the concept of perfect equality in income dis-
tributions according to the classical Gini methodology framework (see, [10]).

The Gini coefficient is a summary measure of income inequality that
derives from the construction of the Lorenz curve (see, [24]). The graph of
the Lorenz curve plots the proportion of the population on the horizontal axis
and the cumulative income on the vertical axis. Together with the Lorenz
curve, a straight 45-degree line is also displayed to denote the case of perfect
equality in income distribution.

The area lying between the Lorenz curve and the 45-degree line is equiva-
lent to the Gini coefficient that, as stated by [20] and subsequently mentioned
by [11] and [12], corresponds to the Lorenz Zonoid.

Thus, it results that fairness can be evaluated by resorting to the same
Lorenz Zonoid-based approach, leading to a unified procedure for the assess-
ment of both explainability and fairness.

To extend the Gini methodology to the the fairness measurement, a par-
allelism between the notions of fairness and equality has to be defined also

13



in terms of Lorenz curve.

In the classical theoretical framework (see, [24]), the Lorenz curve is a
plot related to the incomes of the individuals of a population (identifying the
x-axis), with the proportion of the total income that is owned by those in
the lower 100p percent of individuals (identifying the y-axis). More precisely,
the z-axis reports the proportion of individuals, while the y-axis refers to the
cumulative of incomes re-ordered in a non-decreasing sense.

In our perspective, the z-axis denotes the proportion of items and the
y-axis denotes the cumulative Shapley-value shares re-ordered in a non-
decreasing sense. More precisely, based on the previously proposed no-
tation and supposing to consider the k-th predictor, let us denote with

v%k, e ,vgg)k, e ,vfj\%)k the ordered Shapley values such that vﬁ%k < v%k <
< USL
e e > (M)k-

Therefore, it derives that the Lorenz curve for fairness is characterised

m SL
by the set of points whose coordinates are specified as (%, %) =
&

m m SL _
(m, >0 dayi)> where l=1,....m.
The two extreme scenarios which can arise are classified as:

e Maximum Fairness: this scenario is achieved if the Lorenz curve
overlaps with the 45-degree line (i.e., the x-axis value of the Lorenz
curve points are equal to the y-axis values), meaning that vj;l = v3L,

for any m # r and such that r=1,... m.

e Maximum Unfairness: this scenario is achieved if the Lorenz curve
mostly overlaps with the y-axis, meaning that vSF = 0, for any r =
1,...,m—1,and v3% # 0.

In all the other cases, the scenario of intermediate fairness arises. To

better clarify the Lorenz curve interpretation in terms of fairness, a graphical
representation of the three main scenarios is displayed in Figure 3.
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Lorenz Curve for fairness

1.0

- Maximum Fairness
- |ntermediate Fairness
= Maximum UnFairness

Cumulative Shapley-Lorenz value shares
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0.0 0.2 04 0.6 0.8 1.0

Proportion of items

Figure 3: The Lorenz Curve for the three possible fairness scenarios

From Figure 3, the maximum fairness condition implies that the variable
under evaluation provides, for each item, the same contribution in explain-
ing the phenomenon. In other words, the distribution of the Shapley-Lorenz
value shares ¢°L across the items is uniform. The maximum unfairness con-
dition appears if only for one single item the predictor fully contributes to
the explanation of the phenomenon.

Based on these considerations, it follows that the more the Lorenz curve
built on the Shapley-values moves away from the 45-line degree, the more
unfairness increases.

To measure the magnitude of fairness, the classical Gini coefficient has to
be re-specified, by involving the Shapley-values (or the Shapley-Lorenz value
shares) associated with each predictor and referred to all the single items.
We call the new re-formalized Gini coefficient the Gini-Fairness coefficient:
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F.

The Fj, value can be determined according to different procedures by re-
sorting to: the Shapley-Lorenz value shares ¢>% and applying the traditional
trapezoid rule; to the Shapley-Lorenz values v3kand applying, for instance,
the Gini-mean difference.

A fast way to compute the Gini-Fairness coefficient is by resorting to the
covariance operator (see, e.g, [22], [11], [12] and [14]), as reported in the
formula below:

_ 2c00(vni, (vaik))

F. = , 3

: Mug* ®)

SLY s SSL s 1 SL

where r(v;7) is the rank score and v;" indicates the average of the v>%

values, i.e. v5L/M.

