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Abstract. The mining environment poses unique challenges for image
processing due to low illumination conditions and the presence of vari-
ous types of noise. Existing image enhancement methods typically focus
on either brightness enhancement or noise reduction, but rarely address
both issues simultaneously. This paper proposes ED-Net, a unified model
that simultaneously tackles both brightness enhancement and noise re-
duction through a novel joint loss function design. Addressing the lack
of open-source mining image datasets, the authors introduce a method
for constructing a low-illumination noise dataset to simulate the mining
environment. Evaluated on the BSDS500 dataset, ED-Net demonstrates
superior performance compared to state-of-the-art algorithms in terms
of PSNR, SSIM, VIF metrics, and visual quality. The key innovations
lie in the unified brightness enhancement and noise reduction model,
the effective joint loss function, and the low-illumination noise dataset
construction method for simulating mining images.

Keywords: Mine Image Enhancement · Image Denoising · Histogram
Matching · Deep Convolution · Loss Function.

1 Intruduction

Advanced image processing and data analysis play a crucial role in the mining
industry during the digital era. Nevertheless, the distinctive attributes of these
environments, such as limited illumination, particulate matter, and airborne par-
ticles, present considerable obstacles to image processing. Consequently, it often
leads to images with poor contrast, lack of sharpness, and excessive noise, thereby
impeding environmental monitoring, increasing the likelihood of accidents, and
reducing operational effectiveness.

Recent advancements in image denoising include several notable approaches.
Lehtinen et al.[1] demonstrated learning image restoration from corrupted ex-
amples, often surpassing clean data-trained models. Krull et al.[2] extended this
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with Noise2Void (N2V) for independent noisy image pairs. Niu et al.[3] intro-
duced Noise2Sim, a nonlocal, nonlinear self-supervised denoising method. Ku-
likov et al.[4] developed SinDDM, a denoising diffusion model improving image
generation, editing, and restoration. Gong et al.[5] highlighted DDPM-based
methods’ effectiveness for PET image denoising. Yan et al. [6] proposed regular-
ization to address overparameterization and overfitting in denoising models.

In image enhancement, Guo et al.[7] and Li et al.[8] proposed Zero-Reference
Deep Curve Estimation (Zero-DCE) for low-light enhancement without train-
ing data. Su et al.[9] applied zero-reference deep learning for 3D reconstruction
of underground utilities. The Self-Calibrated Illumination (SCI) framework [10]
was developed for efficient and robust image brightening in low-light conditions.
A multi-algorithm strategy is often needed to handle complex environments ef-
ficiently.

Since most of the noise in the mine is multiplicative, and it also has Gaus-
sian noise caused by dust and dust in the environment. Mining images tend to
be more special. Furthermore, it is difficult to photograph during production,
there are no open-source datasets available for research. The construction of
multiplicative noise models is also full of challenges. To address these issues, this
paper proposed a unified enhancement-denoising deep convolutional network,
our main contributions are as follows:

• Unified Enhancement-Denoising, ED-Net. To address the challenge
of existing image enhancement methods not jointly considering brightness
enhancement and noise reduction, we propose ED-Net, a CNN-based network
that simultaneously performs brightness adjustment and denoising within its
convolutional layers, effectively enhancing mining images.

• Novel Loss Function Designed. For low-illumination and noisy condi-
tions, we introduce a joint loss function that integrates Mean Squared Error
(MSE) [11] and the Structural Similarity Index Measure (SSIM) [12]. Addi-
tionally, considering edge preservation, we incorporate bilateral filtering [13].

• Dataset Construction via Histogram Matching. Conventional approaches
for simulating low-illumination and noise rely on noise models, which may
not accurately capture the complex conditions in mining environments with
extremely low light and diverse noise types. We propose constructing a
dataset by matching the histograms of real-world mining scenes, circum-
venting the need for noise models.

2 Related Work

2.1 Histogram Match

Histogram matching [14] is an image processing technique that aims to identify
the pixel values in the reference image that have the same or closest probability as
the original image. This is done by using the cumulative probability distribution
map of the original image to establish a mapping relationship for each pixel. It
can be characterized as:
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s = T−1(R(x, y)) (1)

where T−1 denotes the inverse transform function of the target image and s is
the gray level after matching.

By adjusting the gray scale distribution of the target image to resemble that
of the mine image, we may achieve color or brightness correction between the
photos. This allows us to match the images under varied lighting situations.

