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Abstract. Pattern recognition is represented as the limit, to which an infinite Turing tape converges. A 
Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine 
can recognize the pattern in any data. That ability of universal pattern recognition is interpreted as an 
intellect featuring any quantum computer. This property is valid only within a quantum computer: To utilize 
it, the observer should be sited inside it. Being outside it, the observer would obtain quite different result 
depends on the degree of the entanglement of the quantum computer and observer. All extraordinary 
properties of a quantum computer are due to involving a converging infinite computational process 
contenting necessarily both a continuous advancing calculation and a leap to the limit. Three types of 
quantum computations can be distinguished according to that whether the series is a finite one, an infinite 
rational or irrational number.  
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The article considers only theoretically quantum computation both philosophically and 

mathematically raising the following questions: 
How can one reduce pattern recognition in a single mathematical model if the data are a 

numerical series? 
Can that mathematical model be equivalently represented as a computation of a quantum 

computer? 
The answers of these questions will be deduced successively:  

1. How Can One Reduce Pattern Recognition in a Single Mathematical Model if the Data 
Are a Numerical Series? 

Any data can be encoded as a numerical series, and this is the way for them to be represented 
in a computer. Indeed the most general model of any computer, with which one works, is a Turing 
machine [8], and its data are a Turing tape, i.e. a numerical series usually binary. Consequently the 
recognition of a pattern in a numerical series is a general enough task representative for pattern 
recognition at all.  

Of course all data, which a standard computer can process, are always a finite set. However it 
generates new data in course of processing, which are usually interpreted as intermediate results, 
and the ultimate result can be yielded only when the Turing machine stops and it is or contains in 
that ultimate state of it when it has just stop. If it does not stop a long enough time, maybe the 
algorithm of processing is wrong and it “cycles” (“hangs up”, came to a standstill) granting that 
the result should finite. Of course if the problem is such as to calculate e.g. “√2”, the result is not 
finite, and a good algorithm will never stop by itself, too. 
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One should distinct two cases: (1) the computer reaches the result, either correct or wrong, in a 
finite time; (2) it cannot reach the result in a given time, either for a wrong algorithm or for an 
infinite result or for it will reach the result in a time long than the given (the “halting problem”): 
One needs an exact criterion to distinct an infinite result from the absence of any result. Thus this 
is not the “halting problem” yet. One can approach as follows: 

The Turing tape can be always interpreted as a binary fraction and thus as a real number either 
(1) rational or (2) irrational.  

If the former is the case, one obtains a finite set representing a fraction either as the set of digits 
until to the last “one” (all are zeros after it) or the sets of digits of the period of that fraction. In 
both of those subcases a finite pattern is recognized.  

If the latter is the case, the binary fraction is infinite and no finite pattern can be recognized. 
Nevertheless the series of any n first digits is converging to some irrational number where n 
converges to infinity. Just this irrational number can be accepted as the pattern recognizable 
unambiguously. The criterion of convergence comprises the former case, too. Consequently that 
convergence is a general equivalent to the existence of any result either finite or infinite. 

Furthermore one needs to consider the more general case where the Turing machine continues 
to work for an indefinitely long time raising just the “halting problem” and producing new Turing 
tapes again and again. Now the questions is what is necessary and sufficient condition the Turing 
machine to obtain a result working for either a finite or an infinite time. Meaning the above criterion 
of convergence, the sufficient condition is: it should just go ahead neither repeating the processing 
of one and the same cell nor going back to process the previous cell. This is equivalent to a well-
ordering in the work of the Turing machine and thus to the axiom of choice as to the set of states 
(and thus of “tapes”) of the Turing machine. The necessary condition is the above sufficient 
condition to happen for a finite time after the Turing machine has started working.  

Immediately one should reformulate the “halting problem” thus: What is searched is an 
equivalent transformation (or otherwise said invariance) of an arbitrary Turing machine moving 
back and forth into another moving only forth. If that transformation exists, the Turing machine 
will not cycle though it can run indefinitely. Moreover if one constructs a suitable topology to 
guarantee always that invariance, any computation represented by mappings of neighborhoods 
analogical to the work of a Turing machine will have an exact result. That topology will be 
equivalent to universal pattern recognition.           

Indeed the pattern recognition in all cases enumerated above means to reveal a limit, to which 
the series of Turing tapes obtained successively in course of the work of the machine converge: 

If it has stopped for a finite time, that limit coincides with its last state, which is the ultimate 
result of its work. No leap to reach the limit is necessary since the limit is or more exactly coincides 
with an element (the last one) of the series. 