Coherently with the classical Gini theoretical framework, the measure in
(3) takes values in the close range [0, 1], with value equal to zero in the case of
maximum fairness and a value equal to 1 in the case of maximum unfairness.

3.2.2 A statistical test for Fairness

To be proposed within the fairness evaluation setting, the F; measure should
be completed with a statistical test to be employed for evaluating whether
the k-th predictor has the same role in explaining the phenomenon among
the items. We now show how to build such test.

On the statistical view point, in the case of maximum fairness, it results
that F, = 0, meaning that the Lorenz curve for fairness perfectly overlaps
with the 45-degree line.

It seems reasonable to derive a test that takes into account the distance
between the Lorenz curve and the 45-degree line, as the smaller is this dis-
tance the higher is the fairness among the items.

We remark that both the 45-degree line and the Lorenz curve involve the
cumulative function; more precisely, for a specific k-predictor, the Lorenz
curve depends on the cumulative of the Shapley-Lorenz value shares referred
to each item, while the 45-degree line depends on the cumulative shares of
the items.

Due to these features, we propose to exploit the well-known Kolmogorov-
Smirnov test by re-interpreting in within the fairness framework.

The Kolmogorov-Smirnov test is typically employed to measure the dis-
tance between the empirical distribution function of the sample and the cu-
mulative distribution function of the reference distribution, or between the
empirical distribution functions of two samples (see [19] and [29]).
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In our perspective, we have to set, as our null hypothesis, the equivalence
between the cumulative empirical distribution function built on the Shapley-
Lorenz value shares (for the specific k-th predictor and referred to the m-th
item) and the cumulative distribution function of a standard uniform distri-
bution UJ0,1]. Indeed, the cumulative distribution function of the uniform
distribution is in general F'(z) = z, for 0 < z < 1, which exactly reflects the
behavior of the 45-degree line.

More formally, for the sake of simplicity let us now simplify the notation
by indicating with @ = {q1,q,-..,qum}, the vector including the Shapley-
Lorenz value shares whose continuous cumulative distribution function can
be written as P(Q < ¢q). Let qu),q@),---,qun be the corresponding order
statistics (where the ¢;’s are iid distributed according to F', for any i =
1,2,..., M), such that gq) < q@) < ... < quu)- The empirical distribution
function is expressed as follows:

0, if ¢<qqu
FM(q): %7 if Q(k)§q<q0€+l)7 for k:17277M_1
1, for q=>qun

The Kolmogorov—Smirnov statistic re-formalized in terms of the Shapley-
Lorenz value shares is defined as:

Dy = sup  |Fu(q) — Fy (4)

—00<g<+00
where sup_,_ ., is the supremum of the set of distances and F, is
the empirical cumulative distribution function of a standard uniformly dis-

tributed variable (i.e., ﬁ, %, cee % = 1).

4 Empirical Study

In this section, we implement credit analysis on the credit rating panel data
as described in Section 2. We begin with a ternary classification to predict
the credit status of 20,000 SMEs from four countries (Germany, France, Italy
and Spain) and eleven industry sector clusters (e.g. Retailing, Capital Goods,
Materials and Food) into three groups, i.e. Strong, Normal and Vulnerable,
determined by their corresponding credit rating scores. The primary inter-
est is to investigate the fairness of credit ratings for the SMEs in terms of
countries and industry sectors. This depends on a credit classification frame-
work that should be able to not only achieve accurate classification but also
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quantify the explicit contribution of each individual feature, i.e. account-
ing variable, that is used in the machine learning. Specifically, we perform
the classification with Random Forest (RF), where the classification based
on the entire sample is used as benchmark. Simultaneously, classification
models are built for subsets grouped by countries and sectors respectively,
using the same settings of RF. The contribution of each feature is then mea-
sured using Shapley-Lorenz metric. We then perform the hypothesis testing
described in Section 3 to investigate significance among these classification
models. To further understand the dynamic pattern of the credit risks, the
classification framework is also performed for each year. For each scenario,
training is conducted based on the 70% records of the target sample, and
30% is used for test.