2.2 Noise2Noise Network

Noise2Noise [1] is a noise removal algorithm based on ground truth-free images
as supervision. The fundamental concept is that with extended learning, the
network may acquire the average value of all the distorted images by minimizing
the loss function, thereby approximating the clean image.

For supervised training with clear images, the target image yi as well as his
observed noise-containing image x̂i, the use of the neural network to fit this
regression model can be seen as optimizing an objective function:

argmin
θ

∑
i

L(fθ(x̂i), yi) (2)

fθ is this neural network, and x̂ can be viewed as the distribution of x in
terms of y, i.e., x̂ ∼ p(x̂|yi).

The Noise2Noise network has demonstrated excellent denoising capabilities.
However, its performance can be adversely affected when dealing with images of
poor quality. To address this limitation, the Noise2Clean approach can be em-
ployed, leveraging the Noise2Noise network as a baseline and introducing ground
truth comparisons and constraints. By incorporating clean reference images, the
Noise2Clean method can effectively handle a broader range of noisy and low-
illumination scenarios, extending the applicability of the Noise2Noise network
to scenarios where both noise and brightness levels are suboptimal.

The following optimization function is finally obtained:

argmin
θ

∑
i

L(fθ(x̂i), (ŷi) (3)

2.3 Zero-DCE Network

The Zero-DCE [7] (Zero-Reference Deep Curve Estimation) algorithm is a deep
learning technique used for enhancing images. The main concept is to train a
deep neural network to learn curve properties in an image, such as contrast and
brightness, without using a reference image. These curve features are then used
to enhance the image.

Inspired by the luminance adjustment curve in Photoshop, the author tried
to design a curve that automatically maps a low-light image to an enhanced
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version, and the parameters of the adaptive curve are only related to the input
image.

The Luminance Enhancement Curve (LE-curve) formula is as follows:

LE(I(x);α) = I(x) + αI(x)(1− I(x)) (4)

Where x denotes the pixel coordinates, α taking values in the range [−1, 1], is
a learnable parameter, I(x) is the luminance value at the x-coordinate of the
input image, and LE(I(x);α) is the luminance value after the brightening.

For brightness enhancement, zero-reference methods have demonstrated ex-
ceptional performance. However, in scenarios with extremely low illumination
levels and without the availability of ground truth reference images, the perfor-
mance of these methods can degrade. Consequently, in low-light conditions, it
is beneficial to incorporate ground truth constraints to enhance the brightness
enhancement capabilities of the network.

3 Methods

3.1 The architecture of ED-Net

Inspired by Noise2Noise and Zero-Reference Deep Curve Estimation (Zero-DCE)
models, this paper proposes a Unified Enhancement Denoising Network, ED-
Net. The proposed network adopts the Zero-DCE network as the fundamental
framework and incorporates denoising processing within the convolutional layers.
The overall network structure is illustrated in Fig.1.

Fig. 1: The architecture of ED-Net.

The ED-Net is based on the Zero-DCE model, which learns to map a noisy
low-light image input to a clean, brightness-enhanced target image. Due to the
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extremely low brightness and high noise levels in underground mining images, we
employed a supervised approach during the network processing, utilizing ground
truth comparisons, specifically adopting Zero-Clean and Noise-Clean techniques.

In other words, given the challenging conditions of underground mining im-
ages with very low illumination and significant noise, the proposed ED-Net ar-
chitecture is built upon the Zero-DCE model, which aims to transform noisy
low-light input images into clean, brightness-enhanced target images. To achieve
this, the network training process incorporates supervision by comparing the
network outputs with ground truth clean target images, employing both Zero-
Clean (mapping from zero-input to clean target) and Noise-Clean (mapping from
noisy input to clean target) strategies.

The specific composition of the ED-Net network is: (i) Conv+ReLU+MaxPool:
for layers 1 ∼ (D/2) , a color image of size 128 × 128 is used as input, 48 fil-
ters of size 3 × 3 × c are used to generate 48 feature maps, and then use the
rectified linear unit ReLU for non-linearity. Finally, the number of channels is
converted to 3 through 3 filters, the kernel size is 2 × 2, and the step size is 2
maximum pooling layer output. The variable c denotes the number of channels
in an image, where c = 1 for grayscale images and c = 3 for color images. This
method is a procedure of down-sampling. By preserving the primary charac-
teristics of the original image, the feature map’s size and parameter count are
diminished, leading to enhanced computing efficiency and model generalization.
(ii) Conv+ReLU+ConvTranspose: for layers (D/2+1) ∼ (D− 1), similar to the
previous method, this involves an upsampling procedure using three transposed
convolutions with a kernel size of 3 x 3 and a step size of 2. The number of
channels is classified as 3 and then output. (iii) Conv+ReLU+LeakyReLU: for
the last layer, ReLU is applied with different numbers of filters using a 3x3 con-
volution kernel. To handle ReLU’s zero output in the negative region, the last
layer uses LeakyReLU as the output.

