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Abstract—In recent years, with the development of social 

economy and technology, the brain-computer interface based on 

motor imagery(MI-BCI) has gradually become the focus content 
of many re-searchers. However, the motor imagery EEG signal 

(MI-EEG) itself has the characteristics of non-linearity and low 

signal-to-noise ratio, and because the characteristics of different 

domains of MI-EEG cannot be effectively combined, the 

recognition rate of MI-EEG is unsatisfactory. To overcome the 
above problems, this paper proposes a Transformer-based one-

dimensional convolutional neural network model(CNN-

Transformer) for the classification and recognition of four types 

of motor imagery EEG signals. Firstly, the artifacts of the 

original EEG are removed and new time-space-frequency 
features are constructed by preprocessing such as bandpass 

filtering and PCA dimensionality reduction; then the local 

features in the time dimension are extracted through the 

convolution and pooling operations of 1D-CNN, while reducing 

the time The dimension of the feature; next, the Transformer 
based on the attention mechanism is used to extract more 

abstract and high-level temporal features from multiple 

perspectives; finally, the classification results are integrated and 

output through the fully connected layer. The performance of 

the CNN-Transformer model is evaluated using the competition 
dataset 2008 BCI-Competition 2A. The results show that the 

average accuracy and kappa value of the CNN-Transformer 

model are as high as 99.29%(±0.07%) and 98.43%(±0.21), 

respectively, which are 3.72% and 7.68% higher than the 

classical architecture (CNN-LSTM). This model provides a 
design idea for improving the accuracy of MI-EEG classification 

and recognition, and also lays a foundation for the wide 

application of MI-BCI. 

Keywords—motor imagery; brain-computer interface; deep 

learning; classification and recognition; convolutional neural 

network; transformer 

I. INTRODUCTION  

The 21st century is called "the age of brain science", and 

brain-computer interface (BCI) is one of the most popular 

research contents in the 21st century. BCI is a system that 

transmits information between the brain and a computer or 

other equipment, it does not directly rely on the utilization of 

external nerve and muscle tissue, but realizes the desire of 

human mind control by processing electroencephalographic 

signals (EEG) into control commands [1], such as exoskeleton 

machine [2], robotic arm [3], etc. 

According to the different generation modes of EEG, BCI 

can be divided into spontaneous BCI and evoked BCI. Evoked 

BCI has a good effect due to its strong regularity and high 

stability of the evoked potential itself, and extensive research 

has been done in SSVEP, P300 and other aspects. Compared 

with the EEG modality of induced BCI, spontaneous MI-EEG 

has strong spontaneity and naturalness, so it is more suitable 

as an EEG control signal for the study of MI-BCI system [4]. 

But, MI-EEG itself has the characteristics of low signal-to-

noise ratio and nonlinearity, which indirectly results in the 

poor recognition effect of spontaneous BCI classification. 

However, the implementation and application of BCI 

technology largely depends on the classification and 

recognition rate, so improving the accuracy of classification 

and recognition has become the main research content of 

researchers. 

A. Related Work 

According to the phenomenon of event-related 

desynchronization and event-related synchronization 

(ERS/ERD) [5], researchers have proposed many traditional 

machine learning methods for decoding MI-EEG, these 

methods mainly use wavelet packet transform (DWT), co-

spatial mode (CSP) and other methods to manually extract 

time, frequency, space, or time-frequency features, and then 

use support vector machine (SVM), k-nearest neighbor 

classification, artificial neural network and other shallow 

model classification algorithms to obtain classification 

accuracy, such as Xiaojun Yu, Zhaohui Yuan[6] and others 

first proposed a  data-adaptive empirical wavelet transform 

(EWT)-based signal decomposition method, which uses 

Welch power spectral density (PSD) and Hilbert transform 

(HT) to decompose the signal. Component extraction, and the 

use of least squares support vector machine (LS-SVM) to 

classify and identify motor imagery EEG signals with an 

accuracy of 94.6%. NiteshSingh Malan, Shiru Sharma [7] etc. 