However if it cannot stop in any finite time and the limit exists, which is equivalent to the above 
necessary and sufficient condition for it, the limit and thus the pattern recognized needs a finite 
jump to be reached for any finite time after the machine has started working. The subcases are 
correspondingly two: The limit is a rational (1) or irrational (2) number: 



(1) Though the limit needs some finite leap beyond any result of the work of the Turing machine 
for any finite time, there is a one-to-one correspondence of the limit and a repeating sequence of 
digits occurring constantly in course of working, namely the period of the fraction. In that sense 
one can say that the limit is contented in a long enough period of time, during which the machine 
has been working. However no one can be sure that the revealed “inductively” pattern will indeed 
repeat always further.  

(2) The limit needs unconditionally some jump to be perceived. This case is intuitively the 
boundary between an automaton, computer, Turing machine, etcetera, on one hand, and an 
intellect, including that of a human being, on the other hand. Consequently if one demonstrates that 
some device can do those leaps in any case when they are necessary, that device will deserve to be 
called an artificial intellect. The answer of the second question raised in the beginning will display 
just this, namely a quantum computer possesses that property however only intrinsically or 
immanently in a sense.      

Before continuing, the obtained result will be translated from the “Turing language” into that 
of partial and recursive functions, which is known to be equivalent, but nevertheless it offers a 
different interpretation and thus viewpoint to computation.  The leap from any member of a 
converging series to its limit in a Turing machine is equivalent to some minimization operator 
transforming a primitive recursive function of a parameter to the same function with the zero value 
of that parameter. How that value will be reached for an indefinite, perhaps even infinite number 
of recursions, and thus it is represented just by a “WHILE” operator: “DO something (according 
to the primitive recursive function) WHILE p (the parameter) = 0”. Furthermore any recursive 
function can replace the primitive one. Then one can define any jump and thus ‘the understanding 
of an artificial intellect’ by a suitable total non-primitive recursive function guaranteeing this leap 
for any values of the input variables.   

If the λ-calculus is utilized to represent such a jump instead of the apparatus of recursive 
functions or that of Turing machines, this would add nothing new in the interpretation. Indeed the 
λ-calculus is an intermediate link between those two, transforming the Turing tape into an 
anonymous function with a single variable in the way to the named recursive functions. 
Consequently the leap will be represented by the initial and by ultimate state both specified by the 
parameter involved before that in course of calculation.  

The common in the three representation enumerated above is a “quantum” understanding of 
‘intellect’ as a leap, to which one juxtaposes a continuous trajectory symbolized by the successive 
cells of the Turing tape or by the corresponding recursions or λ-calculations between the initial and 
the ultimate state of the leap. The number of those cells or recursions, or λ-calculations is indefinite 
and even infinite. This correspondence is the way for the leap of ‘understanding’ as an insight 
suddenly revealing truth to be formally represented in the well-developed theoretical language of 
calculus. As one can see a little further, that formalization of any act of an intellect and thus of an 
intellect in general obeys the objectivity it to be realized as a quantum computer.    

Summarizing the answer of the first question, one can say that pattern recognition can be 
universally represented as the limit, to which the series of successive partial calculations converges. 
The necessary and sufficient condition for that limit to exist is a well-ordering of these successive 



partial calculations requiring the axiom of choice to be always guaranteed. In turn that general 
formal model of pattern recognition allows of defining mathematically any intellectual act of 
understanding as a jump from some finite set of data over a gap of indefiniteness and maybe even 
infinity to the limit to which the series of those data converges since it is the pattern recognizable 
in the data. Furthermore that model can distinguish three cases from each other: 

The first case is that of a ‘zero leap’ where the completed calculation is finite and the limit as 
well as the recognized pattern is the ultimate calculative state. Any standard computer can 
“understand” in this way, but that “understanding” being corresponding to the leap is also zero. 

The second case can be called inductive being intermediate between the “understanding” in the 
first one and the understanding in a proper sense in the third one: The recognizable pattern appears 
constantly and in equal periods of partial calculations. However a leap needs yet for the calculation 
to stop and the obtained partial result to be confirmed as the ultimate one. For example, the criterion 
for a standard computer to stop should be formulated as any, even maybe incredibly complex 
recursive function, but which must be a primitive one, and thus its “understanding” is again zero. 
However if one decides that the number of inductive repetitions is “enough” ipso facto making a 
jump without any exact criterion in the form a primitive recursive function, that understanding can 
be designated as inductive and it is yet inaccessible to a contemporary computer. 