3.2 Innovative Loss Function

In the field of image enhancement, the loss function is crucial for evaluating
model performance during training. Both Zero-DCE and Noise2Noise use a single
loss function. Unlike Zero-DCE and Noise2Clean, we use a joint loss function for
both brightness enhancement and noise removal.

Specifically, we opted to employ the amalgamation of Mean Squared Error
(MSE) [11] and Structural Similarity Index Measure (SSIM) [12] to enhance
the structural resemblance between the generated image and the target image,
rather than solely focusing on the disparity at the pixel level. MSE is employed to
quantify the precision of model predictions and facilitate optimization algorithms
in identifying the optimal model parameters by minimizing the disparity between
anticipated values and actual values. The formula is shown below:

MSE =
1

m

m∑
i=1

(yi − ŷi)
2 (5)
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Where yi is the actual value, ŷi is the predicted. SSIM is a metric utilized to
quantify the likeness between two photographs, taking into account three factors:
brightness, contrast, and structure. As a result, it provides a more accurate
representation of the image quality as experienced by people.

3.3 Dataset Construction

Deep learning models require a large amount of data for learning and training.
Currently, many image enhancement datasets are open-source, such as BSD500,
etc. However, there is a lack of open-source datasets for underground mine en-
hancement, as there is no way to obtain images with good brightness for the real
environment undermines. Even in the shutdown state, the noise in the mine will
decrease, but the brightness environment cannot be improved. When simulating
degraded images, noise model simulation is typically used. However, this method
often deviates greatly from reality.

(a) (b) (c)

Fig. 2: Histograms of relevant statistics

Low-light Images Generation Based on the principle of histogram matching,
we perform histogram matching on standard datasets, such as BSD500, that
contain ground truth (with better illumination) similar to real mine images,
thereby obtaining low-illumination images similar to the real situation. To make
the constructed dataset closer to the real situation, we obtained 500 low-light
images through the internet, news reports, and literature retrieval, and used
random registration to construct a low-light dataset based on BSD500. Fig.2
presents relevant statistical histograms. The brightness distribution of the mean
value of this dataset was calculated and plotted in (a). From Fig.2(a), we can
observe that the majority of the images have an average brightness that falls
within a range of 60 intervals. (b) presents the luminance distribution of the
BSDS500 dataset, which has considerably higher mean values compared to the
coal dataset. Furthermore, (c) presents the statistical data on the quantity of
photographs within each brightness interval. This dataset constructed based on
real environment image statistics has low illumination characteristics and will
exhibit variations in different grayscale levels.
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Noise and Block Distortion Correction The gray scale distribution of the
real value image spans from 0 to 255, whereas the gray scale distribution of the
dark image is more focused in the darker region compared to the true value
image. As a consequence, there is a varied spectrum of grayscale distribution,
and photographs that contain extensive patches of uniform color are susceptible
to distortion while doing histogram matching. At first, we attempted to solely
modify the saturation of the true-value image following histogram matching.
However, the issue of distorted color blocks persists. Thus, it is imperative to
conduct histogram matching using gray space and modify the range of the actual
value image prior to completing histogram matching.

When constructing the dataset, preserving the original color integrity of the
images is paramount. The RGB color space, responsible for color composition,
is unsuitable for exclusive histogram matching due to potential nonlinear dis-
tortions. Therefore, we are exploring the use of the HSV color space. While
histogram matching primarily adjusts the V channel, the S channel also influ-
ences color. To accommodate this, the saturation reduction parameter γ can be
tailored based on specific conditions. Subsequently, the luminance channel can
establish the minimum and maximum values for histogram matching, thereby al-
tering the grayscale distribution of dark images. However, this method overlooks
the unique characteristics of authentic images and may result in distorted color
blocks in regions of varying brightness. We also experimented with matching by
averaging the lowest and highest values from the truth map and the dark image.

The required range of gray values [α, β] for the matched image was:

[α, β] ∈
[
1
2 (mingt,mindark) ,

1
2 (maxgt,maxdark)

]
Here are the Results of different histogram matching methods in Fig.3.