used CSP algorithm to extract important features of MI-EEG, 

and used SVM to classify the features extracted by CSP, with 

an accuracy of 91.7%. Piyush Kant [8] et al. extracted mean, 

variance, wavelet energy, Shannon entropy, log energy 



entropy, kurtosis and skewness features from EEG signals 

recorded at symmetrical electrode positions in the motor 

cortex, and used SVM classification with an accuracy of 

86.4 %. Poonam Chaudhary [9] et al. used the CSP of the 

wavelet decomposition signal for feature extraction, and then 

used a decision tree classifier, which achieved a classification 

accuracy of 85.6%. Yimin Hou, Tao Chen [10], etc. proposed 

a new framework based on bi-spectrum, entropy and common 

space pattern (BECSP), specifically using the bi-spectrum, 

entropy and CSP methods in higher-order spectrum to extract 

MI- EEG signal features, and then select the feature with the 

largest contribution through a tree-based feature selection 

algorithm. By using the SVM algorithm based on the RBF 

kernel function for classification, the highest accuracy rate 

reaches 85%.To sum up, the traditional machine learning 

technology is very mature and the classification effect is also 

effective, but because the representative EEG features are 

extracted manually, the characteristics of the original EEG 

itself are ignored, and the process is more complicated. , the 

efficiency is also lower. And most classification algorithms 

are only for binary classification problems. 

Deep learning methods have been proven to outperform 

traditional machine learning methods in many fields, such as: 

computer vision, natural language processing, biomedical 

signal processing, etc. Deep learning technology has gradually 

extended from these popular fields to the BCI field, and has 

become one of the latest and most important tools in the BCI 

field. The deep learning model can automatically extract the 

more representative deep abstract features of MI-EEG without 

complex preprocessing and feature extraction process. At the 

same time, the end-to-end features of deep learning well 

preserve the features of the original signal. In recent years, 

many researchers have carried out EEG signals decoding 

research based on deep learning methods, such as Hongli Li, 

Man Ding [11], etc. proposed a parallel CNN-LSTM hybrid 

neural network, in which CNN is responsible for extracting 

EEG space LSTM is responsible for extracting temporal 

features, and finally outputs the classification results through 

the fully connected layer, with an average accuracy of 87.68%. 

Chu Yaqi [12] and others proposed a neural network based on 

joint convolution of spatial-temporal features, which 

sequentially convolved temporal and spatial features to extract 

spatial-temporal features, and the average classification 

accuracy reached 80.09%. Jinzhen Liu, Fangfang Ye [13] and 

others designed a convolutional neural network and a 

cascaded network of gated recurrent units to learn time-

frequency information from EEG data, and the classification 

and recognition accuracy reached 92.56%. Mouad Riyad, 

AbdellahAdib [14], etc. developed a ConvNet based on 

Inception and Xception architecture, which uses 

convolutional layers to extract temporal and spatial features, 

and employs separable convolution and depthwise 

convolution to achieve a faster and more efficient ConvNet. 

Then, a new block inspired by Inception is introduced to learn 

richer features to improve classification performance. 

Although the appeal decoding method has achieved good 

results, it is still a  difficult problem to efficiently combine the 

features of different domains. Moreover, although CNN can 

better capture local features in different domains of EEG, local 

features between different layers cannot be well correlated. At 

the same time, with the increase of the amount of data and the 

number of network layers, the performance and adaptability 

of the model will decline. Although RNN is a natural time 

series model, its inherent sequential property hinders 

parallelization among training samples. For long sequences, 

memory constraints will hinder batch processing of training 

samples. 