The benchmark model (labeled Total) achieves a test classification of
88.55%. In terms of countries, all reach to a test classification accuracy higher
than 85%. Except FRA, single-country models outperform the benchmark by
1.8% for ITA, 1.7% for ESP, and 0.3% for DEU. In terms of industry sectors,
all single-sector models have a greater accuracy than the benchmark. These
improvements in accuracy suggest that there could be uniqueness between
subsets (countries or sectors), and thus the classification models can learn the
dependence more efficiently in the subsets with more uniform distribution.

Figure 4 presents the out-of-sample test accuracy of the models for dif-
ferent years. It shows that ESP and FRA are harmonic from 2015 to 2017,
while DEU, ESP and ITA have similar dynamic pattern of accuracy from
2018 to 2020. DEU, though have on average lower accuracy than the other
countries, achieves the largest improvement of more than 2% in accuracy
from 2015 to 2020. Due to the volume of data, only the four largest sector
groups are shown in panel b. The dynamic patterns seem plateau in terms of
sectors. Yet, the movements of accuracy in Retailing and Capital Goods are
synchronous from 2015 to 2019, which are perfect opposite to Food. We also
observe that, the single-year models have weaker accuracy than the bench-
mark, likely due to the small sample size for each year.
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Figure 4: Accuracy for countries and sectors

We calculate the first order Shapley-Lorenz metrics for each variable, in-
cluding Country and Sector, see Table 5. Numerical results show that Lever-
age and P /L are the most influential, with about 30% and 20% contributions
to the credit scoring. Another two variables EBIT and ROE that were found
correlated to credit scoring in data characteristic analysis are also impor-
tant, though with weaker impact. In contrast, Country and Sector account
for a small percentage, compared to other variables, with 2.13% for Sector
and 1.22% for Country. In 2015, the share of Country and Sector are very
close, with 1.19% and 1.00% respectively. Except 2015, the shares of Sector
(1.44% — 1.63%) are higher than shares of Country (0.43% — 0.82%). The
small percentage implies that Country and Sector may play marginal roles
in credit scoring. In other words, there can be limited difference in credit
scoring for companies from different countries or sectors, which implies lack
of unfairness, conditional on the effect of financial accounting variables.

Table 5: Percent share of the first order Shapely Lorenz

‘ Leverage ‘ P/L ‘ EBIT ‘ ROE ‘ TA ‘ Turnover ‘ Sector ‘ Country
2015 | 0.3357 0.2072 | 0.1861 | 0.1609 | 0.0585 | 0.0297 0.0119 | 0.0100
2016 | 0.3369 0.2077 | 0.1900 | 0.1551 | 0.0550 | 0.0308 0.0163 | 0.0082
2017 | 0.3435 0.2051 | 0.1895 | 0.1528 | 0.0539 | 0.0339 0.0146 | 0.0067
2018 | 0.3437 0.2056 | 0.1918 | 0.1523 | 0.0530 | 0.0332 0.0138 | 0.0067
2019 | 0.3456 0.2028 | 0.1909 | 0.1534 | 0.0529 | 0.0336 0.0144 | 0.0063
2020 | 0.3321 0.2044 | 0.1919 | 0.1665 | 0.0497 | 0.0351 0.0161 | 0.0043
Total | 0.3304 0.2011 | 0.1876 | 0.1558 | 0.0344 | 0.0572 0.0213 | 0.0122

To further understand the variables impact in credit scoring for differ-
ent countries and sectors, we also calculate the second order Shapley-Lorenz
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metrics for each variable in models without the two labels. Table 6 presents
the percent shares of the Shapely Lorenz metric for each variable in the
classification models including the benchmark and the models grouped in
countries. Numerical results show that there is a consistency of variable con-
tribution distribution in the credit rating classification for different countries.
In most cases, the variables are ranked similarly, according to the percent
share of Shapely Lorenz, implying that variables have similar contribution
among most countries. For example, in benchmark model, Leverage plays the
highest role in credit rating classification, with a share of 30.13%, followed
by P/L and EBIT, 20.18% and 18.71% respectively, which have very close
shares and form the second tier. These three variables account for about
70% and the remaining consists of ROE for 15.15%, TA for 10.65%, and
Turnover for 5.18%. In general, ITA, FRA jand ESP have a similar percent
share among the six variables as the benchmark, while DEU displays certain
uniqueness. The rankings of two extremes, i.e. Leverage and Turnover, re-
main the same in the DEU model, but ROE and TA become more relevant,
with an increased contribution up to 3.5% and 6% respectively, compared to
the other three countries. P/L and EBIT drop to 14.39% and 13.01% respec-
tively, though these two are still at similar magnitude. We also investigate
the percent shares in the single-country models for every year, which displays
a similar pattern. Due to space limit, we present results in 2015 and 2020
only and keep the rest in Appendix.