The third case requires some nonzero leap unconditionally for the limit, to which a necessarily 
infinite series of partial calculations converges, does not coincide with any subset of partial 
calculations. That understanding corresponding to the nonzero leap is a one in proper sense. It is 
granted as the sufficient condition of intellect. It is not a necessary one since any intellect, e.g. a 
human being, can accomplish finite calculations with a “zero leap” or “zero understanding” as a 
standard computer.           

2. Can That Mathematical Model Be Equivalently Represented as a Computation of a 
Quantum Computer? 

The meant model can be considered both as that of any pattern recognition and thus furthermore 
as that of an intellect.  

Quantum computer can be introduced in a few ways: as a quantum Turing machine [3] or as 
quantum circuits [5], for which [9] has proved to be equivalent. Besides one can utilize a simple 
generalization of a Turing machine where all cell are replaced by quantum ones or otherwise said, 
any bit with a quantum bit (qubit) as follows:   

Any cell of a Turing tape is a bit where a bit is the elementary unit of information, the choice 
between two equiprobable alternatives usually designated as “0” or “1”. A qubit, which replace a 
bit, is defined so:  

𝛼𝛼|0⟩ + 𝛽𝛽|1⟩ = 1 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞                                                     (1) 

“𝛼𝛼,𝛽𝛽” are two complex numbers such that “|𝛼𝛼|2 + |𝛽𝛽|2 = 1”, and “|0⟩,|1⟩” are two orthogonal 
subspaces in Hilbert space or correspondingly, their bases.  



The empty cell of a qubit can be represented as a unit ball in the usual 3D Euclidean space, in 
which can be chosen two points representing the value assigned to that qubit: the one can be any 
point of the ball, but the other should be only in its surface (a unit sphere) obeying “|𝛼𝛼|2 + |𝛽𝛽|2 =
1”. The two orthogonal subspaces “|0⟩,|1⟩” are represented as any two orthogonal great circles of 
the ball. 

Consequently if a standard bit is a choice between two alternatives and can be thought as a 
finite choice, a qubit is a choice from a continuum of equiprobable alternatives and requires in 
general the axiom of choice in that sense to be able to be always made. However if one knows the 
values of “𝛼𝛼” and “ 𝛽𝛽”, the axiom of choice is not necessary for the corresponding point to be 
chosen: “𝛼𝛼” and “𝛽𝛽” are the values of that qubit. The choice once made and displaying those values 
can be always repeated already without needing the axiom of choice.   

Since any two successive “axes” of Hilbert space such as 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, 𝑒𝑒𝑖𝑖(𝑖𝑖+1)𝑖𝑖 represent two 
orthogonal subspaces of it, any point (vector) in Hilbert space has a qubit equivalent as follows: 

Given any vector 𝑉𝑉�⃗ of the complex Hilbert space with components  𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑖𝑖,𝐶𝐶𝑖𝑖+1, … in 
“axes”, 1st, 2nd,  ..., nth, n+1th, ..., one can construct a one-to-one mapping of it into its representation 
in qubits, e.g. so: 

If both consecutive components, 𝐶𝐶𝑖𝑖 = 0 and 𝐶𝐶𝑖𝑖 = 0:  𝛼𝛼𝑖𝑖 = 0,𝛽𝛽𝑖𝑖 = 0 (conventionally).  
If the consecutive components “𝐶𝐶𝑖𝑖 ≠ 0” or “𝐶𝐶𝑖𝑖+1 ≠ 0”:  

𝛼𝛼𝑖𝑖 = 𝐶𝐶𝑛𝑛
�|𝐶𝐶𝑛𝑛|2+|𝐶𝐶𝑛𝑛+1|2

, 𝛽𝛽𝑖𝑖 = 𝐶𝐶𝑛𝑛+1
�|𝐶𝐶𝑛𝑛|2+|𝐶𝐶𝑛𝑛+1|2

                                            (2) 

Consequently any point in Hilbert space interpretable as a “wave function” in quantum 
mechanics and thus as a state of a quantum system is a quantum Turing tape consisting of well- 
ordered qubits, and any observable definable as a self-adjoint operator is an elementary Turing 
computation transforming a wave function into another in such a way that the serial number of any 
qubit is kept: One can easily see that the conservation of the serial number in a quantum 
computation is equivalent to that: the corresponding operator to be just self-adjoint.  