B. Central Idea 

Transformer [15] completely abandoned the traditional 

CNN and RNN, and the entire network structure is completely 

composed of the attention mechanism, which is the latest and 

most popular deep learning model in recent years. Compared 

with CNN and RNN, Transformer can use the multi head 

attention mechanism to learn the relationship between 

different layers of features. It has better universality and strong 

comprehensive feature extraction ability. It can not only pay 

attention to the current information, but also expand from the 

current local information to the global information. Moreover, 

it outperforms other models in long-sequence feature 

correlation calculation and model visualization and 

interpretability. But it is also because Transformer abandons 

the structure of CNN and RNN, so its ability to capture and 

analyze local features is poor, and because of the small amount 

of data in this paper, it cannot make up for this defect through 

huge data. At the same time, although Transformer can 

calculate the attention between any two nodes through the 

self-attention mechanism, so that it has the a bility to capture 

and analyze long time series data, for long time series, the 

analysis ability will still decline with the extension of the 

sequence. 

Combining the above considerations, this paper proposes 

a Transformer-based one-dimensional convolutional neural 

network model CNN-Transformer, and applies the model to 

four types of MI tasks. The main contributions of this paper 

are as follows:  (1) According to the original characteristics of 

MI-EEG, for the spatial domain, the original MI-EEG is 

decomposed according to different frequency bands, and then 

the decomposed feature sequences of different frequency 

bands are fused to construct new spatial features, and PCA is 

used to extract the main features of spatial dimensions; For the 

frequency domain, according to the filtered results, the 

differential entropy(DE) of each frequency band of each 

channel is calculated and transformed into one-dimensional 

characteristic sequence; For the time domain, a new time-

frequency feature is constructed by combining the feature 

sequence processed in the frequency domain with the feature 

sequence of the time domain itself, and then the dimension of 

the time-frequency feature is reduced through the sliding 

window, which also solves the problem of small amount of 

data. (2) In order to solve the problems of poor analysis ability, 

large amount of calculation and weak ability to capture local 

features caused by long EEG time-frequency sequences, the 

CNN-Transformer model is designed. Through 1D-CNN 

convolution and pooling operations in time-frequency domain, 

the low-level time-frequency features are extracted and the 

time-frequency feature dimension is reduced for the 

Transformer, paving the way for subsequent Transformers to 

extract higher-level features. (3) Use optimization algorithms 

such as cross-validation to optimize the parameters and 

structure of the model CNN-Transformer. Finally, based on 

the same data set, the experimental results of the model 

proposed in this paper, the classic architecture CNN-LSTM 



and other models a re significantly compared and analyzed to 

verify the effectiveness and practicability of the model. 

II. MATERIALS AND METHODS 

A. Data Description  

The experimental data BCI Competition 2008 – Graz data 

set A is taken from the 2008 International Brain-Computer 

Interface Competition The dataset consists of MI-EEG of 9 

subjects in 4 classes, namely left hand (class1), right hand 

(class2), foot (class3), and tongue (class4). The experimental 

procedures and contents were the same for each subject.  

The content of the experiment is: each subject records 2 

groups of experimental data at different time points, each 

group includes 6 groups of small experiments, and each group 

of small experiments contains 48 segments (i.e.: 4 types of 

actions, each type of action is randomly repeated 12 times, A 

total of 4 × 12 = 48 times), each group of experimental data 

contains a total of 288 sections (6 groups × 12 sections = 288 

sections), and 2 groups of experimental data have a total of 

576 sections (2 groups × 6 groups × 48 sections = 576 

sections). Since one set of experiments does not contain the 

labels required for training, this paper only utilizes the set of 

experimental data with labels. 

The experimental process is as follows: at the beginning 

of the test (t=0s), a  fixed cross will appear on the black screen, 

in addition to a brief audible prompt tone, after two seconds 

(t=2s), one will point left and right as a prompt , down or up 

(corresponding to the four categories of left hand movement, 

right hand movement, foot movement and tongue movement) 

arrows will appear on the screen for about 1.25s, which 

prompts subjects to imagine the movement corresponding to 

the picture, each subject The subjects were asked to complete 

these imaginary tasks until the cross on the screen disappeared 

(t=6s), and then took a short rest until the screen turned black 

again, and this process was repeated 288 times in stages. 

Figure 1. shows the flow of the single-motion imagery 

experiment. 