(a) Target (b) Original (c) First (d) Adjust S (e) Ignore gt (f) Final

(g) Hist of(a) (h) Hist of(b) (i) Hist of(c) (j) Hist of(d) (k) Hist of(e) (l) Hist of(f)

Fig. 3: Construction process of low illumination mine image

The adjustments made with this method produced smoother images, espe-
cially enhancing the processing of low-light images. However, even after multiple
range adjustments, there were still challenges in processing the bright image of
the ground truth. Further experiments revealed that the minimum value of the
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grayscale range had less impact on the results, and the main problem was the
insufficient grayscale range for its maximum value. Especially in extreme cases,
overly bright images of the truth may need to be excluded.

To improve the accuracy of simulating image features in the mine environ-
ment, we applied a targeted noise enhancement method to the ground truth
images before performing histogram matching preprocessing. To enhance the re-
alism of the image simulation, we introduced Gaussian noise [15] with µ= 0 and
σ= 0.08 to the true value graph. Typically, the noise exhibits σ within the range
of 0.05 [16]. However, due to the complexity of the mine environment, it is ad-
justed to a higher value of 0.08. σ will be further enhanced due to the alteration
in low-light images following histogram matching.

This method is accomplished through the following steps: Initially, a noise
template is created by introducing random noise within the range of pixel values
from 0 to 255. This template is then normalized. Subsequently, the noise template
is applied to each individual color channel of the image.

During the noise generation process, we only used Gaussian noise. This is
because, although the underground mine environment contains various types
of noise, especially multiplicative noise, our noise is added before reducing the
brightness through histogram matching, which is consistent with the principle
of multiplicative noise. Additionally, by using strong noise with σ= 0.08, this
method better aligns with the mine environment.

4 Experiments

Our experimental environment consists of a Windows 10 Home China, 64-bit
operating system running on a hardware configuration consisting of an Intel(R)
Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz with 16GB of RAM and an
NVIDIA Python version 3.10.2 and CUDA version 11.6. During the studies, we
maintained a uniform set of parameter values, including learning rate (lr) of
0.001, batch size of 4, and training for 100 epochs using the Adam optimizer.

4.1 Dataset and Metrics

To boost the quality of mining images, we adopted the methodology described
in reference. We divided the training set and test set in the ratio of 8:2 and
conducted training using a dataset of 400 images with 128 × 128 sizes which
are from dataset BSDS500 [17]. We discovered that utilizing a larger training
set only led to minimal enhancement. In order to train ED-Net for the purpose
of denoising and enhancing specific types of noise with known noise levels, we
focused on two distinct noise levels, namely σ = 0.08. For the test images, we
used the remaining 100 images of the BSDS500 dataset for testing. The division
of the training and testing sets is completely randomized.

This study employs six regularly utilized assessment metrics, Peak Signal-to-
Noise Ratio (PSNR) [12], Structural Similarity Index (SSIM) [18], Mean Squared
Error (MSE) [11], Visual Information Fidelity (VIF) [19], Image Fidelity Crite-
rion (IFC) [20], and Naturalness Image Quality Evaluator (NIQE) [21].
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4.2 Ablation Study

Multiple ablation experiments were conducted to demonstrate the effectiveness
of each component in the loss function used for training the ED-Net. To ensure
better preservation of edges and textural details, the proposed algorithm incor-
porates bilateral filtering within the convolutional implementation process. The

Table 1: On the datasets of this experiment, the quantitative results of five
full-reference indicators including PSNR, SSIM, MSE, VIF and IFC, and one
non-reference indicator NIQE.

Loss Metrics
L1 MSE 1-SSIM PSNR↑ SSIM↑ MSE VIF↑ IFC↑ NIQE↓

1 ✓ 28.0533 0.5872 1433.9656 0.0893 0.9354 27.3830
2 ✓ 28.0873 0.5930 1473.7472 0.0964 0.9398 26.9334
3 ✓ ✓ 28.0435 0.6170 2301.1288 0.1057 0.9422 22.3903
4 ✓ ✓ 28.1939 0.7018 1134.9839 0.1064 0.9494 21.3629
5 ✓ ✓ 28.0601 0.5815 1469.4012 0.0961 0.9423 25.1542
6 ✓ ✓ ✓ 28.0291 0.6220 1979.8175 0.0989 0.9306 24.7222

table 1 displays the outcomes of training different combinations of loss functions
on ED-Net. Table 1 demonstrates that L1 loss is less effective than MSE loss
when either L1 or MSE is employed as the loss function. This demonstrates the
significance of Mean Squared Error (MSE) in accurately detecting and recti-
fying the noisy points in order to restore the image. Applying (1-SSIM) as a
loss function preserves the structural information of the image from the begin-
ning due to the rapid convergence of the SSIM loss. SSIM considers brightness,
contrast, and structure, which effectively balances the different quality metrics
during image enhancement and denoising, resulting in higher-quality processing
outcomes. The table clearly demonstrates that the combination of MSE loss and
SSIM consistently yields favorable outcomes across all the evaluation measures
provided.