Furthermore one can introduce a special regime for a Turing machine to run: where all cells are 
processed in parallel so that the ultimate state comprising even an infinite number of successive 
cells of the Turing tape in general can be reached in a single working cycle, i.e. by a jump equivalent 
both to the universal recognition of an intellect and to resolving the halting problem. However any 
Turing machine in the standard regime of successive processing, i.e. cell by cell will differ from 
the former by an infinite number of filled cells even if they content only zeros.  

One can demonstrate that both regimes would coincide as to a quantum Turing machine as that 
described above processing qubits instead of bits. The same property is also known as the principle 
of quantum parallelism usually granted. As to the pattern recognition (formalized as above) of a 
quantum computer, this means that it recognizes always a pattern as an intellect, but in a sense 
restricted in the framework of quantum complementarity, which will be carefully elucidated 
further.  



One can justify that the parallel and serial processing of a quantum computer coincide as 
follows: The parallel processing means to be made an infinite set of choices (the Turing tapes of 
qubits), each of which in turn chooses an element among infinitely many (all values of a single 
qubit). In final analysis this is equivalent to being made a choice among infinitely many, i.e. all 
processing of a quantum Turing machine is reducible to the equivalent processing of a single qubit 
for the infinity of infinities is not more than one infinity by dint of the axiom of choice in general, 
which is not necessary in the case of question. And the serial processing means some finite set of 
qubits to be treated, which is equivalent to working up the infinitely many qubits of a Turing tape 
in parallel for that finite set of qubits is just as infinite as an infinite set of ones or as a single qubit. 
The difference of a quantum Turing machine from a standard one is due to the fact that the serial 
processing of any finite sets of bits being finite choices is never equivalent to the parallel processing 
of an infinite set of bits. Thus the parallel and serial processing of a quantum computer coincide 
always while those of a standard one can coincide only as to a finite set of bits being due to the 
different properties correspondingly of infinity or finiteness.  

The same intriguing merit of a quantum computer can be demonstrated in pattern recognition 
represented as the leap to the limit of any converging series. Even more (though it is “less” in a 
sense), the quantum computer recognizes (or “imagines” in the same sense) a pattern in any infinite 
series (i.e. including the case where the series is not converging). One can say that the ability of 
imagination as it will be formalized a little below is a necessary quality of any intellect including 
that of a quantum computer. 

One can consider two ways the limit of a converging series to be reached: (1) instantly, by 
jump, and as to the pattern recognition, by insight or by parallel processing, and (2) successively, 
in a continuous trajectory, and as to pattern recognition, by persistence or by serial processing. 
However since one and the same the limit is reached in both ways, they can be equated in a sense, 
which is interpreted in quantum mechanics as “wave-particle duality” e.g. meaning the equivalence 
of all trajectories both smooth and jump-like between two points in the Feynman interpretation. 
That equating can be symbolized so: 

{𝑎𝑎, 𝑞𝑞,𝑑𝑑} ↔ {𝑎𝑎, 𝑞𝑞,𝑑𝑑(𝑞𝑞)}: 𝜳𝜳(𝑥𝑥)                                                 (3) 

Here 𝑎𝑎, 𝑞𝑞 mean in fact anything as long as some distance 𝑑𝑑 can be defined between them, and 
𝑑𝑑(𝑞𝑞) is a normal (i.e. non-generalized) function of some parameter t interpretable as time for the 
normality of the function. Rather unexpectedly, that always defines a “wave function” 𝜳𝜳(𝑥𝑥) 
defined over all space of “𝑥𝑥”, where the distance 𝑑𝑑 between the elements of the set, to which 𝑎𝑎 and 
𝑞𝑞 belong, has been introduced. In fact that introduction of ‘wave function’ explicates the 
equivalence of a single qubit (in the left side) and a wave function discussed above.  