 

Figure 1.  Single motor imagery sequence  

For the accuracy of the experiment, we only intercepted 

the data 4s after the prompt as a single MI-EEG sample. Then, 

through the toolkit MNE-Python (MNE is an open source 

python toolkit mainly used for EEG/MEG analysis, 

processing and visualization), a  MI-EEG data sample with a 

size of 22 × 1000 × 288 was constructed for each subject. 

B. Data Preprocessing 

Unlike most ways of preprocessing EEG using the Eeglab 

tool, all steps of preprocessing data in this paper are performed 

through the MNE-Python toolkit, and the preprocessing 

process is as follows: firstly, a  sample data set with the 

structure [288,1000,22] is constructed for each subject 

according to the temporal axis of the single MI task, and to 

further improve the signal-to-noise ratio of MI-EEG In this 

paper, a  5th order Butterworth filter (i.e., δ[1-4Hz], θ[4-8Hz], 

α[8-13Hz], β[13-30Hz], γ[31-51Hz]) is used to filter and 

decompose each segment of the sample dataset into 5 new 

datasets, and then the datasets of these 5 bands are fused in 

spatial dimension and the data structure is reshaped as [288, 

1000, 110], after which the spatial features are extracted and 

downscaled by PCA, and its downscaled data set structure is 

[288,1000,32].  

We define Tn= (T1, T2,..., Tn) as an EEG signal sample 

containing 4S. According to the results of the initial filtering, 

the differential entropy of different frequency bands of all 

channels is calculated, which is transformed into a one-

dimensional sequence and defined as Dm= (D1, D2,..., Dm). A 

new time-frequency characteristic sequence Sk= (S1, S2,..., Sk) 

is formed by splicing time series and differential entropy 

sequences. In order to make the model better learn features 

and solve the problem of small data volume, the data set 

matrix is divided into time steps through a sliding window 

with a step size of 60 and a window size of 510. Each part 

includes 510 sample sequences. Finally, a  trainable set data 

with a structure of [2880,510,32] is formed for each subject. 

In order to carry out the following experiment smoothly, the 

EEG trainable data sets of 9 subjects were integrated, and the 

integrated data sets were divided into three parts according to 

6:2:2, of which 60% were training sets for training models; 20% 

is the validation set, which is used to optimize the model 

parameters; The remaining 20% is the test set, which is used 

to evaluate the generalization and stability of the model. 

C. Classical Architecture: CNN-LSTM 

The classifier used by classical architectures is a serial 

combination of CNN and LSTM. First, the pre-extracted 

spatial features and time steps in the preprocessing process are 

used as the input of CNN-LSTM, the low-level features of the 

EEG data time-frequency dimension are extracted through 

CNN, and then the proposed features are input into LSTM to 

obtain a more abstract high-level Representative time-

frequency features. Finally, all the features are integra ted 

through the fully connected layer and the classification result 

is obtained. The overall structure of the model is shown in 

Figure 2.  

 

Figure 2. CNN-LSTM model structure 

During data preprocessing, the data structure of each 

subject is [2880, 510, 32]. This means, (32, 510) as the input 

to the model. Among them, 32 is the spatial feature dimension 

after channel and frequency band fusion, and 510 sample 

points are temporal features. The kernel size and number of 

filters of the first convolutional layer are 4 and 128, 



respectively. The activation function is selected as "ReLu". 

The maximum pool size is 4. The second convolutional layer 

has a kernel size of 2 and a number of filters of 64. Also select 

"ReLu" for the activation function. The batch normalized 

dimension is 64. The LSTM layers have a "tanh" activation 

function and a recurrent activation function with a dropout of 

0.1, and the total number of units per LSTM layer is 25. The 

fully connected layer has a "softmax" activation function. 

D. CNN-Transformer model 

In the process of data preprocessing, we constructed a new 

time-frequency fusion feature sequence, in order to make the 

extracted EEG features better describe the time-frequency 

feature sequence characteristics of the signal, and solve the 

problem of long sequence characteristics of EEG signals, this    

paper proposes a Transformer-based one-dimensional 

convolutional neural network model (CNN-Transformer) for 

decoding MI-EEG. 