4.3 Comparative Experiments

To comprehensively evaluate the effectiveness of the proposed ED-Net, we con-
ducted comparative analyses against several existing algorithms, including Zero-
DCE, Noise2Noise, and SCI. For a fair comparison, we also included algorithms
that utilize ground truth as a reference, such as Noise2Clean, Zero-Clean, and
SCI-Clean, as shown in Table 2 and Fig.4.

From Fig.4, it is evident that the ED-Net algorithm outperforms the others
in terms of color restoration, brightness enhancement, and edge preservation,
particularly excelling in enhancing the platform area and detailed textures. Fur-
thermore, as demonstrated in Table 2, the optimal result is highlighted in red
font. ED-Net achieves superior performance across various metrics, including
PSNR, SSIM, MSE, VIF, IFC, and NIQE, attaining optimal results among the
compared algorithms.
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(a) GT (b) Dark (c) N2N (d) N2C (e) DCE (f) Z2C (g) SCI (h) ED

Fig. 4: Sample Images: Experimental Results of Different Algorithms

Table 2: Results of Comparison on Different Algorithms
Methods PSNR↑ SSIM↑ MSE↓ VIF↑ IFC↑ NIQE↓

Noise2Noise,2019 [1] 27.9661 0.3559 5181.4467 0.1293 0.8988 14.2876
Zero-DCE,2020 [7] 27.8535 0.3879 3419.8502 0.0761 0.9257 13.3818

SCI,2022 [10] 27.9625 0.3682 5098.2715 0.1668 0.9046 13.0853
Noise2Clean 28.1914 0.6484 939.5286 0.0959 0.9399 27.0940
Zero-Clean 27.8556 0.3898 3408.4707 0.0766 0.9278 13.2645
SCI-Clean 27.9728 0.4013 3908.0817 0.1585 0.9307 13.6541
ED-Net 28.1939 0.7018 1134.9839 0.1064 0.9494 21.3629

4.4 Results of Real Mine Images

Furthermore, to assess the practical performance, we evaluated ED-Net on real
underground mine images for experimental comparison. The test set comprised
two images with a resolution of 640×480. During the testing process, instead of
employing image cropping or scaling techniques, the entire image was directly
used as input to obtain the predictions. The processing results are presented
below.

As evident from Fig.5 showcasing the real images with noise, our proposed al-
gorithm demonstrates superior performance in terms of brightness enhancement,
color preservation, and preservation of intricate textural details when compared
to the other methods. For the enhancement of images under low illumination and
noise-containing pollution in the mine, it can be seen that the ED-Net has the
best results in terms of visual effects in terms of overall brightness enhancement,
and the degree of color retention, especially in terms of texture detail.
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Sample of Noise Image Noise2Noise Noise2Clean Zero-DCE

Zero-Clean SCI SCI-Clean ED-Net (ours)

Fig. 5: Comparison on Real Sample Images and Noise Sample Images.

5 Conclusions

In addressing the dual challenges of low illumination and complex noise in un-
derground mining images, we introduce ED-Net, an advanced network based on
the zero-DCE model for concurrent brightness enhancement and denoising. The
method leverages a novel histogram matching-based simulation to generate re-
alistic mine images under varied conditions, reflecting the multiplicative noise
characteristics of actual mining environments. Utilizing the BSD500 dataset,
a specialized low-light noise dataset was created to accurately represent these
challenging conditions. The deeply coupled convolutional architecture of ED-Net
facilitates seamless integration of brightness adjustment and noise reduction,
supported by a joint loss function that mitigates color block effects in flat areas,
ensuring detail preservation and undistorted colors.

Comprehensive experiments on the BSDS500 dataset validate the superior
performance of ED-Net, showcasing its capability to effectively process noisy,
low-light mine images. The network excels in brightness enhancement, color
fidelity, and texture detail preservation, surpassing existing methods. The re-
sultant images maintain their integrity without distortion, providing a robust
foundation for further analysis and enhancing the overall safety and efficiency of
mining operations.
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