Table 7 presents the percent shares of the Shapley-Lorenz metrics across
sectors, which displays a similar distribution as that across countries. With-
out exceptions, Leverage plays the highest role in credit classification across
all sectors, with an average share of 30.51%. It achieves a higher share
by 2.55% than the benchmark in Real Estate, suggesting Leverage is more
important in measuring credit risks for Real Estate than other sectors. In
contrast, Leverage has a weaker role in Consumer, with a share of 27.80%
only. Moreover, Real Estate has different percent shares in other variables,
with e.g. 15.42% for P/L, 11.90% in terms of EBIT, 15.18% for ROE ,and
18.02% for TA. Its share of Turnover at 6.41% is higher than other ten sec-
tors, ranging from 4.51% to 5.61%. It shows that there is a different impact
of accounting variables in credit classification in Real Estate.

The exceptions, such as DEU in the country and Real Estate in the
sector, implies the possible existence of diversification in credit risks. In the
classification for DEU and Real Estate, ROE and TA play a more important
role than in other counties and sectors. This means that the factor of country
or sector brings discrimination to the classification for some countries and
sectors and provides useful insight into the measurement of fairness.

Table 8 and 9 present the Kolomogorv-Smirnov test for fairness, in terms
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Table 6: Percent share of Shapely Lorenz for countries
‘ Leverage ‘ P/L ‘ EBIT ‘ ROE ‘ TA ‘ Turnover

ITA 0.3001 0.2139 | 0.1922 | 0.1455 | 0.0958 | 0.0525
2015 | 0.3121 0.2126 | 0.1834 | 0.1471 | 0.0895 | 0.0554
2020 | 0.3069 0.2108 | 0.1925 | 0.1555 | 0.0905 | 0.0437

FRA 0.3131 0.1916 | 0.1948 | 0.1466 | 0.1034 | 0.0506
2015 | 0.3147 0.1957 | 0.2000 | 0.1474 | 0.0928 | 0.0495
2020 | 0.3221 0.1924 | 0.1909 | 0.1509 | 0.1012 | 0.0424

ESP 0.3168 0.1988 | 0.1815 | 0.1478 | 0.1029 | 0.0522
2015 | 0.3288 0.2005 | 0.1756 | 0.1506 | 0.0906 | 0.0540
2020 | 0.3113 0.2014 | 0.1875 | 0.1642 | 0.0934 | 0.0422

DEU 0.3205 0.1439 | 0.1301 | 0.1874 | 0.1671 | 0.0508
2015 | 0.3304 0.1468 | 0.1176 | 0.1952 | 0.1674 | 0.0426
2020 | 0.3364 0.1540 | 0.1453 | 0.1808 | 0.1517 | 0.0317
Benchmark 0.3013 0.2018 | 0.1871 | 0.1515 | 0.1065 | 0.0518

of differential explanation of the predictors by country and sector respec-
tively. We found there is no statistically significant unfairness in credit scor-
ing across countries or sectors among the 2,000 SMEs. This is consistent
with the numerical results of the benchmark model. We also implemented
the fairness test based on the widely used Shapley values, which delivers the
same conclusion. In general, Shapley gave weaker results, i.e. the values for
first order are smaller than with Shapley Lorenz. This is in addition to the
usual difficulty in interpreting Shapley which are not normalized. Due to
space limit, we present the Shapley result in Appendix.
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Table 7: Percent share of Shapely Lorenz for sectors
| Leverage | P/L | EBIT | ROE | TA | Turnover

Retailing 0.3045 0.2133 | 0.1959 | 0.1364 | 0.0942 | 0.0557
Capital Goods | 0.2966 0.2098 | 0.2017 | 0.1402 | 0.0958 | 0.0561
Materials 0.2910 0.2153 | 0.2059 | 0.1543 | 0.0769 | 0.0565
Food 0.3140 0.2004 | 0.1838 | 0.1495 | 0.1009 | 0.0514
Utilities 0.3230 0.1875 | 0.1715 | 0.1522 | 0.1193 | 0.0465
Manufacturing | 0.3139 0.2117 | 0.1967 | 0.1456 | 0.0795 | 0.0524
Consumer 0.2780 0.2169 | 0.1999 | 0.1572 | 0.0927 | 0.0553