First, the local temporal-frequency features are captured 

by down-sampling in the temporal-frequency dimension 

through 1D-CNN operations of convolution and pooling, and 

also the length of the time series is further reduced. In addition, 

this process serves to prevent model overfitting to some extent. 

The extracted short series temporal-frequency features are 

then fed into Transformer to further extract more abstract, 

high level time features. Finally, the high-level abstract 

features are integrated through the fully connected layer to 

output the classification results. 

The process of extracting temporal features from 

Transformer is as follows: first, the output vector of 1D-CNN 

is used as the input feature vector X={X1,X2,...,Xn}, record 

the initial position information of the feature vector X by 

position-encoding (PE), and then use the PE feature vector as 

the input of the encoder. In the encoder, in order to be able to 

extract multi-angle temporal features in parallel a s well as 

solve the gradient disappearance and gradient explosion 

problems, the value of each attention head is calculated in 

parallel through the multi-head attention mechanism, and the 

attention head values are input to “residual structure” and 

“layernorm” layer for processing, and then the new results are 

input to the feedforward neural network, and then the output 

results are input into the decoder. There are two inputs to 

decoder, one is the feature vector Z=={Z1,Z2,...,Zn} of 

encoder output and the other is the feature vector X1 of 1D-

CNN output. In decoder, the output vector X of 1D-CNN is 

combined with the output vector X of 1D-CNN and the 

encoder output is decoded by the multi-head attention 

mechanism, the pre-feedback neural network and the residual 

structure. The CNN-Transformer model structure is shown in 

Figure 3. 

 

Figure 3. CNN-Transformer model structure

The overall model structure is divided into two parts. The 

first part is the temporal convolution, and the input shape and 

the parameter values involved in the whole convolution 

process are the same as the baseline model. The second part 

is the Transformer, and the parameters involved are described 

below. The overall structure of the Transformer consists of 

three parts: 1 layer of Position PE, 1 layer of encoder and 1 

layer of decoder.PE layer: embedding dimension is 64; single 

time step is 125; dropout is 0.1; the value of pe is determined 

by the triangular functions sin and cos (pe: Position and order 

information of all feature vectors x); encoder layer: feature 

vector dimension is 64; multi-head attention (nhead) is 16; 

feedforward neural network dimension (dim_fre) is 16; 

dropout is 0.1; number of layers is 1. decoder layer: 

parameters are the same as those of encoder layer. In this 

paper, the decoder structure has no Mask structure. The fully 

connected layer has "softmax" activation function. The CNN-

Transformer model is summarized in Table Ⅰ. 

E. Evaluation Indicators 

The evaluation indicators involved in this paper include: 

①Accuracy: The ratio of the number of correctly predicted 

categories to the total number of categories is used to measure 

the applicability and practicality of the model. ②Consistency 

(kappa): Similar to acc, it is also an indicator to measure the 

quality of the model. It is an indicator used for consistency 



test and can also be used to measure the effect of classification. 

At the same time, it is also an indicator of penalizing the 

"bias" of the model. As shown in formula  (1). 

                      𝐾𝑎𝑝𝑝𝑎  =  
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
                           (1) 

According to the calculation formula of kappa, the more 

unbalanced the confusion matrix is, the higher the Pe is, the 

lower the kappa value is, which is just enough to give a low 

score to a model with strong "bias". In the formula, Po is the 

recognition rate, and Pe is 0.25. ③ Confusion matrix: 

Confusion matrix, also known as error matrix, is a  standard 

format for expressing accuracy evaluation and is used to 

observe the performance of the model in various categories. 

By calculating the confusion matrix composed of the 

recognition results of each category, it reflects the ratio of 

correct and wrongly divided motion MI-EEG for each 

category. Through the above evaluation indicators, while 

testing the quality of the models, the differences between the 

models can also be compared. ④Roc curve: Roc curve is a 

visual tool for evaluating classification models, which is used 

to describe the trade-off between classifier hit rate and false 

positive rate. The area value of the Roc curve and the abscissa 

is called Auc. Usually, the Auc value is used to compare the 

performance of different classifiers. 