Furthermore 𝜳𝜳(𝑥𝑥) implies a Hilbert space, being a basis in it. Being anything 𝑎𝑎, 𝑞𝑞 can be 
interpreted as two states of a quantum system as the beginning and end of a computation 
representable as the first element and limit of a converging series. Besides the distance d can be 
also interpreted as a function of time, but this function should be a generalized, “jump-like” one:  
 



𝑑𝑑0(𝑞𝑞) = �
𝑞𝑞 𝜖𝜖 (−∞, 0):𝑑𝑑(𝑞𝑞) = 0

𝑞𝑞 = 0: �̇�𝑑 = 𝛿𝛿(0), 𝑞𝑞ℎ𝑒𝑒 𝐷𝐷𝑞𝑞𝐷𝐷𝑎𝑎𝐷𝐷 𝛿𝛿 𝑓𝑓𝑞𝑞𝑓𝑓𝐷𝐷𝑞𝑞𝑞𝑞𝑓𝑓𝑓𝑓
𝑞𝑞 𝜖𝜖 (0, +∞):𝑑𝑑(𝑞𝑞) = 𝑑𝑑

 

 

(4) 

       
Meaning that, the “insight” of a jump to the limit and the recursive construction of a series 

converging to the limit are correspondingly represented by a generalized function “𝑑𝑑0(𝑞𝑞)” and a 
normal (non-generalized) but continuous (but not smooth) function “𝑑𝑑(𝑞𝑞)”, and the values “𝑑𝑑0” of 
the former and those of the latter “𝑑𝑑” coincides: This means that the big leap from 0 to 𝑑𝑑 is 
decomposed to little jumps corresponding to the each successive transition from an element of the 
series to the next. 

Furthermore if the jump 𝑑𝑑0(0) of 𝑑𝑑0(𝑞𝑞) is given, the progress in time of 𝑑𝑑(𝑞𝑞) to be constructed 
requires the axiom of choice. The development of an “instant”, that of the jump “𝑑𝑑0(0)”, into the 
well-ordered temporal sequence for the non-generalized function 𝑑𝑑(𝑞𝑞) needs it in general. However 
this implies rather extraordinary corollaries as it is usual once the axiom of choice is involved:  

If the series is not converging, the axiom of choice always allows of it to be monotonically 
reordered, and if it is restricted in any finite interval, it is necessarily converging. The normalization 
by qubit representation as above guarantees that the series is always restricted in some finite 
interval and thus any series can be reordered in a way to be converging: In the present context, this 
means that any data can be reordered in a way a pattern to be recognizable from them. However 
can the initial and the reordered data to be granted as equivalent? That would mean an invariance 
of the data to reordering, rather ridiculous at first glance, and thus to the axiom of choice in general, 
too.  

Nevertheless, the theorems of the absence of hidden variables [6-7] in quantum mechanics 
guarantee just this: Indeed, the state of a quantum system before measurement is fundamentally 
unorderable for them, e.g. as 𝑑𝑑0(0) is such, and the same after measurement is well-ordered in a 
series of results, e.g. as 𝑑𝑑(𝑞𝑞) is such. As one can convince above, the mapping 𝑑𝑑0(0) → 𝑑𝑑(𝑞𝑞) 
requires the axiom of choice, and that 𝑑𝑑0(0) itself excludes it: Consequently 𝑑𝑑0(0) → 𝑑𝑑(𝑞𝑞) as a 
consistent whole should possesses that “ridiculous” property, and any state of any quantum system 
being invariant to measurement in epistemological considerations as well.      

All that can be interpreted that any quantum computer being an intellect recognizing patterns 
would possesses furthermore “imagination” in the following sense: It figures necessarily a pattern 
in any data just as a human being can find some sense in any data even in inkblots as those of 
Rorschach. The difference between “necessarily” and “can” is rather conventional for the free 
choice of “no pattern” can be accepted as a kind of pattern as the Rorschach tests are often 
interpreted. However can a quantum computer in a “Chinese room” answer “No pattern!” to some 
Rorschach test? Yes, it can if it possesses also “self-consciousness” in a sense as in Albert’s 
theorems [1-2], which will be discussed a little above, too.   

In fact a restricted series can be monotonically reordered always in two ways, increasing and 
decreasing, which can have one and the same limit in particular. However the pattern though always 
recognizable by a quantum computer is also bisected in general. Any quantum computer recognizes 



two patterns, which can be called complementary in the tradition of quantum mechanics. Indeed if 
a series is reordered monotonically increasing, this excludes to be reordered monotonically 
decreasing at the same time in general and vice versa. Even more, an initially converging series as 
considered above allows to be reordered equivalently in another, “complementary” way to another 
series also converging but to another limit and thus to another “complementary” pattern. One can 
mock at a quantum computer that it recognizes a pattern really always, but it is also always only 
the one half of the pattern and no way to be obtained the other and thus the entire pattern to be put 
together: The utility also in principle of a quantum computer would be zero if this was so.   