Health Care 0.3077 0.2078 | 0.1839 | 0.1643 | 0.0912 | 0.0451
Entertainment | 0.2919 0.2075 | 0.2074 | 0.1569 | 0.0887 | 0.0476
Real Estate 0.3306 0.1542 | 0.1190 | 0.1518 | 0.1802 | 0.0641
Services 0.3049 0.1973 | 0.1889 | 0.1482 | 0.1085 | 0.0522
Benchmark 0.3013 0.2018 | 0.1871 | 0.1515 | 0.1065 | 0.0518

Table 8: Gini-Fairness coefficient and Kolmogorov-Smirnov test for variable
Country (Shapley Lorenz)

| Leverage | P/L | EBIT | ROE | Turnover | TA

0.0294 0.2484
> 0.10 > 0.10

Fi
p-value

0.0131
> 0.10

0.0704
> 0.10

0.0725
> 0.10

0.0513
> 0.10

Table 9: Gini-Fairness coefficient and Kolmogorov-Smirnov test for variable
Sector (Shapley Lorenz)

| Leverage | P/L | EBIT | ROE | Turnover | TA
0.0566 | 0.2694

Fr
p-value

0.0342
> 0.10

0.0393
> 0.10

0.0593
> 0.10

0.0265

>0.10 | > 0.10 > 0.10

5 Conclusion

In the paper, we have proposed a statistical measure able to simultaneously
measure explainability and fairness of machine learning models.

The measure can be applied to the predicted output of a machine learning
model, and it calculates how homogeneous are the shares of Shapley Lorenz
values attributed to different population groups, numerically and by means
of a statistical test.

The proposal has been applied to the credit rating setting, and the find-
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ings point out the fairness of the employed models. This is somewhat ex-
pected being the considered data sample rather large.

Future research should involve experimentation of the measure on smaller
datasets, likely more unbalanced in explanability of different predictor vari-
ables.
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Appendix

For robustness, Table 10 presents a fist order assessment of fairness based on
the Shapley values, rather than Shapley Lorenz.

Table 10: First order Shapley values

| Leverage | P/L | EBIT | ROE | Turnover | TA

Sector ‘ Country

2015 | 0.1847 0.1457 | 0.1426 | 0.1393 | 0.1018 0.0992 | 0.0930 | 0.0938
2016 | 0.1870 0.1467 | 0.1426 | 0.1390 | 0.1010 0.0980 | 0.0924 | 0.0933
2017 | 0.1895 0.1466 | 0.1436 | 0.1392 | 0.1005 0.0977 | 0.0913 | 0.0915
2018 | 0.1900 0.1465 | 0.1447 | 0.1386 | 0.0999 0.0977 | 0.0912 | 0.0914
2019 | 0.1928 0.1466 | 0.1448 | 0.1394 | 0.0988 0.0970 | 0.0898 | 0.0907
2020 | 0.1917 0.1507 | 0.1482 | 0.1469 | 0.0965 0.0934 | 0.0858 | 0.0868
Total | 0.1869 0.1474 | 0.1450 | 0.14051 | 0.1006 0.0966 | 0.0914 | 0.0916

The results in 10 confirm what found with Shapley Lorenz values. For
completeness, we also report in Tables 11 and 12 the results of a second order
assessment of fairness, based on Shapley values. The results confirm that the
models are fair.
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Table 11: Gini-Fairness coefficient and Kolmogorov-Smirnov test for variable
Country (Shapley)

| Leverage | P/L | EBIT | ROE | Turnover | TA

Fi

p-value

0.0116
> 0.10

0.0163
> 0.10

0.0206
> 0.10

0.0106
> 0.10

0.0173 0.0329
> 0.10 > 0.10

Table 12: Gini-Fairness coefficient and Kolmogorov-Smirnov test for variable
Sector (Shapley)

| Leverage | P/L | EBIT | ROE | Turnover | TA

Fu 0.0164 | 0.0191 | 0.0190 | 0.0115 | 0.0209 | 0.0456
p-value | > 0.10 > (0.10 | > 0.10 | > 0.10 | > 0.10 > 0.10
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