Table I. CNN-Transformer model overview 

Model: CNN-Transformer 

Layer(type) Output Shape Params 

conv1d_1 (-1, 128,507) 16512 

max_pooling (-1,128,126) 0 

conv1d_2 (-1,64,125) 16448 

batch_normalization (-1,64,125) 256 

encoder (-1,64,125) 18432 

decoder (-1,64,125) 34816 

fc (-1,64) 256 

Total Params: 87524  Trainable Params: 87396  
Non-Trainable Params:128 

III. RESULTS AND ANALYSIS 

A. Experimental result and model parameter settings 

All experiments involved in this paper are carried out on 

the cloud server platform, and the GPU version is RTX3090. 

The results of model 5-fold cross-validation training are 

shown in Table Ⅱ. 

After 5-fold cross-validation, the averages of validation 

set accuracy and kappa were 0.9929 (±0.0007) and 0.9843 

(±0.0021), respectively. After that, the CNN-Transformer 

Table II. 5-fold cross-validation result 

n-fold Acc(train) Loss(train) acc(validation) loss(validation) Kappa(validation) 

1 0.9998 0.0057 
0.9937 0.2719 0.9822 

2 0.9997 0.0068 0.9923 0.3443 0.9846 

3 0.9996 0.0078 
0.9914 0.3243 0.9827 

4 0.9996 0.0082 
0.9932 0.2819 0.9835 

5 0.9998 0.0075 0.9942 0.2591 0.9887 

average       0.9997(±0.0001)                         0.9929(±0.0007)                                   0.9843(±0.0021) 

 

model was tested with the test set data, and the average 

accuracy and kappa were as high as 99.68% and 98.67%, 

respectively. But the disadvantage of using cross-validation 

here is that the dataset for training and optimizing the model 

parameters and the dataset for testing the model are pre-

partitioned. The accuracy rates of CNN-Transformer and the 

classic architecture training set and validation set are shown 

in Figures 4 and 5. The loss values are shown in Figures 6 and 

7. 

 

Figure 4. CNN-Transformer accuracy 

 

Figure 5. CNN-LSTM accuracy 

 

Figure 6. CNN-Transformer loss 



 

Figure 7. CNN-LSTM loss 

As can be seen from the figure, when the CNN-

Transformer model is trained for about 25 epochs, the model 

achieves a good effect, and the whole process has a high 

degree of fit and is more stable. The parameters of the CNN-

Transformer model are optimized and adjusted through 5-fold 

cross-validation, and the parameters are shown in Table Ⅲ. 

Table III. CNN-Transformer parameters and values 

Parameter Type or value 

Regularization Dropout=0.1 

Loss_function Cross_entrop 

Batch_size 128 

Epoch 200 

Learning_rate 0.0005 

Nhead 16 

Dim_fre 16 

 

B. Comparative analysis of the result of two models 

The accuracy and kappa values are as described in the 

previous section. After comparing acc and loss, we can see 

that CNN-Transformer can capture the features of EEG data 

faster and more accurately, and the efficiency and effect are 

better than the classic architecture. In order to further analyze 

the influence of the proposed method on MI-EEG recognition 

effect, this paper calculates the average confusion matrix of 

the two models. As shown in Figures 8 and 9. 

 

Figure 8. CNN-Transformer average confusion matrix 

The horizontal axis is the predicted category, the vertical 

axis is the actual category (0, 1, 2, and 3 represent left-hand, 

right-hand footsteps, and tongue, respectively), and the 

diagonal line formed by the intersection of the horizontal axis 

and the vertical axis category is correctly divided , while the 

remaining intersections are the rate of mispredictions. It can 

be seen from Figure 9 that the average error rates at the 

intersection of the left and right hands are 5% and 6%, 

respectively. The average error rate at the junction of the foot 

and tongue was 7% and 3%, respectively. This could be the 

same spatial or temporal information when imagining 

different classes of tasks, or it could be that the features 

captured by the baseline model are inaccurate. As shown in 

Figure 8, Almost 0 error rate for all categories. Blank 

indicates 0 error rate. It further proves the effectiveness and 

stability of the CNN-Transformer model proposed in this 

paper. 