Even yet the Kochen – Specker theorem [6] as well as John von Neumann’s theorem [7] before 
it elucidated that no “hidden half” of the pattern just as no “hidden variables” in quantum 
mechanics. However after this is so, where is the other half and how can it be represented 
explicitly? There is no other option but to be within the first half so that its inaccessibility to be due 
to quantum holism, i.e. an eventual access to it would destroy the first one. Consequently the first 
half of the recognized pattern is the entire pattern [4]. Of course, that is quite impossible as to any 
finite pattern thereby to any standard Turing machine, but not if the pattern is infinite, and the 
Turing machine is quantum. One can see in detail really how the second half of the pattern is 
“within” the first one:   

Any qubit as a unit of quantum pattern consists of two real numbers “𝑎𝑎, 𝑞𝑞”, which are quite 
independent of each other as long as: 

𝑎𝑎2 + 𝑞𝑞2 < 1                                                                      (5) 

There is still a real number “c”, but it depends on them as:  

𝑎𝑎2 + 𝑞𝑞2 + 𝐷𝐷2 = 1                                                                (6) 

If any of those three numbers is exactly equal to one, the others are zeros and thereby depend 
on it. One can interpret those “𝑎𝑎, 𝑞𝑞” as factors correspondingly of discreteness and of continuity or 
as of a wave and of a particle in the joint quantum motion of anything quantum. If any of those 
“𝑎𝑎, 𝑞𝑞” is “1”, than the case is classical: “either the one, or the other: either discreteness, or 
continuity; either a particle, or wave”. However if not, both components are available.  

In the context of pattern recognition, the same means that both “pieces” of calculation and 
insight are available in a quantum computer just as in an intellect at all. The third number “𝐷𝐷” being 
nonzero corresponds to some nontrivial key for both pieces to be mapped into each other one-to-
one and thereby each to be able to decode the other. This key is, first, infinite, and secondly, always 
different in general: an absolutely unbreakable cipher, so that both pieces are absolutely necessary. 
Nevertheless a single but infinite choice, which is any qubit as a whole, contents both halves. It 
can be anyway considered again as one half only in any quantum system, which includes it. 

All this is a way to be interpreted Albert’s theorem [1-2]:  
If a “quantum automaton” is considered as a whole, it contents the other half within itself and 

in a sense, it knows its state. For example the missing half can be interpreted as the “halting 



problem” and thus a quantum computer resolves it as it resolves any problem recognizing a pattern 
always.   

However, changing the viewpoint, moving to outside, beyond the quantum automaton, the 
entire solving of the problem turns out to be incomplete for the new complete solving should refer 
to the new quantum system involving the external observer in it as well: A quantum computer 
resolves necessary any problem, but it is not able to convey the result outside it itself as a physical 
principle. If a standard computer displays the result to an external observer without changing it, a 
quantum computer can do it only to an internal observer, i.e. only involving the observation as a 
part of the task. If one interprets the universe as a quantum computer, which includes our 
observation as a part of the problem always, it really never “hangs up”. 

The composed quantum system of a quantum computer and an external observer refers to that 
only of the standalone quantum computer so: “𝑎𝑎, 𝑞𝑞” can be interpreted as the “radiuses” of the 
qubits of the computer and observer outside though they are 1 seen inside. Then “𝐷𝐷” will correspond 
to the “radius” of another qubit equivalent to the degree of the entanglement of the systems of the 
observer and computer. Consequently entanglement can be also interpreted in a computational way 
as the mutual codability of “𝑎𝑎, 𝑞𝑞” corresponding to the “insight” and “continuous advancing 
calculation” of a quantum computer. The “radius” is proportional to the energy of the 
corresponding quantum systems since it depends on the ratio between the subspaces “|0⟩, |1⟩” and 
thus on the frequency “𝜔𝜔”.    

Summarizing the answer of the second question, the quantum computer turns out to be an 
intellect in a sense, which can be represented formally and mathematically. Even more, one can 
raise that whether any intellect has a quantum model, i.e. whether any intellect can be considered 
as a quantum computer, or whether a “non-quantum intellect” can exist in principle.  

Indeed, a quantum computer possesses features seeming obligatory for the definition of intellect 
such as the universal pattern recognition, “imagination” and “self-consciousness” in a formal sense 
represented above. However, locked in the “Chinese room”, it will be absolutely hopeless because 
it is not able to convey its answers correctly beyond it. This is not fatal for the intellect test, though, 
since a human in the same position perhaps cannot answer correctly being equivalent to a quantum 
intellect. The discussed model of a quantum Turing machine with qubits for bits implies all those 
properties.         
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