 

Figure 9. CNN-LSTM average confusion matrix 

In order to more intuitively reflect the classification 

performance of CNN-Transformer, the roc curves of all 

categories of the two models are drawn at the same time, as 

shown in Figures 10 and 11. After comparison, it is found that 

both CNN-LSTM and CNN-Transformer have very good 

classification performance. However, for class1, the Auc 

value of CNN-Transformer is 0.5 higher than that of CNN-

LSTM, and the other classes are 0.4 higher. Therefore, the 

classification performance of CNN-Transformer is better. 

 

Figure 10. Roc curve of CNN-Transformer 

 

Figure 11. Roc curve of CNN-LSTM 



Finally, this paper also summarizes other models that use 

the competition data set 2a as the experimental data, and 

compares them with the model in this paper. The comparison 

results are shown in Table Ⅳ. 

Table IV. Comparison results with other models 

Model accuracy 

CNN-Transformer 0.9929 

CNN-LSTM 0.9231 

TSCNN[12] 0.8009 

PSD+CNN[16] 0.8797 

WT+_HLMSFFCNN[17] 0.9295 

TMCNN[18] 0.8085 

CSP+CWT+CNN[19] 0.7790 

 

IV. DISCUSSION AND CONCLUSIONS 

The performance of the CNN transformer model 

proposed in this paper is evaluated by 5-fold cross validation 

and confusion matrix. The results show that the model has 

achieved good results. CNN transformer model mainly 

analyzes the data in the time dimension and extracts high-

level features. Due to transformer, the model has good parallel 

computing ability and generalization ability of the model, and 

shows excellent results in both effect and efficiency. The 

robustness to different tasks can be improved by appropriate 

filtering and initial weight. In order to further prove the 

effectiveness of the model, compared with other models in the 

literature, it is better than other models on the premise of the 

same data. Because the model combines the advantages of 

CNN and transformer respectively, and also makes up for the 

respective defects of CNN, RNN and transformer. To sum up, 

the model CNN transformer proposed in this paper has good 

generalization ability and high practicability, provides a 

design idea for improving the accuracy of decoding MI-EEG, 

and lays a technical foundation for the implementation of MI-

BCI. However, this study also has shortcomings and needs to 

be improved: 

(1) KPCA is an improved version of PCA. For the nonlinear 

problems existing in the real world, principal component 

analysis PCA and linear discriminant analysis LDA are 

powerless, while KPCA has higher analysis and 

extraction ability for nonlinear data. However, due to the 

working principle of KPCA, although it can better 

reduce the dimension of nonlinear data, the cost is more 

it resource consumption. Therefore, due to the 

experimental equipment, PCA is still used to extract the 

principal components of the features of spatial 

dimensions. 

(2) Transformer is independent of CNN and RNN. Although 

it has good feature extraction ability and parallel 

computing ability, it needs enough data to reflect its 

advantages. Experiments show that with the increase of 

encoder decoder structure, the classification effect of 

CNN transformer model is getting worse and worse. 

Therefore, for the amount of data in this paper, we only 

use the transformer with 1-layer encoder decoder 

structure, which does not give full play to the stackable 

advantage of transformer. 

(3) According to the characteristics of MI-EEG, in the next 

step, we can try to build a fusion model of two-

dimensional convolutional neural network and multi-

layer transformer for time, space and frequency domain, 

so as to realize the joint learning of multi-source features 

and improve the recognition accuracy of MI multi 

classification tasks. At the same time, the visual structure 

of the output features of each model is studied to provide 

a practical basis for better explaining the feature structure 

of each field. 
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